HDPE/PC/CB复合材料的相结构及PTC行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基PTC导电复合材料是指以聚合物为基体,填充导电粒子制备的具有导电性的复合材料,由于其聚合物原料来源广泛,具有较好的应用性能和加工性能,受到越来越多的关注以及广泛应用。
     采用两种不相容的聚合物作为基体材料,使导电粒子在两相聚合物中形成“双逾渗”结构:即导电粒子在一相聚合物中形成一个连续结构,而这一聚合物又在另外一相聚合物中形成连续结构,从而形成双连续结构。可以降低导电粒子填充的逾渗阈值,改善材料的PTC性能以及其稳定性。
     本文选择CB为填充粒子,两种不相容的聚合物高密度聚乙烯(HDPE)和聚碳酸酯(PC)作为基体,采用两种制备工艺:CB母料填充和CB直接共混填充制备三元HDPE/PC/CB复合材料。同时以单一组分聚合物HDPE/CB、PC/CB二元复合体系作为对比,通过电镜、溶剂抽出、动态流变等研究手段对其电性能以及CB的分布状况进行了系统的研究。
     首先,试验发现由于CB的选择性分布在HDPE相以及两相界面处,优先形成导电通路,三元HDPE/PC/CB复合材料的逾渗阈值要明显低于单一组分HDPE/CB、PC/CB二元复合材料的逾渗阈值,即在低的CB填充量下即具有较低的体积电阻率。
     通过对HDPE/PC/CB三元复合材料的电阻率~温度性能的测试,发现母料填充的复合试样的PTC强度较高,电阻率重复较好,出现了两个电阻率突增的转变点又称为“双PTC效应”。而直接法制备的试样的PTC强度较小,且只有一个电阻率转变点,重复性较差。这与HDPE/PC/CB中双逾渗结构的形成有很大关系。
     从热力学和动力学两个方面研究了CB在基体中的分散状况,研究发现,从热力学角度而言,CB粒子倾向于分布在PC相中。采用三氯甲烷对三元复合试样进行选择性抽出PC,计算被溶解掉的PC的量,发现同种HDPE/PC配比下,母料法制备的试样其PC的抽出量明显高于直接法制备的试样,说明母料法试样的双连续性比较高。
     另外,通过对选择性抽出PC后的试样进行电镜观察,发现母料法中CB主要分布在HDPE相以及两相界面,HDPE相与PC相形成了连续结构。而直接法制备试样的HDPE相没有CB粒子的存在,并且出现了大量的局部团聚现象,CB粒子之间出现了很多的连续的孔洞,为溶解掉的PC原来所在的位置,说明CB主要分布在PC相中,也证实了从热力学角度上得出的CB倾向于分布在PC相中的观点。母料法制备三元试样是先将CB分布在HDPE中,增大了HDPE的黏度,从动力学方面,使得HDPE与PC的黏度相近,更易形成较为理想的双逾渗结构,这也与抽提结果相吻合,同时也进一步证实了母料法中PTC性能优于直接法的原因。
     利用动态流变方法对二元、三元复合材料进行研究,发现动态流变黏弹函数对填充含量的依赖性较大,从流变学角度表征了不相容体系的三维逾渗网络的形成。低CB填充量下,CB含量对三元HDPE/PC/CB复合体系的黏弹性影响较小,储能模量和复数黏度主要依赖于PC相,损耗模量、损耗因子则主要取决于HDPE的链段运动能力和聚合物的界面相互作用。而在高CB填充量下,母料法与直接法对试样黏弹性的影响不同。
The study on Conductive Polymer Composites possessing PTC behavior (Positive Temperature Coefficient) becomes an increasingly popular topic in the world. PTC means the resistivity of Conductive Polymer Composites increases with the temperature increasing.
     Two different ways were used to prepare HDPE/PC/CB composites in which carbon black (CB) as conductive filler filled in immiscible polymer blends of high-density polyethylene(HDPE)and polycarbonate(PC):direct melt-mixing and using CB master batch. And we also prepared single polymer composites(HDPE/CB,PC/CB) as counterpart. Resistivity,PTC behavior,the dispersion state of CB,and the relationship of morphology,rheology were investigated in this paper.
     The properties of PTC materials are not only related to the properties of polymers,CB and the interaction between the polymer and CB,but also to the distribution CB filled in polymers.
     In comparison with single polymer composites (HDPE/CB,PC/CB),the percolation threshold of CB filled in HDPE/PC/CB is about 12%,which is obviously lower than that in HDPE/CB (20%)and PC/CB(22%).
     The measurement of resistivity~temperature indicated that PTC intensity and PTC reproducibility of composites prepared using CB master batch was better than composites prepared via direct mixing of CB and polymers. The composites prepared using CB master batch had a bi-percolation structure and exhibited a better PTC reproducibility especially for the composite with HDPE/PC ratio 40/60. This depends on the structure of double percolation as mentioned above.
     SEM showed that HDPE phase and PC phase were bi-continuous in composite prepared using CB master batch; CB mainly distributed in HDPE phase and the interface between HDPE/PC in which the conductive network were easily formed. But CB preferably distributed in PC phase in composites prepared by direct melt-mixing.
     The dynamic viscoelasticity of CB filled in HDPE/PC/CB composites were investigated. The results indicated that the viscoelasticity of the composites were dominantly influenced by the PC/HDPE morphologies on the case of low CB loading while CB exhibited its effect on the case of high loading.
引文
1.章明秋,曾汉民.导电性高分子复合材料[J].工程塑料应用,1991(2):50-57
    2. Ohe K,Natio Y J. New resistor having an ano malously large positive temperature coefficient. Japanese Journal of Applied Physics (1971), 10(1):99-108
    3. Sheng P,Sichel E, Gittleman J.Fluctuation-induced tunneling conduction in carbon-Polyvinyl Lchloride composites. Phys. Rev. Lett. 1978, 40:1197–1200
    4. B.Wessling.Electrically conductive Polymer. Kunststoffe 1986 ,76(10): 930-936
    5.荷丽,刘军,沈强.导电高分子的应用[J].化学试剂,2003,25(3):145-149
    6.黄兴.炭黑填充型导电塑料的研究与应用现状[J].中国塑料,2000,14(12):17-21
    7. Ramesh Chem .Structure of a new crystalline modification of dithiocyanato (triphenylphosphine)mercury.Canadian Journal of Chemistry, 1979, 57:2555-2559
    8. R.H.Hulett.Information Chimie,1987,(283):113
    9. Reycham Corp.US patent,1983(413):301
    10.汤浩,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,12(3):6-11
    11. Frydman E.U.K.Patent Speci,1945,604,195,1718,14s
    12. Kohler F.U.S .Patent3243753,March 29,1966
    13. Ohe K, NatioY. Jpn.J.Appl.Phys,1971,10,99
    14. Meyer J H.Texas Instruments,Inc.,1970s
    15. H. M. Al-Allak, A. W. Brinkman, and J. Woods, J. Mater. Sci., 1993,28(117)
    16.李荣群,李威,苗金玲等.高分子PTC材料的一种新理论模型[J].高分子材料科学与工程,2003,9(5):42-49
    17.彭莉,张志平..不同粒径炭黑混合对复合型导电材料性能的影响[J].功能高分子学报, 2003(16):229-232
    18.罗延龄.炭黑粒子偶联处理的HDPE复合材料PTC性能研究[J].炭素2001(3):16-22
    19. Hongfeng Xie, Lisong Dong, Jiazhen Sun . In?uence of Radiation Structures on Positive-Temperature-Coef?cient and Negative-Temperature-Coef?cient Effectsof Irradiated Low-Density Polyethylene/Carbon Black Composites. Journal of Applied Polymer Science, 2005,95: 700–704
    20. I Mironi,M Narkis. Thermoelectric Behavior (PTC) of Carbon Black-Containing TPX/UHMWPE and TPX/XL-UHMWPE Blends. Polymer Science: Part B,2001,39:1415-1428
    21. I Mironi,M Narkis. Thermo-Electric Behavior (PTC) of Carbon Black-Containing PVDF/UHMWPE and PVDF/XL-UHMWPE Blends, Polym. Eng. Sci., 2001,41:205-221
    22. Weihua Di ,Guo Zhang.Two-step PTC effect in immiscible polymer blends ?lled with carbon black,Journal of Materials Science.2004,39:695-697
    23. Sumita M, Asai S, Miyasaka K, Nakagawa H.Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer Bulletin, 1991, 25: 265-271
    24. Sumita M, Sakata K, Hayakawa Y, et al. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends [J]. Colloid and Polymer Science,1992, 270 : 134-139
    25. Tchoudakov R,Narkis M.Conductive polymer blends with low carbonblack loading:high impact Polystyrene/(Styrene-Isoprene-Styrene).Polymer Engineering and Science,1997, 37(12):1928-1935
    26. Feng J Y.Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers.Polymer,2000,41:4559-4565
    27. Feng J Y. Chan C M.A method to control the dispersion of carbon black in an immiscible polymer blend [J]. Polymer Engineering and Science, 2003, 43 (5): 1058-1063
    28. GangYu, MingQiu Zhang. Conductive polymer blends filled with carbon black: positive temperature coefficient behavior. Polymer Eng and Sci,1999,39:1678-1688
    29. Avroml.Electrical conduction in carbon black composites. Rubber Chem and Tec,1996,59(3): 432-454
    30.易回阳.HDPE/炭黑PTC复合材料组成与电性能[J].现代塑料加工应用,2006,18(6):26-29
    31.阳明书,张世民.尼龙66/蒙脱土复合材料结晶行为的研究[J].高分子学报, 2002,4:472-478
    32.黄英,李郁忠.炭黑/聚烯烃导电复合材料PTC效应的研究[J].塑料科技,2001,141(1):4-8
    33.谢建玲,王雪梅,汪浩.炭黑填充聚乙烯PTC效应及其稳定性[J].2002,18(2):86-89
    34.林海平,赵文元,陈滇宝.炭黑填充聚合物基PTC材料的研究进展[J].弹性体,2004,25,14(1):51-56
    35.李斌,赵文元.聚乙烯/石墨复合材料PTC效应的研究[J].高分子材料科学与工程,2006,21(1):158-165
    36.梁基照.HDPE熔融热焓与结晶度的测定[J].广州化工,1994,22卷4期
    37.徐玲,钟淦基.CB含量对微纤化导电复合材料CB/PET/PE非等温结晶的影响[J].高分子材料科学与工程,2010,26(7):67-70
    38. A Bouilloux ,B Ernst ,A Lobbrecht .Rheological and morphological study of the Phase inversion in reactive polymer blends. Polymer 1997,38(19):4775-4783
    39. Teh J W, Blom H P , Rudin A . A Study on the Crystallization Behaviour of P olypropylene/P olyethylene and TheirBlends by Dynamic Mechanical and Thermal Methods [ J] .Polymer , 1994, 35: 1680-1687
    40.柯林萍,阳明书,吴长勇.有机化蒙脱石填充尼龙66复合物的结晶与热力学行为研究[J].材料科学与工艺,2001,9(3):319-321
    41.俞强,林明德.PET/蒙托土纳米复合材料的结晶行为[J].江苏石油化工学院学报,1999,11(1):21-25
    42.闵敏,戴厚益.聚合物结晶行为的流变学研究[J].中国塑料,2010,24(8):37-40
    43. F Kohler. A new resistor having an anomalously large positive temperature coefficient. US patent 3243753, 1996, 29
    44. Narkis M,Yakubowicz J,Vaxman A,Marmur A. Poly Eng Sci,1986,139(26)
    45. F. Gubbels,Kinetic and Thermodynamic Control of the Selective Localization of Carbon Black at the Interface of Immiscible Polymer Blend.Chem. Mater., 1998, 10 (5):1227–1235
    46. Wiriya Thongruang, C.Maurice Balik, Richard J. Volume-Exclusion Effects in Polyethylene Blends Filled With Carbon Black Graphite or Carbon Fiber[J]. Polymer physics,2002,10: 1013-1025
    47. Petra Poetschke, Arup R.Bhattacharyya1, Andreas Janke. Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube ?lled polycarbonate[J]. Polymer, 2003,44:8061–8069
    48.宋义虎.高密度聚乙烯导电复合材料非线性导电行为的研究[D].浙江大学博士论文,1999
    49. J Yacubowicz,M Narkis.The electrical and dielectric properties of segregated carbon black polyethylene .Polymer ,1990,30(8):459-468
    50. H.Tang,J.Piao,X.Chen,Y.Luo and S.Li. Journal of Applied Polymer Science , 1993,48:1795
    51.陈永良.炭黑填充硅橡胶硫化体系电阻的外场依赖性[D].浙江大学硕士论文,2005,6
    52.石东海.聚合物基PTC导电复合材料研究[D].北京化工大学硕士学位论文,2008,6
    53. HONG J I,SCHADLER LS, SIEGEL RW.Rescaled electrical properties of ZnO/low density polyethylene nanocomposites .Applied Physics Letters,2003,82(12):1956-1958
    54. Xiang-Bin Xu,Zhong-Ming L.Formation of in situ CB/PET Microfibers in CB/PET/PE Composites by Slit Die Extrusion and Hot Stretching.Macromolecular Materials andEngineering.2004,289(6):568-575
    55.车锋.有机PTC导电复合材料的研究[D].哈尔滨理工大学硕士学位论文,2003,1
    56. F Gubbels, S. Blacher, E. Vanlathem, R.Design of Electrical Composites: Determining the Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends.Macromolecules, 1995, 28 (5):1559–1566
    57. Dai K, Xu X B, Li Z M..Electrically conductive carbon black (CB) filled in situ microfibrillar poly (ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution . Polymer, 2007, 48 (3): 849~859
    58. Li Z M, Lu A.Carbon Black/Poly(ethylene terephthalate)/Polyethylene Composite with Electrically Conductive In situ Microfiber Network [J].Carbon. 2004, 42(2): 428~432
    59. Cheah K.,Simon G.P.Processing and morphological development of carbon black filled conducting blends using a binary host of poly(styreneco-acrylonitrile)and poly(styrene).Polymer Science,Part B:Polymer Physics,2000,38,(23):3106-3119
    60. S吴.高聚物的界面与粘合.纺织工业出版社,1987,2
    61 Aoki Y, Hatano A.Rheology of carbon black suspensions:Three types of viscoelastic behavior.Rheologica Acta,2003(42):209-216
    62. Wu G,Asai S.Estimations of flocculation structure in filled polymer composites by dynamic rheological measurements.Collid poly Sci,2000(278):220-228
    63. Chr.Friedrich.W. Scheuchenpflug.Morphological and rheological properties of PS melts filled with grafted and ungrafted glass beads.Journal of Applied Polymer Science,1995,57(4):499-508
    64. Aoki Y, Hatano A.Rheology of carbon black suspensions:well dispersed system.Rheologica Acta.2003(42):321-325
    65. Leblanc J L,Jager K M.Investigating nonlinear viscoelastic properties of molten carbon black/poly(ethylene-co-butyl acrylate)composites,using flourier transform rheometry and other test techniques.Journal of Applied Polymer Science,2006,101:4083-4089
    66. Lakes R. S.Viscoelastic measurement techniques. Review of Scientific Instruments, 2004(75):797-810
    67. Jin Yang, Xu dong Chen.Dynamic rheological and morphological study of the compatibility of thermoplastic polyurethane/ethylene-octene copolymer blend.Journal of Applied Polymer Science.2008,109(6):3452-3457
    68. Gang Wu,Yihu Song,Qiang Zheng.Dynamic rheological properties for HDPE/CB composite melts.Journal of Applied Polymer Science,2003,88(9):2160-2167
    69. Jager K M,Eggen S S.Scaling of the viscoelasticity of highly filled carbon black polyethylenecomposites above the melting point.Polymer,2004,45:7681-7692
    70. Wu G,Zheng Q.Estimation of the agglomeration structure for conductive particles and fiber-filled High-Density Polyethylene through dynamic rheological measurements.Journal of Polymer Science:Part B:Polymer Physics,2004,42:1199-1205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700