用户名: 密码: 验证码:
上肢康复机器人及相关控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国迈入老龄化社会,因老年化引起的中风患者发病率逐年增加。患者中风后其运动功能的重建和康复也就引起了研究者的关注。随着康复医学、机械设计以及控制理论等学科的交叉发展和融合,康复机器人相关理论与技术得到了深入的研究和探讨。
     在国家863计划和自然科学基金的资助下,本文分别研制了采用电机和气动肌肉不同驱动方式的两款上肢康复机器人。基于所研制的上肢康复机器人,采用肌电信号实现了基于人体运动意图控制的康复训练;此外,在气动肌肉建模的基础上,分别提出了基于模糊补偿的滑模控制算法和基于非线性干扰观测器的动态面控制算法去实现气动肌肉的高精度控制;考虑气动肌肉建模的复杂性和人-上肢康复机器人动力学模型因人而异的差异性,针对模型未知的情况,采用回声状态网(Echo StateNetwork,ESN)提出了基于ESN的PID控制算法和基于粒子群优化及ESN的单层神经网络预测控制算法。主要内容如下:
     基于电机驱动研制出三自由度的上肢康复机器人,可实现肩部伸/屈、外展以及肘部伸/屈。在考虑可穿戴性、灵活性、安全性和柔顺性等性能的基础上,又研制出基于气动肌肉驱动的五自由度上肢康复机器人,可实现肩部伸/屈、旋转、肘部伸/屈、指掌关节伸/屈以及指间关节伸/屈。为了减小机械结构和控制系统的复杂性,提出了气动肌肉-扭簧和气动肌肉-拉簧驱动器实现康复机器人关节的双向运动。该款上肢康复机器人不仅可同时进行臂部和手部的康复训练,而且还能分开使用。这大大提高了上肢康复机器人的临床适用范围,为进一步临床实用化奠定了良好的基础。
     在采集的四路手臂肌电信号的基础上,选取结点能量作为运动意图特征,实现基于主动运动意图的人-上肢康复机器人交互控制。在采用结点能量作为特征进行特征降维时,提出了一种伴随状态树的方法来消除结点能量的线性相关性以避免类内离散度矩阵奇异问题。降维后的特征向量输入到BP神经网络进行运动意图辨识,取得了很好的辨识效果。同时考虑虚拟现实(Virtual Reality)可使得康复训练充满娱乐性,所以基于辨识的意图动作开发了一款虚拟现实游戏来激发患者在任务关联的训练中交互的主动性和积极性。结合上肢康复机器人、肌电辨识和虚拟现实游戏进行了相关实验研究,结果验证了整个系统的可用性。
     作为一种驱动器,气动肌肉因具有很强的时变和非线性特性,这使得其在实际应用中难以实现高精确控制。本文采用“三元素”模型进行了气动肌肉参数辨识和建模,并在此基础上提出了基于模糊补偿的气动肌肉滑模控制。这种控制算法在存在建模误差以及外界不确定扰动时,仍能有效提高控制精度,保证系统跟踪控制性能。此外,还提出了基于非线性干扰观测器的气动肌肉动态面控制。仿真和实际实验结果均验证了所提出算法的可行性和有效性。但基于气动肌肉建模的模型控制,对于长度、形状等不同参数的气动肌肉都需重新进行气动肌肉建模实验,这使得建模过程相对比较复杂。同时,人机动力学模型也因人而异,难以得到精确的、统一的数学模型。基于以上原因,为了解决气动肌肉在康复机器人实际应用中存在的控制精确问题,针对控制算法设计时模型未知的情况下,提出了基于ESN的PID控制算法和基于粒子群优化及ESN的单层神经网络预测控制算法。这些新提出的控制算法均能在模型未知的情况下取得很好的控制效果。
     最后,对全文工作进行了总结,并提出了下一步需要改进和完善的工作。
     总之,本文通过深入研究上肢康复机器人的设计及相关控制问题,为进一步实现上肢康复机器人在临床上的应用提供了一些设计方法、训练策略、控制算法等研究经验。随着研究工作的深入和完善,期待上肢康复机器人最终能转化为实际应用产品,为更多的患者提供有效的康复训练,帮助他们实现运动功能的改善和重建。
As China is entering the aging society, the stroke incidence is increasing year by year.The reconstruction and rehabilitation of motion function for the patients after stroke alsoattract the researchers’ attention. With the interdisciplinary development and integration ofthe rehabilitation medicine, mechanical design and control theory, the theory andtechnology about rehabilitation robot have been further studied and explored.
     Under the support of National863project and National Natural Science Foundation,this paper developed two kinds of upper limb rehabilitation robots, which are driven bymotor and pneumatic muscle (PM), respectively. Based on the designed upper limbrehabilitation robot, with the use of Electromyography (EMG) signal, the human motionintention control based rehabilitation training is realized. In addition, based on PMmodeling, a fuzzy compensation based sliding mode control (FCBSMC) algorithm and anonlinear disturbance observer based dynamic surface control (NDOBDSC) algorithm areproposed for the high-accurate control of PM, respectively. Considering that thecomplexity of PM modeling and the dynamic model of human-upper limb rehabilitationrobot varies from individual to individual, an echo state network (ESN) based PID controlalgorithm and an ESN based single-layer neural network predictive control algorithm withparticle swarm optimization are proposed for the control of unknown model by using ESN.The main contributions focus on the following aspects:
     A three degrees of freedom (DOF) upper limb rehabilitation robot driven by motor isdesigned. It can achieve shoulder extension/flexion, shoulder abduction, and elbowextension/flexion. Considering that the performance of wear, flexibility, safety andcompliance, a five DOF upper limb rehabilitation robot driven by PM is developed. It canrealize shoulder extension/flexion and rotation, elbow extension/flexion,metacarpophalangeal and proximal interphalangeal joint extension/flexion. In order toreduce the complexity of the mechanical structure and control system, PM-torsion springand PM-pull spring actuators are proposed to realize the bi-directional movement for thejoints of rehabilitation robot. This robot can realize the rehabilitation training of arm andhand at the same time, as well as be used separately. This greatly extents the availablerange for clinical application, and lays a good foundation for further clinical utility.
     By collecting four-channel EMG from arm, the node energy is selected as the featureof motion intention, and the active motion intention based human-upper limbrehabilitation robot interactive control is realized. During the feature dimension reduction,a companion state tree (CST) algorithm is proposed to eliminate the linear correlation of node energy and avoid the singular problem of the within-class scatter matrix. Thereduced feature vector is fed into a BP neural network to recognize the motion intention,and the recognition result is satisfactory. Considering that virtual reality (VR) can makerehabilitation training entertaining, as a result, a VR game based on the motion intentionrecognition is designed to stimulate the patients’ interactive initiative and enthusiasm inthe task-oriented training. The relevant experiments are carried out by the combination ofthe upper limb rehabilitation robot, EMG recognition and virtual reality game to verify theavailability of the whole system.
     As an actuator, PM has strong time-varying and nonlinear characteristics, whichmake it difficult to achieve high-accurate control in practical application. Thethree-element model is introduced for PM parameter identification and modeling. On thisbasis, FCBSMC is developed for PM control. This control algorithm can effectivelyimprove the control accuracy and ensure the tracking control performance in the conditionof the existence of modeling error and external uncertain disturbances. In addition,NDOBDSC is also proposed. The simulation and practical experimental results bothdemonstrate the feasibility and effectiveness of the proposed algorithm. However, themodel control based on PM modeling is required to do the PM modeling experiment again,when PM is selected with different parameters, such as length, shape and so on.Meanwhile, the whole dynamic model of human-robot depends on the conditions ofdifferent individual. It is difficult to attain an accurate and uniform mathematical model.For above reasons, to solve the problem on the high-accurate control of PM in thepractical application of rehabilitation robot, under the condition of unknown model, thispaper proposes an echo state network (ESN) based PID control algorithm and an ESNbased single-layer neural network predictive control algorithm with particle swarmoptimization, which can both obtain good control performance.
     Finally, the summary of this dissertation and the future work are presented.
     To sum up, the design and related control problem on upper limb rehabilitation robotare investigated deeply in this dissertation. These studies provide some researchexperience on the design methods, training strategies and control algorithms for theclinic-oriented application of the upper limb rehabilitation robot. With the furtherimprovement of the research, upper limb rehabilitation robots are expected to transforminto some practical products, which can provide effective rehabilitation training for morepatients, and improve the quality of life and realize the reconstruction of motion function.
引文
[1]燕铁斌,窦祖林,冉春风.实用瘫痪康复.第2版.北京:人民卫生出版社,2010.
    [2]黄敬,梅元武,童萼塘.脑卒中后脑的可朔性与康复.中国康复,2004,19(1):50-52.
    [3]贾子善,李聪元,闫桂芳等.康复治疗对脑卒中患者脑的结构可塑性的影响.中华物理医学与康复杂志,2004,26(10):634-636.
    [4]吴毅,刘罡.神经系统可塑性的理论研究与实践.中华物理医学与康复杂志,2007,29(4):284-286.
    [5]张秀峰,季林红,王景新.辅助上肢运动康复机器人技术研究.清华大学学报(自然科学版),2006,48(11):864-867.
    [6]李会军,宋爱国.上肢康复训练机器人的研究进展及前景.机器人技术与应用,2006,(4):32-36.
    [7]李庆玲,孙立宁,杜志江.上肢康复机器人发展现状的分析与研究.机械设计,2008,25(9):1-3.
    [8] Krebs H I, Ferraro M, Buerger S P, et al. Rehabilitation Robotics: Pilot Trial of a SpatialExtension for MIT-Manus. Neuro Engineering and Rehabilitation,2004,1(1):5.
    [9] Brewer B R, McDowell S K, Worthen-Chaudhari L C. Poststroke Upper ExtremityRehabilitation: A Review of Robotic Systems and Clinical results. Topics in StrokeRehabilitation,2007,14(6):22-24.
    [10] Kwakkel G, Kollen B J, Krebs H I. Effects of Robot-assisted Therapy on Upper LimbRecovery After Stroke: A Systematic Review. Neurorehabilitation and Neural Repair,2008,22(2):111-121.
    [11] Hogan N, Krebs H I, Charnnarong J, et al. MIT-MANUS: A Workstation for Manual Therapyand Training. I. in: Proceedings of IEEE International Workshop on Robot and HumanCommunication. Sept.1-3, Tokyo, Japan. New York: IEEE Press,1992.161-165.
    [12] Krebs H I, Volpe B T, Aisen M L, et al. Increasing Productivity and Quality of Care:Robot-aided Neuro-Rehabilitation. Journal of Rehabilitation Research and Development,2000,37(6):639-652.
    [13] Reinkensmeyer D J, Kahn L E, Averbuch M, et al. Understanding and Treating ArmMovement Impairment After Chronic Brain Injury: Progress with the ARM Guide. Journal ofRehabilitation Research and Development,2000,37(6):653-662.
    [14] Reinkensmeyer D J, Takahashi C D, Timoszyk W K, et al. Design of Robot Assistance for ArmMovement Therapy Following Stroke. Advanced Robotics,2000,14(7):625-637.
    [15] Kahn L E, Zygman M L, Rymer W Z, et al. Effect of Robot-assisted and Unassisted Exerciseon Functional Reaching in Chronic Hemiparesis. in: Proceedings of the23rd AnnualInternational Conference of the IEEE Engineering n Medicine and Biology Society. Oct.25-28,Istanbul, Turkey. Piscataway: IEEE Press,2001.1344-1347.
    [16] Lum P S, Burgar C G, Kenney D E, et al. Quantification of Force Abnormalities DuringPassive and Active-assisted Upper-limb Reaching Movements in Post-stroke Hemiparesis.IEEE Transactions on Biomedical Engineering,1999,46(6):652-662.
    [17] Burgar C G, Lum P S, Shor P C, et al. Development of Robots for Rehabilitation Therapy: ThePalo Alto VA/Stanford Experience. Journal of Rehabilitation Research and Development,2000,37(6):663-673.
    [18] Lum P S, Burgar C G, Shor P C. Evidence for Improved Muscle Activation Patterns AfterRetraining of Reaching Movements with the MIME Robotic System in Subjects withPost-stroke Hemiparesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2004,12(2):186-194.
    [19] Lum P S, Burgar C G, Shor P C. Use of the MIME Robotic System to Retrain MultijointReaching in Post-stroke Hemiparesis: Why Some Movement Patterns Work Better than Others.in: Proceedings of the25th Annual International Conference of the IEEE Engineering inMedicine and Biology Society. Sept.17-21, Cancun, Mexico. Piscataway: IEEE Press,2003.1475-1478.
    [20] Lum P S, Burgar C G, Van der Loos M, et al. The MIME Robotic System for Upper-limbNeuro-rehabilitation: Results from a clinical Trial in Subacute Stroke. in: Proceedings of the9th International Conference on Rehabilitation Robotics. Jun.28-Jul.1, Chicago, IL.Piscataway: IEEE Press,2005.511-514.
    [21] Nef T, Riener R. ARMin-Design of a Novel Arm Rehabilitation Robot. in: Proceedings of the9th International Conference on Rehabilitation Robotics. Jun.28-Jul.1, Chicago, IL.Piscataway: IEEE Press,2005.57-60.
    [22] Mihelj M, Nef T, Riener R. ARMin II-7DoF Rehabilitation Robot: Mechanics andKinematics. in: Proceedings of IEEE International Conference on Robotics and Automation.Apr.10-14, Rome, Italy. Piscataway: IEEE Press,2007.4120-4125.
    [23] Tóth A, Arz G, Fazekas G, et al. Post Stroke Shoulder-Elbow Physiotherapy with IndustrialRobots. Advances in Rehabilitation Robotics, Lecture Notes in Control and InformationSciences. Berlin: Springer-Verlag Press,2004:391-411.
    [24] Tóth A, Fazekas G, Arz G, et al. Passive Robotic Movement Therapy of the SpasticHemiparetic Arm with REHAROB: Report of the First Clinical Test and the Follow-up SystemImprovement. in: Proceedings of the9th International Conference on Rehabilitation Robotics.Jun.28-Jul.1, Chicago, IL. Piscataway: IEEE Press,2005.127-130.
    [25] Coote S, Stokes E K. Robot Mediated Therapy: Attitudes of Patients and Therapists towardsthe First Prototype of the GENTLE/s System. Technology and Disability,2003,15(1):27-34.
    [26] Loureiro R, Amirabdollahian F, Topping M, et al. Upper Limb Robot Mediated Stroke Therapy-GENTLEs Approach. Autonomous Robots,2003,15(1):35-51.
    [27] Tsagarakis N G, Caldwell D G. Development and Control of a 'soft-actuated' Exoskeleton forUse in Physiotherapy and Training. Autonomous Robots,2003,15(1):21-33.
    [28] Kousidou S, Tsagarakis N G, Smith C, et al. Task-orientated Biofeedback System for theRehabilitation of the Upper Limb. in: proceedings of the10th International Conference onRehabilitation Robotics. Jun.12-15, Noordwijk, Netherlands. Piscataway: IEEE Press,2007.376-384.
    [29] He J, Koeneman E J, Schultz R S, et al. RUPERT: A Device for Robotic Upper ExtremityRepetitive Therapy. in: Proceedings of the27th Annual International Conference of the IEEEEngineering in Medicine and Biology Society. Sept.1-4, Shanghai, China. Piscataway: IEEEPress,2005.6844-6847.
    [30] Sugar T G, He J H, Koeneman E J, et al. Design and Control of RUPERT: A Device forRobotic Upper Extremity Repetitive Therapy. IEEE Transactions on Neural Systems andRehabilitation Engineering,2007,15(3):336-346.
    [31] Balasubramanian S, Wei R, Perez M, et al. RUPERT: An Exoskeleton Robot for AssistingRehabilitation of Arm Functions. in: Proceedings of International Workshop of VirtualRehabilitation. Aug.25-27, Vancouver, BC, Canada. Piscataway: IEEE Press,2008.163-167.
    [32] Zhang Y, Wang Z, Ji L, et al. The Clinical Application of the Upper Extremity CompoundMovements Rehabilitation Training Robot. in: Proceedings of the9th International Conferenceon Rehabilitation Robotics. Jun.28-Jul.1, Chicago, IL, USA. Piscataway: IEEE Press,2005.91-94.
    [33] Zhang X F, Ji L H, Guo L Y. A Novel Robot Neurorehabilitation for Upper Limb Motion. in:Proceedings of the27th Annual International Conference of the IEEE Engineering in Medicineand Biology Society. Aug.31-Sept.3, Shanghai, China. Piscataway: IEEE Press,2005.5040-5043.
    [34]王东岩,李庆玲,杜志江等.外骨骼式上肢康复机器人及其控制方法研究.哈尔滨工程大学学报,2007,28(9):1008-1013.
    [35] Li Q, Kong M, Du Zhinjiang, et al. A Novel5-DOF Exoskeletal Rehabilitation Robot Systemfor Upper Limbs. High Technology Letters,2009,15(3):245-249.
    [36] Xiong C H, Jiang X Z, Lei S R, et al. Control Methods for Exoskeleton Rehabilitation RobotDriven with Pneumatic Muscles. International Journal Industrial Robot,2009,36(3):210-220.
    [37] Volpe B T, Krebs H I, Hogan N, et al. A Novel Approach to Stroke Rehabilitation:Robot-aided Sensorimotor Stimulation. Neurology,2000,54(10):1938-1944.
    [38] Volpe B T, Ferraro M, Lynch D, et al. Robotics and Other Devices in the Treatment of PatientsRecovering from Stroke. Current Atherosclerosis Reports,2004,6(4):314-319.
    [39] Yazicioglu R F, Torfs T, Merken P, et al. Ultra-low-power Biopotential Interfaces and theirApplications in Wearable and Implantable Systems. Microelectronics Journal,2009,40(9):1313-1321.
    [40] Sinkjaer T, Haugland M, Inmann A, et al. Biopotentials as Command and Feedback Signals inFunctional Electrical Stimulation Systems. Medical Engineering&Physics,2003,25(1):29-40.
    [41] Fatourechi M, Bashashati A, Ward R K, et al. EMG and EOG Artifacts in Brain ComputerInterface Systems: A Survey. Clinical Neurophysiology,2007,118(3):480-494.
    [42] Arslan B, Brouse A, Castet J, et al. A Real Time Music Synthesis Environment Driven withBiological Signals. in: Proceedings of IEEE International Conference on Acoustics, Speech andSignal Processing. May14-19, Toulouse, France. Piscataway: IEEE Press,2006. I1172-I1175.
    [43] Usakli A B, Gurkan S. Design of a Novel Efficient Human–computer Interface: AnElectrooculagram based Virtual Keyboard. IEEE Transactions on Instrumentation andMeasurement,2010,59(8):2099-2108.
    [44] Ahsan M R, Ibrahimy M I, Khalifa O O. EMG Signal Classification for Human ComputerInteraction: A Review. European Journal of Scientific Research,2009,33(3):480-501.
    [45] Rattanyu K, Mizukawa M. Emotion Recognition based on ECG Signals for Service Robots inthe Intelligent Space During Daily Life. Journal of Advanced Computational Intelligence andIntelligent Informatics,2011,15(5):582-591.
    [46] Tihomir S. Fuzzy Mouse Cursor Control System for User with Spinal Cord Injury:[Master'sThesis]. Atlanta: Georgia State University,2005.
    [47] Zheng Y P, Chan M M F, Shi J, et al. Sonomyography: Monitoring Morphological Changes ofForearm Muscles in Actions with the Feasibility for the Control of Powered Prosthesis.Medical Engineering&Physics,2006,28(5):405-415.
    [48] Lyons G M, Sharma P, Baker M, et al. A Computer Game-based EMG Biofeedback System forMuscle Rehabilitation. in: Proceedings of the25th Annual International Conference of theIEEE Engineering in Medicine and Biology Society. Sept.17-21, Cancun, Mexico. Piscataway:IEEE Press,2003.1625-1628.
    [49] Lum P S, Loos M V D, Shor P, et al. A Robotic System for Upper Limb Exercises to PromoteRecovery of Motor Function Following Stroke. in: Proceedings of International Conference onRehabilitation Robotics. Stanford, CA, USA.1999.235-238.
    [50] Reinkensmeyer D J, Schmit B D, Rymer W Z. Assessment of Active and Passive RestraintDuring Guided Reaching After Chronic Brain Injury. Annals of Biomedical Engineering,1999,27(6):805-814.
    [51] Cozens J A. Robotic Assistance of an Active Upper Limb Exercise in Neurologically ImpairedPatients. IEEE Transactions on Rehabilitation Engineering,1999,7(2):254-256.
    [52] Dipietro L, Ferraro M, Palazzolo J J, et al. Customized Interactive Robotic Treatment forStroke: EMG-triggered Therapy. IEEE Transactions on Neural Systems and RehabilitationEngineering,2005,13(3):325-334.
    [53] Tong R K Y, Leung W W F, Hu X L, et al. Interactive Robot-assisted Training System UsingContinuous EMG Signals for Stroke Rehabilitation. in: Proceedings of the3rd InternationalConvention on Rehabilitation Engineering and Assistive Technology. April22-26, Singapore.New York: ACM,2009.
    [54] Moon I, Lee M, Mun M. A Novel EMG-based Human-computer Interface for Persons withDisability. in: Proceedings of the IEEE International Conference on Mechatronics. June3-5,Istanbul, Turkey. Piscataway: IEEE Press,2004.519-524.
    [55] Chen X, Zhang X, Zhao Z Y, et al. Multiple Hand Gesture Recognition based on Surface EMGSignal. in: Proceedings of the1st International Conference on Bioinformatics and BiomedicalEngineering. July6-8, Wuhan, China. Piscataway: IEEE Press,2007.506-509.
    [56] Hudgins B, Parker P, Scott R N. A New Strategy for Multifunction Myoelectric Control. IEEETransactions on Biomedical Engineering,1993,40(1):82-94.
    [57] Engelhart K, Hudgins B, Parker P A, et al. Classification of the Myoelectric Signal UsingTime-frequency based Representations. Medical Engineering&Physics,1999,21(6-7):431-438.
    [58] Canal M R. Comparison of Wavelet and Short Time Fourier Transform Methods in theAnalysis of EMG Signals. Journal of Medical Systems,2010,34(1):91-94.
    [59] Hu X, Wang Z, Ren X. Classification of Surface EMG Signal Using Relative Wavelet PacketEnergy. Computer Methods and Programs in Biomedicine,2005,79(3):189-195.
    [60] Northrup S, Brown E E J, Parlaktuna O, et al. Biologically-Inspired Control Architecture for anUpper Limb, Intelligent Robotic Orthosis. International Journal of Human-friendly WelfareRobotic Systems,2001,2(3):4-8.
    [61] Giuffrida J P, Lerner A, Steiner R, et al. Upper-extremity Stroke Therapy Task DiscriminationUsing Motion Sensors and Electromyography. IEEE Transactions on Neural Systems andRehabilitation Engineering,2008,16(1):82-90.
    [62] Hu X, Wang Z, Ren X. Classification of Forearm Action Surface EMG Signals based onFractal Dimension. Journal of Southeast University (English Edition),2005,21(3):324-329.
    [63]罗志增,王人成.基于表面肌电信号的前臂手部多运动模式识别.仪器仪表学报,2006,27(9):996-999.
    [64]隋立明,包钢,王祖温.气动肌肉在康复工程中的应用.中国临床康复,2004,8(2):320-321.
    [65] Rao Z H, Bone G M. Nonlinear Modeling and Control of Servo Pneumatic Actuators. IEEETransactions on Control Systems Technology,2008,16(3):562-569.
    [66] Chang M K, Yuan T H. Experimental Implementations of Adaptive Self-organizing FuzzySlide Mode Control to a3-DOF Rehabilitation Robot. International Journal of InnovativeComputing Information and Control,2009,5(10B):3391-3404.
    [67] Andrikopoulos G, Nikolakopoulos G, Manesis S. A Survey on Applications of PneumaticArtificial Muscles. in: Proceedings of19th Mediterranean Conference on Control andAutomation. June20-23, Corfu, Greece. Piscataway: IEEE Press,2011.1439-1446.
    [68]陶国良,谢建蔚,周洪.气动人工肌肉的发展趋势与研究现状.机械工程学报,2009,45(10):75-83.
    [69] Schulte H F. The Characteristics of the McKibben Artificial Muscle, The Application ofExternal Power in Prosthetics and Orthotics, Publication874, National Academy ofScience-National Research Council, Washington, DC,1961,94-115.
    [70] Chou C P, Hannaford B. Static and Dynamic Characteristics of McKibben Pneumatic ArtificialMuscles. in: Proceedings of IEEE International Conference on Robotics and Automation. May8-13, San Diego, CA, USA. Piscataway: IEEE Press,1994.281-286.
    [71] Chou C P, Hannaford B. Measurement and Modeling of McKibben Pneumatic ArtificialMuscles. IEEE Transactions on Robotics and Automation,1996,12(1):90-102.
    [72] Caldwell D G, Tsagarakis N, Medrano-Cerda G A. Bio-mimetic Actuators: Polymeric PseudoMuscular Actuators and Pneumatic Muscle Actuators for Biological Emulation. Mechatronics,2000,10(4-5):499-530.
    [73] Klute G K, Hannaford B. Accounting for Elastic Energy Storage in McKibben ArtificialMuscle Actuators. ASME Journal of Dynamic Systems, Measurements, and Control,2000,122(2):386-388.
    [74] Repperger D W, Phillips C A, Neidhard-Doll A, et al. Actuator Design Using BiomimicryMethods and a Pneumatic Muscle System. Control Engineering Practice,2006,14(9):999-1009.
    [75] Reynolds D B, Repperger D W, Phillips C A, et al. Modeling the Dynamic Characteristics ofPneumatic Muscle. Annals of Biomedical Engineering,2003,31(3):310-317.
    [76] Carbonell P, Jiang Z P, Repperger D W. Nonlinear Control of a Pneumatic Muscle Actuator:Backstepping vs. Sliding-mode. in: Proceedings of the2001IEEE International Conference onControl Applications. Sept.5-7, Mexico City, Mexico. Piscataway: IEEE Press,2001.167-172.
    [77] Lilly J H, Liang Y. Sliding Mode Tracking for Pneumatic Muscle Actuators in Opposing PairConfiguration. IEEE Transactions on Control Systems Technology,2005,13(4):550-558.
    [78]隋立明,赵铁,张立勋.气动肌肉驱动仿生关节的模糊PI控制研究.机床与液压,2008,36(9):195-197.
    [79] Tian S, Ding G, Yan D, et al. Nonlinear Controlling of Artificial Muscle System with NeuralNetworks. in: Proceedings of IEEE International Conference on Robotics and Biomimetics.Aug.22-26, Shenyang, China. Piscataway: IEEE Press,2004.56-59.
    [80] Chandrapal M, Chen X, Wang W. Self Organizing Fuzzy Control of Pneumatic ArtificialMuscle for Active Orthotic Device. in: Proceedings of IEEE International Conference onAutomation Science and Engineering. Aug.21-24, Toronto, ON, Canada. Piscataway: IEEEPress,2010.632-637.
    [81] Wei R, Balasubramanian S, Xu L, et al. Adaptive Iterative Learning Control Design forRUPERT IV. in: Proceedings of the2nd IEEE RAS&EMBS International Conference onBiomedical Robotics and Biomechatronics. Oct.19-22, Scottsdale, AZ, USA. Piscataway:IEEE Press,2008.647-652.
    [82]蔡自兴.机器人学.北京:清华大学出版社,2000.
    [83] Craig J J. Introduction to Robotics: Mechanics and Control.3rd ed. Englewood Cliffs: PrenticeHall Press,2004.
    [84]刘和平,邓力,江渝等. DSP原理及电机控制应用──基于TMS320LF240X系列.北京:北京航天航空大学出版社,2006.
    [85] Lee M, Rittenhouse M, Abdullah H A. Design Issues for Therapeutic Robot Systems: Resultsfrom a Survey of Physiotherapists. Journal of Intelligent&Robotic Systems,2005,42(3):239-252.
    [86] Noritsugu T, Tanaka T. Application of Rubber Artificial Muscle Manipulator as aRehabilitation Robot. IEEE/ASME Transactions on Mechatronics,1997,2(4):259-267.
    [87] Huang H, Ingalls T, Olson L, et al. Interactive Multimodal Biofeedback for Task-OrientedNeural Rehabilitation. in: Proceedings of the27th Annual International Conference of theEngineering in Medicine and Biology Society. Sept.1-4, Shanghai, China. Piscataway: IEEEPress,2005.2547-2550.
    [88] Merians A S, Jack D, Jack D, et al. Virtual Reality-augmented Rehabilitation for PatientsFollowing Stroke. Physical Therapy,2002,82(9):898-915.
    [89] Jack D, Boian R, Merians A S, et al. Virtual Reality-Enhanced Stroke Rehabilitation. IEEETransactions on Neural Systems and Rehabilitation Engineering,2001,9(3):308-318.
    [90] McNeill M, Pokluda L, McDonough S, et al. Immersive Virtual Reality for Upper LimbRehabilitation Following Stroke. in: Proceedings of2004IEEE International Conference onSystems, Man and Cybernetics. Oct.10-13, Hague, Netherlands. Piscataway: IEEE Press,2004.2783-2789.
    [91] Yen G G, Lin K C. Wavelet Packet Feature Extraction for Vibration Monitoring. IEEETransactions on Industrial Electronics,2000,47(3):650-667.
    [92] Mallat S G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [93] Kuo B C, Landgrebe D A. Nonparametric Weighted Feature Extraction for Classification.IEEE Transactions on Geoscience and Remote Sensing,2004,42(5):1096-1105.
    [94] Fukunaga K. Introduction to Statistical Pattern Recognition.2nd ed. San Diego: AcademicPress,1990.
    [95] Bressan M, Vitrià J. Nonparametric Discriminant Analysis and Nearest Neighbor Classification.Pattern Recognition Letters,2003,24(15):2743-2749.
    [96] Cheron G, Draye J P, Bourgeios M, et al. A Dynamic Neural Network Identification ofElectromyography and Arm Trajectory Relationship During Complex Movements. IEEETransactions on Biomedical Engineering,1996,43(5):552-558.
    [97] Tsuji T, Fukuda O, Kaneko M, et al. Pattern Classification of Time-series EMG Signals UsingNeural Networks. International Journal of Adaptive Control and Signal Processing,2000,14(8):829-848.
    [98] Utkin V I. Variable Structure Systems with Sliding Modes. IEEE Transactions on AutomaticControl,1977,22(2):212-222.
    [99] Koshkouei A J, Burnham K J, Zinober A S I. Dynamic Sliding Mode Control Design. IEEProceedings Control Theory and Applications,2005,152(4):392-396.
    [100] S abanovic A. Variable Structure Systems with Sliding Modes in Motion Control—A Survey.IEEE Transactions on Industrial Informatics,2011,7(2):212-223.
    [101] Edwards C, Spurgeon S K. Sliding Mode Control: Theory and Applications. London: Taylor&Francis Ltd. Press,1998.
    [102] Edwards C, Colet E F, Fridman L. Advances in Variable Structure and Sliding Mode Control.Berlin: Springer Verlag Press,2006.
    [103] Slotine J J E, Li W. Applied Nonlinear Control. Englewood Cliffs: Prentice Hall Press,1991.
    [104]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [105] Yoo B, Ham W. Adaptive Fuzzy Sliding Mode Control of Nonlinear System. IEEETransactions on Fuzzy Systems,1998,6(2):315-321.
    [106] Mendel J M. Fuzzy Logic Systems for Engineering: A Tutorial. Proceedings of the IEEE,1995,83(3):345-377.
    [107] Wang L X. A Course in Fuzzy System and Control. Englewood Cliffs: Prentice Hall Press,1997.
    [108] Krsti M, Kanellakopoulos I, Kokotovi P. Nonlinear and Adaptive Control Design. New York:John Wiley&Sons, Inc. Press,1995.
    [109]董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用.控制与决策,2006,21(10):1081-1086.
    [110] Swaroop D, Gerdes J C, Yip P P, et al. Dynamic Surface Control of Nonlinear Systems. in:Proceedings of the16th American Control Conference. Jun.4-6, Albuquerque, NM. Evanston:American Automatic Control Council,1997.3028-3034.
    [111] Yip P P, Hedrick J K. Adaptive Dynamic Surface Control: A Simplified Algorithm forAdaptive Backstepping Control of Nonlinear Systems. International Journal of Control,1998,71(5):959-979.
    [112] Swaroop D, Hedrick J K, Yip P P, et al. Dynamic Surface Control for a Class of NonlinearSystems. IEEE Transactions on Automatic Control,2000,45(10):1893-1899.
    [113] Swaroop D, Hedrick J K, Yip P P, et al. Dynamic Surface Control for a Class of NonlinearSystems. IEEE Transactions on Automatic Control,2000,45(10):1893-1899.
    [114] Qu Z, Dawson D M, Lim S Y, et al. A New Class of Robust Control Laws for Tracking ofRobots. International Journal of Robotics Research,1994,13(4):355-363.
    [115] Young W H. On Classes of Summable Functions and their Fourier Series. Proceedings of theRoyal Society of London Series A-Mathematical Physical and Engineering Sciences,1912,87(594):225-229.
    [116] Hsu C F, Chiu C J, Tsai J Z. Auto-tuning PID Controller Design Using a Sliding-modeApproach for DC Servomotors. International Journal of Intelligent Computing and Cybernetics,2011,4(1):93-110.
    [117] Ang K H, Chong G, Yun L. PID Control System Analysis, Design, and Technology. IEEETransactions on Control Systems Technology,2005,13(4):559-576.
    [118] Knospe C. PID Control. IEEE Control Systems,2006,26(1):30-31.
    [119] Chang W J, Chieh K C, Wei C. Fuzzy Control with Passivity Synthesis for Continuous AffineTakagi-Sugeno Fuzzy Systems. International Journal of Intelligent Computing and Cybernetics,2009,2(2):386-408.
    [120] Jain T, Alavandar S, Radhamohan S V, et al. Fuzzy Pre-compensated PD Control of Two-linkRigid-flexible Manipulator. International Journal of Intelligent Computing and Cybernetics,2010,3(3):463-494.
    [121] Boukattaya M, Damak T, Jallouli M. Adaptive Robust Tracking Control for MobileManipulators in the ask-space under Uncertainties. International Journal of IntelligentComputing and Cybernetics,2011,4(1):81-92.
    [122] Liu S, Wang Y J, Zhu Q M. Development of a New EDRNN Procedure in Control of HumanArm Trajectories. Neurocompiting,2008,72(1-3):490-499.
    [123]王永骥,涂健.神经元网络控制.北京:机械工业出版社,1998.
    [124]王文军,宋苏,郭贤娴.基于神经网络的自适应控制研究综述.计算机仿真,2005,22(8):132-135.
    [125]徐丽娜.神经网络控制.第3版.北京:电子工业出版社,2009.
    [126]徐丽娜.神经网络控制结构及所用神经网络.自动化技术与应用,2004,23(1):1-5.
    [127] Jaeger H. The 'Echo State' Approach to Analysing and Training Recurrent Neural Networks,Technical Report-GMD Report,148,2001.
    [128] Jaeger H. Short Term Memory in Echo State Networks, Technical Report-GMD Report,152,2002.
    [129] Zhou H, Wang Y, Xing K. Modeling of McKibben Pneumatic Artificial Muscles UsingOptimized Echo State Networks. in: Proceedings of the World Congress on Intelligent Controland Automation. July7-9, Jinan, China. Piscataway: IEEE Press,2010.1723-1728.
    [130] Deihimi A, Showkati H. Application of Echo State Networks in Short-term Electric LoadForecasting. Energy,2012,39(1):327-340.
    [131] Sheng C, Zhao J, Liu Y, et al. Prediction for Noisy Nonlinear Time Series by Echo StateNetwork based on Dual Estimation. Neurocomputing,2012,82:186-195.
    [132] Buchner M, Young P. A Tighter for the Echo State Property. IEEE Transactions on NeuralNetworks,2006,17(3):820-824.
    [133] Rodan A, Tiňo P. Minimum Complexity Echo State Network. IEEE Transactions on NeuralNetworks,2011,22(1):131-144.
    [134] Farhang-Boroujeny B. Adaptive Filters: Theory and Applications.1st edn ed. New York: JohnWiley&Sons. Inc. Press,1998.
    [135] Jaeger H. Adaptive Nonlinear System Identification with Echo State Networks. Advances inNeural Information Processing Systems15, Cambridge: MIT Press,2003:593-600.
    [136] Tham M T, Mansoori S N. Covariance Resetting in Recursive Least Squares Estimation. in:Proceedings of International Conference on CONTROL88. Apr.13-15, Oxford, UK. London:IEE Press,1988.128-133.
    [137] Chen M, Ge S S, How B V E. Robust Adaptive Neural Network Control for a Class ofUncertain MIMO Nonlinear Systems with Input Nonlinearities. IEEE Transactions on NeuralNetworks,2010,21(5):796-812.
    [138] Jagannathan S, He P. Neural-network-based State Feedback Control of a NonlinearDiscrete-time System in Nonstrict Feedback Form. IEEE Transactions on Neural Networks,2008,19(12):2073-2087.
    [139] Huang S N, Tan K K, Lee T H. Further Results on Adaptive Control for a Class of NonlinearSystems Using Nerural Networks. IEEE Transactions on Neural Networks,2003,14(3):719-722.
    [140] Kouvaritakis B, Cannon M. Nonlinear Predictive Control: Theory and Practice. London: IEEPress,2001.
    [141] Huang S, Tan K K, Lee T H. Applied Predictive Control (Advances in Industrial Control).London: Springer-Verlag press,2002.
    [142] Lu C H, Tsai C C. Adaptive Predictive Control with Recurrent Neural Network for IndustrialProcesses: An Application to Temperature Control of a Variable-frequency Oil-coolingMachine. IEEE Transactions on Industrial Electronics,2008,55(3):1366-1375.
    [143] Lazar M, Pastravanu O. A Neural Predictive Controller for Non-linear Systems. Mathematicsand Computers in Simulation,2002,60(3-5):315-324.
    [144]陈增强,袁著祉,张燕.基于神经网络的非线性预测控制综述.控制工程,2002,9(4):7-11.
    [145]戴文战,娄海川,杨爱萍.非线性系统神经网络预测控制研究进展.控制理论与应用,2009,26(5):521-530.
    [146] Kennedy J, Eberhart R. Particle Swarm Optimization. in: Proceedings of the1995IEEEInternational Conference on Neural Networks. Nov.27-Dec.1, Perth, Australia. Piscataway:IEEE Press,1995.1942-1948.
    [147] Eberhart R C, Shi Y. Particle Swarm Optimization: Developments, Applications and Resources.in: Proceedings of the IEEE Conference on Evolutionary Computation. May27-30, Soul,Korea. Piscataway: IEEE Press,2001.81-86.
    [148] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive Learning Particle Swarm Optimizerfor Global Optimization of Multimodal Functions. IEEE Transactions on EvolutionaryComputation,2006,10(3):281-295.
    [149]侯志荣,吕振肃.基于MATLAB的粒子群优化算法及其应用.计算机仿真,2003,20(10):68-70.
    [150]张利彪,周春光,刘小华等.粒子群算法在求解优化问题中的应用.吉林大学学报(信息科学版),2005,23(4):385-389.
    [151] Yabuta T, Yamada T. Learning Control Using Neural Networks. in: Proceedings of IEEEInternational Conference on Robotics and Automation. April9-11, Sacramento, CA, USA.Piscataway: IEEE Press,1991.740-745.
    [152] Ku C C, Lee K Y. Diagonal Recurrent Neural Networks for Dynamic Systems Control. IEEETransactions on Neural Networks,1995,6(1):144-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700