基于先进信号处理方法的通信信号调制识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信信号调制识别是指对接收信号自动处理并判定其调制类型的过程。作为信号检测与解调的中间环节,调制识别技术在认知无线电、智能解调器、电子侦察等各种民用及军事应用中扮演着重要角色。调制识别技术经过几十年的发展,虽然已经取得了很多成果,但随着工程化需求逐渐提高,无线通信信道环境日益复杂,仍有不少问题亟待解决。
     本文重点致力于似然比调制识别算法的工程化应用和基于先进信号处理方法的调制识别技术的研究,论文的主要工作和创新性成果主要包括:
     1.从通信信号处理的工程实用角度出发,针对似然比调制识别算法计算复杂度高的问题,提出了一种改进的快速算法。该算法引入硬件实现中预存查表的思想,通过一个查找表的地址读出待识别信号的似然函数值以便节省在线处理时间,为似然比调制识别算法的实时化应用提供了一种解决思路。试验结果表明算法能够在保证似然比算法最优性的基础上有效地节约时间成本,更能适应实时性要求高的应用场合。
     2.在平坦衰落信道环境下,提出了基于一种自适应马尔可夫链蒙特卡罗(MCMC)技术——自适应Metropolis(AM)技术的调制识别算法。该算法能够在迭代过程中产生满足目标分布的未知参数和发送符号的各态历经样本,从而在实现似然函数的近似计算的同时完成参数估计,可实现调制识别与参数估计的一体化处理。相比于传统Metropolis-Hastings(MH)技术,AM技术避免了因建议分布函数选取不当造成的性能损失。仿真结果表明在平坦衰落信道环境下,基于AM技术的调制识别算法能够快速、精确的收敛,具有很好的识别性能。
     3.将平坦衰落信道环境中基于AM技术的调制识别算法推广到多径信道环境中,为解决AM算法在未知参数维数较高时收敛速度放缓的问题,提出了基于单分量自适应Metropolis(SCAM)技术的调制识别算法。该算法在迭代过程中按顺序依次对未知参数向量中每个分量单独进行类似AM采样的操作。仿真结果表明在未知参数维数较高的情况下,SCAM算法拥有更加优越的收敛性能,基于SCAM技术的调制识别算法在多径信道环境下识别性能良好。
     4.在低信噪比环境下,提出了基于混沌理论的调制识别算法。文中对Duffing振子大尺度周期态特性进行了系统研究,考察了激励信号频率、幅度和相位对Duffing振子周期解的影响。根据大尺度周期状态下系统解随激励信号相位变化的规律,设计了基于Duffing振子的MPSK信号调制识别算法。并根据调制识别中的特征提取任务需求,对Duffing振子进行了模型优化,将优化后Duffing振子系统解的Poincaré映射作为分类特征,实现了低信噪比下的MPSK信号的调制识别。该算法仅仅利用载波频率的先验信息,无需进行码元同步,并且对信号幅度、载波初始相位以及载波频率的变化不敏感。仿真表明该算法具有较强的噪声免疫力,在信噪比较低的情况下仍能达到满意的识别效果。
Modulation recognition of communication signal is referred to the process ofhandling the received signal and judging its modulation type automatically. As theintermediate link between signal detection and demodulation, modulation recognitiontechnique plays an important role in cognitive radio, smart modem, electronicsurveillance and other civilian and military applications. After decades of development,modulation recognition technique has got many achievements, but with the demand forengineering increasing gradually, and wireless communication channel environmentbecoming more complex, there are still many problems needed to be solved formodulation recognition.
     This paper focuses on the engineering applications for likelihood ratio modulationrecognition algorithm and the research of modulation recognition technique based onadvanced signal processing methods. The main work and innovative achievementsobtained in this paper are summarized as follows:
     1. For the purpose of engineering practicality for communication signalprocessing, an improved fast algorithm is proposed to solve the problem of highcomputational complexity for the likelihood ratio modulation recognition algorithm.The idea of pre-stored and look-up table in hardware implementation is introduced tothe algorithm. In order to save online processing time, read the likelihood function valueof the signal to be identified through a table address, which providing a solution idea forthe likelihood ratio modulation recognition algorithm for real-time applications.Experimental results show that the fast algorithm can guarantee optimality of thelikelihood ratio based algorithm, at the same time it can effectively save time cost andadapt to the applications with high real-time demands.
     2. A modulation recognition algorithm based on a kind of adaptive Markov chainMonte Carlo (MCMC)——adaptive Metropolis (AM) technique is proposed in flatfading channel environment. The algorithm generates ergodic samples of the unknownparameters and transmitted symbols in the iterative process to meet the targetdistribution, which can realize approximate calculation of the likelihood function andcomplete parameter estimation meanwhile. So the algorithm can achieve the integrationof modulation recognition and parameter estimation. Compared to the traditionalMetropolis-Hastings (MH) technique, AM technique can avoid the performance losscaused by improper selection of the proposed distribution function. Simulation results show that in flat fading channel environment, the proposed modulation recognitionalgorithm based on AM technique can converge quickly and accurately, and it has goodrecognition performance.
     3. The modulation recognition algorithm based on AM technique in flat fadingchannel environment is extended to the multi-path channel environment. Theconvergence rate of AM algorithm will slow down when the unknown parametersvector has high dimension, to solve this problem, a modulation recognition algorithmbased on single-component adaptive Metropolis (SCAM) technique is proposed. Thealgorithm operates AM sampling on each single component in unknown parametervector successively in the iterative process. Simulation results show that in the case ofhigh dimension unknown parameters, SCAM algorithm has superior convergenceperformance, SCAM technique based modulation recognition algorithm in multi-pathchannel environments can classify modulated signals effectively.
     4. A modulation recognition algorithm based on chaos theory is proposed in lowSNR environment. The properties of Duffing oscillator in large-scale periodic state arestudied systematically in this paper, the effections of frequency, amplitude and phase ofthe excitation signal on the periodic solutions for Duffing oscillator are investigated.According to the rule of system solution in large-scale periodic state changing with thephase of the excitation signal, a modulation recognition algorithm is designed based onDuffing oscillator for MPSK signals. The Duffing oscillator model is optimized basedon requirements for feature extraction in modulation recognition, the Poincaré map ofoptimized Duffing oscillator model acts as classification features to achieve MPSKsignal modulation recognition in low SNR. The algorithm only uses the prioriinformation of carrier frequency, it can be implemented without symbol synchronization,and it is insensitive to variations of the signal amplitude, the carrier initial phase and thecarrier frequency. Simulation results show that the algorithm has strong noise immunity,it can achieve satisfactory recognition results in the case of low SNR environment.
引文
[1] J.Hamkins, M.K.Simon. Autonomous Software-Defined Radio Receivers for DeepSpace Applications. Wiley-Interscience,2006.
    [2] R.A.Poisel. Introduction to Communication Electronic Warfare Systems. ArtechHouse,2008.
    [3] C.S.Weaver, C.A.Cole, R.B.Krumland, et al. The Automatic Classification ofModulation Types by Pattern Recognition, Stanford Electronics Laboratories.Technical Report No.1829-2, April,1969.
    [4] F.F.Liedtke. Computer simulation of an automatic classification procedure fordigitally modulated communication signals with unknown parameters. SignalProcessing,1984,6:311-323.
    [5] S.L.Wood, M.J.Ready, J.R.Treichler. Constellation identification using the Radontransform. Proe.ICASSP’88, NewYork,1988,3:1878-1881.
    [6] Y.T.Chan, L.G.Gadbois. Identification of the modulation type of a signal. SignalProcessing,1989,16(2):149-154.
    [7] A.Polydoros, K.Kim. On the detection and classification of quadrature digitalmodulations in broad-band noise. IEEE Transactions on Communications,1990,38(2):1199-1211.
    [8] C.Y. Huang, A.Polydoros. Likelihood classification of QAMsignals andcomparisons. IEEE Inf. Theory Int. Symp.,McLean,VA, Nov.1991,65-65.
    [9] C.Y.Huang, A.Polydoros. Likelihood methods for MPSK modulation classification.IEEE Transactions on Communications,1995,43(234),1493-1504.
    [10] N.Lay, A.Polydoros. Modulation classification of signals in unknown ISIenvironments. MICOM'95,1995:170-174.
    [11] N.Lay, A.Polydoros. Per-survivor proeessing for channel acquisition, datadetection and modulation classifieation. Proe.ASILOMAR,1995,2:170-174.
    [12] K.C.Ho,W.Prokopiw,Y.T.Chart.Modulation identification by the wavelettransform.IEEE Military Communications Conference,San Diego,CA,USA,1995,v01.2,886-890.
    [13] C.M.Spooner. Classification of Co-Channel Communication Signals Using CyclicCumulants.29thAsilomar on Signals, Systems, and Computers,1995:531-536.
    [14] C.M.Spooner. Automatic Radio-Frequency Environment Analysis. Proc34thAsilomar on Signals, Systems,and Computers,2000:1181-1186.
    [15] E.E.Azzouz, A.K.Nandi. Automatic identification of digital modulation types.Signal processing,1995,47(4),55-69.
    [16] E.E.Azzouz, A.K.Nandi. Automatic Modulation Recognition of CommunicationSignals. Kluwer: Academic Publishers,1996.
    [17] A.K.Nandi, E.E.Azzouz. Modulation recognition using artificial neural network.Signal processing,1997,56(2):165-175.
    [18] A.K.Nandi, E.E.Azzouz. Algorithms for automatic modulation recognitionofcommunication signals. IEEE Transactions on communications,1998,46(4):431-436.
    [19] A.Swami, B.Sadler. Hierarchical digital modulation classification using cumulants.IEEE Transactions on Communications,2000,48(3):416-429.
    [20] P.Panagiotou, A.Anastasopoulos, A.Polydoros. Likelihood ratio tests formodulation classification. MILCOM,2000:670-674.
    [21] W.Wei, J.Mendel. Maximum-likelihood classification for digital amplitude-phasemodulations. IEEE Transactions on Communications,2002,48(2):189-193.
    [22] L.Hong, K.C.Ho. An antenna array likelihood modulation classifier for BPSK andQPSK signals. Proc. IEEE MILCOM, vol.1, Anaheim,CA, Oct.2002:647–651.
    [23] A.Abdi, O.A.Dobre, R.Choudhry, et al. Modulation classification in fadingchannels using antenna arrays. Proc. IEEE MILCOM, vol.1, Monterey, CA, Nov.2005:211–217.
    [24] H.Li, O.A.Dobre, Y.Bar-Ness, et al. Quasi-hybrid likelihood modulationclassification with nonlinear carrier frequency offsets estimation using antennaarrays. IEEE MILCOM, vol.1, Atlantic City, NJ, Oct.2005:570-575.
    [25] A.El-Mahdy, N.Namazi. Classification of multiple M-ary frequency-shift keyingsignals over a Rayleigh fading channel. IEEE Transactions on Communications,2002,50(6):967-974.
    [26] W.Su, J.Kosinski. Comparison and simulation of digital modulation recognitionalgorithms. IEEE ISART, Mar.2003:81-88.
    [27] O.A.Dobre, A.Abdi, Y.Bar-Ness, et al. Blind modulation classification:A conceptwhose time has come.2005IEEE Sarnoff Symp. Adv. Wired Wireless Commun.,Princeton, NJ, Apr.2005:223-228.
    [28] O.A.Dobre, Y.Bar-Ness, W.Su. Higher Order Cyclic Cumulants for High OrderModulation Classification. MILCOM,2003:112-117.
    [29] O.A.Dobre, Y.Bar-Ness, W.Su. Robust QAM modulation classification algorithmusing cyclic cumulants. WCNC,2004:745-748.
    [30] O.A.Dobre, A.Abdi, Y.Bar-Ness, et al. Cyclostationarity based modulationclassification of linear digital modulations in flat fading channels. WirelessPersonal Communications,2010,2010(54):699-717.
    [31] A.Fehske,J.Gaeddert,J.H.Reed.A new approach to signal classificationusing spectral correlation and neural networks.IEEE International Symposium onNew Frontiers in Dynamic Spectrum Access Networks,Baltimore,MD,Unitedstates,2005:144-150.
    [32] E.Like,V.D.Chakravarthy,R.Husnay,et al.Modulation Recognition inMultipath Fading Channels Using Cyclic Spectral Analysis. IEEE GlobalTelecommunications Conference,New Odeans,LA,United states,2008:1-6.
    [33] H.Wu, M.Saquib, Z.Yun. Novel automatic modulation classification usingcumulant features for communications via multipath channels. IEEE Transactionson Wireless Communications,2008,7(8):3098-3105.
    [34] V.D.Orlic, M.L.Dukic. Automatic modulation classification algorithm usinghigher-order cumulants under real-world channel conditions. IEEECommunications Letters,2009,13(12):917-919.
    [35] F.Hameed, O.A.Dobre, D.Popescu. On the likelihood-based approach tomodulation classification. IEEE Transactions on Wireless Communications,2009,8(12):5884-5892.
    [36] J.L.Xu, W.Su, M.C.Zhou. Likelihood function-based modulation classification inbandwidth-constrained sensor networks. IEEE ICNSC, Chicago, IL, Apr.2010:530–533.
    [37] J.L.Xu, W.Su, M.C.Zhou. Software-defined radio equipped with rapid modulationrecognition. IEEE Trans. Veh. Technol.,2010,59(4),1659-1667.
    [38] J.L.Xu, W.Su, M.C.Zhou. Distributed automatic modulation classification withmultiple sensors. IEEE Sensors J., Nov2010,10(11):1779-1785,
    [39] W.Su. Signal sensing and modulation classification using pervasive sensornetworks Pervasive Computing and Communications Workshops (PERCOMWorkshops),2013IEEE International Conference on March2013,San Diego,CA,441-446
    [40] V.Matic, B.Lestar, V.Tadic. The use of digital signal processing for modulationclassification. IEEE MELECON,2002:126-130.
    [41] M.Zaragoza. Modulation format identification device and method of same. PatentNo:US6804309B1,2004.
    [42] H.Hosoya, T.Kamisawa, M.Kuroda. Automatic modulation identification for lineardigital modulation. PIMRC,2003:1810-1814.
    [43] N.Kim, N.Kehtarnavaz, M.B.Yeary, et al. DSP-based hierarchical neural networkmodulation signal classification. IEEE Trans. Neural Network,2003:1065-1071.
    [44] D.Boudreau, C.Dubuc, F.Patenaude. A fast automatic modulation recognitionalgorithm amd its implementation in a spectrum monitoring application.MILCOM,2000:732-736.
    [45] O.A.Dobre,A.Abdi,Y.Bar_Ness,et a1.Survey of automatic modulationclassification techniques: classical approaches and new trends. IETcommunications,2007,1(2):137-156.
    [46] W.Wen, J.M.Mendel. A new maximum-likelihood method for modulationclassification. Proc. IEEE Signals, Syst, Comput, Pacific Grove, CA, Nov,1995,2:1132-1136.
    [47] G.E.P.Box, G.C.Tiao. Bayesian Inference in Statistical Analysis. Reading, MA:Addison-Wesley,1973.
    [48] I.S.Gradshteyn, I.M.Ryzhik. Table of integrals[M].5th ed San Diego: Academic,1994.
    [49] J.Hamkins, M.K.Simon. Autonomous Software-Defined Radio Receivers for DeepSpace Applications. Wiley-Interscience,2006.
    [50] J.L.Xu, W.Su, M.C.Zhou. Software-defined radio equipped with rapid modulationrecognition. IEEE Trans. Veh. Technol.,2010,59(4),:1659-1667.
    [51] J.A.Sills. Maximum-likelihood modulation classification for PSK/QAM. IEEEMILCOM, vol.1, Atlantic City, NJ, Oct.1999:217-220.
    [52] Y.Yang, C.Liu, T. Soong. A log-likelihood function-based algorithm for QAMsignal classification. Signal Process.,1998,70(1):61-71.
    [53] S.Taira. Automatic Classification of QAM Signals in Fading Channel. IEEE VTC,Japan, May2000,3:1717-1721.
    [54] Q.Shi, Y.Karasawa. Improved maximum likelihood classification for QAMs. IEEEICCS, China, Nov.2008:509-513.
    [55] Q.Shi, Y. Karasawa. Maximum likelihood based modulation classification forunsynchronized QAMs. IEEE GLOBECOM, New Orleans, Nov.2008:1-5.
    [56] B.F.Beidas, C.L.Weber. Higher-order correlation-based approach to modulationclassification of digitally frequency-modulated signals.IEEE J. Sel. AreasCommun.,1995,13(1):89-101.
    [57] B.F.Beidas, C.L.Weber. Higher-order correlation-based classification ofasynchronous MFSK signals. IEEE MILCOM, McLean, VA, Oct.1996,3:1003-1009.
    [58] B.F.Beidas, C.L.Weber. Asynchronous classification of MFSK signals using thehigher order correlation domain. IEEE Trans. Commun.,1998,46(4):480-493.
    [59] K.Kim, A.Polydoros Digital modulation classification: the BPSK versus QPSKcase. Proc. Of IEEE MILCOM '98. Boston, MA, US,1998,2:431-436.
    [60] C.Y.Hwang, A. Polydoros. Advanced methods for digital quadrature and offsetmodulation classification. IEEE MILCOM, San Diego, CA, Oct.1988,2:841-845.
    [61] K.M.Chugg, C.S.Long, A.Polydoros. Combined likelihood power estimation andmultiple hypothesis modulation classification. ASILOMAR,1995:1137-1141.
    [62] O.A.Dobre, J.Zarzoso, Y.Bar-Ness, et al. On the classification of linearlymodulated signals in fading channel. CISS Conf.,2004, Princeton University,Princeton, NJ, US.
    [63] O.A.Dobre, F.Hameed. Likelihood-based algorithms for linear digital modulationclassification in fading channels. IEEE CCECE,2006, Ottawa, Canada.
    [64] H.Deng, M.Doroslovacki, H.Mustafa, et al. Automatic digital modulationclassification using instantaneous features. Proc ICASSP4,2002, IV4168.
    [65]胡延平,李广森,李纲,皇甫堪.利用参数统计方法自动识别数字调制信号.通信学报,2002,23(2):58-65.
    [66] C.S.Park, D.Y.Kim. A novel robust feature of modulation classification forreconfigurable software radio. IEEE Transactions on Consumer Electronics,2006,52(4):1193-1200.
    [67]李杨,李国通,杨根庆.通信信号数字调制方式自动识别算法研究.电子与信息学报,2005,27(2):197-201.
    [68]谭晓衡,鄢海燕,苏萌.基于自适应小波消噪的数字调制识别优化算法.电子与信息学报,2011,33(2):466-469.
    [69]范海波,杨志俊,曹志刚.卫星通信常用调制方式的自动识别.通信学报,2004,25(1):140-149.
    [70]杨琳,许小东,路友荣,戴旭初,徐佩霞.基于谱线特征的恒包络数字调制方式识别方法.中国科学技术大学学报,2009,39(9):936-943.
    [71] S.L.Wood, J.R.Treichler. Computational and performance analysis of Radontransform constellation identication. Proe.ICASSP’94, Adelaide, Australia,3:241-244.
    [72] A.O.Hero. Digital modulation classification using power momentmatrices.ICASSP,1998:311-315.
    [73] H.H.Mahram. Robust QAM modulation classification via moment matrices.PIMRC,2000:648-651.
    [74] H.Xiaoming, D.Donoho. A simple and robust modulation classification methodvia counting. ICASSP,1998:1-4.
    [75] D.Donoho, H.Xiaoming. Large-sample modulation classification using Hellingerrepresentation. SPAWC,1997:1-5.
    [76] B.G.Mobasseri. Digital modulation classification using constellationshape. Signal Processing.2000,80(2):251-277.
    [77]张路平,王建新.星座图加权匹配的调制方式识别.应用科学学报,2009,27(1):19-23.
    [78] A.Swami, B.Sadler. Modulation classification via hierarchical agglomerativecluster analysis. SPAWC,1997:1-5.
    [79] S.Chiu. Fuzzy model identification based on cluster estimation. Jounral ofIntelligent and Fuzzy System,1994,2(3):267-278.
    [80]程汉文,吴乐南.基于星座图和相似性度量的调制方式识别.应用科学学报,2008,26(2):111-116.
    [81] N.Ahmadi. Using fizzy clustering and TTSAS algorithm for modulationclassification based on constellation diagram. Engineering Application ofArtificial Intelligence,2010,23(3):357-370.
    [82] N. Ahmadi. Modulation Classification based on Constellation Shape usingTTSAS Algorithm and Template Matching.Journal of Pattern RecognitionResearch,2011,6(1):43-55.
    [83]王建新,宋辉.基于星座图的数字调制方式识别.通信学报,2004,25(6):166-173.
    [84]王彬,葛临东,徐立清等.一种基于信道盲辨识和盲均衡的多径信道调制方式识别算法.电子与信息学报,2008,30(8),1810-1814.
    [85] L.Hong,K.C.Ho.Identification of digital modulation types using the wavelettransform.IEEE Military Communications Conference,Atlantic City,NJ,USA,1999,v01.1,427-431.
    [86] K.C.Ho,W.Prokopiw,Y.T.Chan. Modulation identification of digitalsignals by the wavelet transform.IEE Proceedings Radar,Sonar and Navigation,2000,147(4):169-176.
    [87] O.Xin,H.X.wei,Y.Xiao,et al.Quasi-Haar wavelet and modulation identificationof digital signals.International Conference on Communications,Circuits andSystems,Chengdu,China,2004,v01.2,733-737.
    [88]王首勇,朱光喜,唐远炎.应用最优小波包变换的特征提取方法.电子学报,2003,31(7):1035-1038.
    [89]阮秀凯,张志涌.基于小波变换的调制自动识别新方法研究.南京邮电大学学报(自然科学版),2007,27(1):35-39.
    [90]吕铁军,郭双冰,肖先赐.基于模糊积分的通信信号调制识别方法研究.电子学报,2001,29(6):808-810.
    [91] K.Hassan, I.Dayoub, W.Hamouda, et al.Automatic modulation recognitionusing wavelet transform and neural Network.9th International Conference onIntelligent Transport Systems Telecommunications,Lille,France,2009:234-238.
    [92]李艳玲,李兵兵,殷昌义.多径信道下调制信号识别新方法.西安电子科技大学学报(自然科学版),2011,38(5),13-19.
    [93]陈卫东.数字通信信号调制识别算法研究.西安:西安电子科技大学博士学位论文,2001.
    [94]陈卫东,杨绍全,董春曦等.多径信道中MPSK信号的调制识别算法.通信学报,2002,23(6):14-21.
    [95]韩刚,李建东,陈晨.一种改进的基于累积量的MDPSK信号分类识别算法.电子学报,2004,32(10):1613-1616.
    [96]韩刚.自适应单载波/多载波调制中信号盲检测技术研究.西安电子科技大学博士论文,2003.
    [97] S.Xi, H.Wu. Robust automatic modulation classification using cumulant featuresin the presence of fading channels. WCNC2006,2006:2094-2099.
    [98] M.Shi, A.Laufer, Y.Bar-Ness, et al. Fourth order cumulants in distinguishingsingle carrier from OFDM signals. IEEE MICOM,2008:1-6.
    [99] C.M.Spooner. On the Utility of Sixth-Order Cyclic Cumulants for RF signalClassification. Proc35thAsilomar on Signals, Systems, and Computers,2001:890-897.
    [100]陈卫东,杨绍全.基于循环累量不变量的MPSK信号调制识别算法.电子与信息学报,2003,25(3):320-325.
    [101] W.A.Gardner. The spectral correlation theory of cyclostationary time-series.Signal Processing,1986,11(1):13-36.
    [102] W.A.Gardner. Spectral correlation of modulated signals: Part I--Analogmodulation. IEEE Transactions on Communications,1987,35(6):584-594.
    [103] W.A.Gardner, W.Brown, C.Chen. Spectral correlation of modulated signals: PartII--Digital Modulation. IEEE Transactions on Communications,1987,35(6):595-601.
    [104] W.A.Gardner. A unifying view of second-order measures of quality for signalclassification. IEEE Transactions on Communications,1980,28(6):807-816.
    [105]高玉龙,张中兆.基于循环谱的同信道多信号调制方式识别.高技术通讯,2007,17(8):793-797.
    [106] J. Wagstaff. Logarithmic cyclic frequency domain profile for automaticmodulation recognition.IET Communications,2008,2(8):1009-1015.
    [107]朱雷,程汉文,吴乐南.利用循环谱和参数统计的数字调制信号识别.应用科学学报,2009,27(2):137-143.
    [108] B.Widrow. A study of rough amplitude quantization by means of Nyquistsampling theory. IRE Trans. on Circuit Theory,1956,3(4):266-276.
    [109] S.Barbarossa, A.Swami, B.Sadler, et al. Classification of digital constellationsunder unknown multipath propagation conditions. Proceeding of SPIE,2000,4045:175-184.
    [110] S.Lesage, J.Y.Tourneret, P.M.Djuric. Classification of digital modulations byMCMC sampling. IEEE ICASSP,2001:2553-2556.
    [111]柳征,王明阳,姜文利等.一种新的贝叶斯调制分类算法.电子与信息学报,2006,28(7):1233-1237.
    [112] R.A.Thisted. Elements of Statistical Computing, Chapman&Hall, New York.
    [113] J.M.Hammersley, D.C.Handscomb. Monte Carlo Methods, Methuen’smonographs on applied probability and statistics,1964, Methuen, Wiley, London.
    [114] R.Y.Rubinstein. Simulation and Monte Carlo Method, Wiley series in probabilityand mathematical statistics. Wiley, New York,1981.
    [115] A.Marshall, The use of multi-stage sampling schemes in Monte Carlocomputations. Symposium on Monte Carlo Methods.1956, Wiley, New York,123-140.
    [116] N.Metropolis, A.W.Rosenbluth, M.N.Rosenbluth. Equations of state calculationsby fast computing machines. Journal of Chemical Physics,1953,21(6):1087-1091.
    [117] W.K.Hastings. Monte Carlo sampling methods using Markov chains and theirapplications. Biometrika,1970,57(1):97-109.
    [118] H.Haario, E.Saksman, J.Tamminem. An adaptive Metropolis algorithm. Bernoulli,2001,7(2):223-242.
    [119] H.Haario, E.Saksman, J.Tamminen. Componentwise adaptation for highdimensional MCMC. Computational Statistics,2005,20(2):265-273.
    [120]李月,徐凯,杨宝俊.混沌振子系统周期解几何特征量分析与微弱周期信号的定量检测.物理学报,2008,57(6):3353-3358.
    [121] Wang G Y, Zheng W, He S L.Estimation of amplitude and phase of a weak signalby using the property of sensitive dependence on initial conditions of a nonlinearoscillator[J]. Signal Processing,2002,82(1):103-115.
    [122]路鹏,李月.微弱正弦信号幅值混沌检测的一种改进方案.电子学报,2005,33(3):527-529.
    [123] I.Stewart. The Lorenz Attractor Exists. Nature,2000,406:948-949.
    [124]王光瑞,陈光旨.非线性常微分方程的混沌运动.南宁:广西科学技术出版社,1995.
    [125] W.G.yu, C.D.jun, et al. The application of chaotic oscillators to weak signaldetection. IEEE Trans. On Industrial Electronics,1999,46(2):440-444.
    [126]李月,杨宝俊.基于特定混沌系统微弱谐波信号频率检测的理论分析与仿真.物理学报,2005,54(5):1994-06.
    [127] W.Tucker. Computing accurate Poincar maps. Physicai D,2002,171(3):127-137.
    [128]谢涛.外激励型混沌振子微弱信号检测方法研究.北京:北京交通大学,2009.
    [129] G桑森,R康蒂著,黄启昌等译.1983非线性微分方程(北京:科学出版社)第83页
    [130] N.Levinson and O.K.Smith. A general equation for relaxation oscillations. DukeMath,1942,9:382-403.
    [131]甘建超.混沌信号处理在雷达和通信对抗中的应用.国防科技大学博士学位论文,2004:174-177.
    [132] J.H.E.Cartwright, O.Piro. The dynamics of Runge-Kutta methods.Int.J.Bifurc.Choas,1992,2(3):427-449.
    [133] D.C.Rife,G.A.Vmcent.Use of the discrete Fourier transform in the measurementof frequenciesand levels of tones.Bell Sys Tech J,1970,49(2):197-228.
    [134]邓振淼,刘渝,王志忠.正弦波频率估计的修正Rife算法.数据采集与处理.2006,21(4):473-477.
    [135]黄志云,徐科军.基于相位差的频谱校正方法的研究.振动与冲击,2005,24(2):77-79.
    [136] L.Rabiner, B.Gold.Theory and Application of Digital Signal Processing. NJ:Prentice-Hall,1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700