几类高阶非线性抛物方程解的存在性与渐近性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究几类高阶非线性抛物方程(组)解的存在性和长时间渐近行为.本质性困难是作为通常工具所使用的二阶抛物方程的最大值原理和比较原理在高阶情形不再有效.所讨论的问题包括广义薄膜方程解的长时间性态,具有梯度项主部的非线性四阶抛物方程解的存在性和长时间渐近极限,以及粘性量子流体动力学模型解、粘性流体动力学模型解的指数衰减性.首先考虑一个具有零边界流的非线性四阶抛物方程-广义薄膜方程,利用熵泛函的方法证明了解在时间趋于无穷大时趋近于对应的定态问题解的结论,并讨论了带二阶扩散项的薄膜方程解的存在性和正性.然后关注一类具三阶退化项的四阶抛物方程解的存在性与渐近极限.最后研究粘性双极量子流体动力学模型,粘性项对能量耗散速率的影响是:耗散随粘性增大而增大.
     第1章概述本文所研究问题的物理背景和国内外发展状况,并简要介绍本文的主要工作.
     第2章首先关注一类四阶抛物型方程:u_t=-▽·(u~n▽△u+αu~(n-1)△u▽u+βu~(n-2)|▽u|~2▽u)解的长时间行为.此方程可以理解为薄膜方程u_t+(u~nu_(xxx))_x=0的推广.方程由润滑近似法推导而来,描述粘性薄膜的演化及蔓延传播情况,函数u表示薄膜的高度.对于Neumann初边值问题,我们分别得到一维问题解在L~∞范数意义下以代数速率衰减到其初值的均值,高维问题解在L~1范数意义下以指数衰减速率收敛到其初值的均值.主要技术思想是构造相应的熵泛函,对熵进行两方面的运算,一是建立熵泛函微分的(与熵有关的)负上界,二是证明熵泛函具有L~p范数的下界(0n时,得到弱意义下解的存在性,以及参数n的值对解的正性的影响.最后证明,问题的古典解在t→∞时、以指数速率收敛于其初值的均值.
     第3章致力于一类非线性四阶抛物方程u_t+▽·(|▽△u|~(p-2)▽△u)=f(u)第一初边值问题解的存在性和渐近极限的研究.通过不动点理论结合半离散方法,分别得到定态情形和发展方程解的存在性.与一般以往文章方法不同之处是:我们构造两类不同的逼近解、分别处理关于时间变量和空间变量的一致估计,再由必要的先验估计和紧性讨论进一步证明这两类逼近解收敛于同一个函数.也就是所求问题的解.另外.利用熵泛函方法还得到解在时间趋于无穷大时、收敛于其一个常定态解的结论.最后,我们指出当参数p→∞时,解u恰好趋于初值函数u_0.
     第4章考虑粘性量子流体动力学模型解的长时间行为.共振穿隧等量子效应可由微观模型表示,例如Wigner方程和Schr(o|¨)dinger系统.这些微观模型又可以由宏观变量,如流密度、电子密度、温度等来描述.这个模型是经典的流体动力学模型经量子作用的修正,由Wigner-Boltzmann方程利用矩方法或者由Schr(o|¨)dinger方程导出.这里,我们用熵泛函方法和一系列先验估计,得到一维和高维两种情形下粘性量子流体动力学模型解的指数衰减,且在t→∞时,解收敛于一个定态解.此外,还得到粘性流体动力学模型解的衰减性。
This thesis deals with existence and asymptotic behavior of solutions for multinonlinear high-order parabolic equations(systems).The substantial difficulty is that the general maximum principle does not hold any more for the high order cases.The topics include the large time behavior and the existence of solutions for a generalized thin film equation and a nonlinear fourth-order parabolic equation with gradient principal part,and the exponential decays for a viscous bipolar quantum hydrodynamic model with special third-order terms.Firstly,we consider a generalized thin film equation with zero-boundary fluxes.The decay of solution towards its mean is given by entropy functional method.Existence and positivity of solutions are studied for a thin film equation with a second-order diffusion term.Secondly,we concern the existence and asymptotic behavior of solutions for a nonlinear fourth-order parabolic equation with degenerate third-order derivative terms.Finally,we study the large-time behavior of solutions for a viscous bipolar quantum hydrodynamic model.The viscosity affects the speed of energy change,and specifically the bigger one yields the faster dissipation.
     Chapter 1 is to summarize the background of the related issues and to briefly introduce the main results of the present thesis.
     Chapter 2 is firstly concerned with the long time behavior of solutions to a class of fourth order nonlinear parabolic equation:u_t=-▽·(u~n▽△u +αu~(n-1)△u▽u+βu~(n-2)|▽u|~2▽u).The equation can be regarded as a generalization of the thin film equation u_t +(u~nu_(xxx))_x = 0 which is derived from a lubrication approximation and models the evolution of thin viscous films and spreading droplets.The function u represents thickness of the film.For the Neumann problem,we prove the algebra decay of solution towards its mean in L~∞-norm for the one-dimensional problem,and the exponential decay of solution to its average in L~1-norm for the multi-dimensional case,respectively.The main technical idea is to construct required dissipative entropies.We show that the derivative of entropy has a negative bound related to itself and for another the entropy has a L~p-norm low bound(0<p≤∞).Thus,some long-time decay results can be obtained in the sense of L~p-norm.Secondly,we investigate nonnegative solutions of the thin film equation with a second-order diffusion term:u_t+(u~nu_(xxx))_x-(u~m)_(xx)= 0.For m>n,existence of solutions is obtained in a weak sense.Positivity of solutions is collected,which is depending on n. Finally,we show that the classical solutions also converge to their mean at an exponential rate as the time t→∞.
     Chapter 3 is devoted to studying the existence and asymptotic behavior of solutions to a nonlinear fourth-order parabolic equation:u_t+▽·(|▽△u|~(P-2)▽△u) = f(u) inΩ(?)R~N with boundary condition u =△u = 0 and initial data u_0.The solutions are obtained for both the steady-state case and the developing case by the fixed point theorem and the semi-discretization method.Unlike the general procedures used in the previous papers on the subject,we introduce two families of approximate solutions with determining the uniform bounds of derivatives with respect to the time and space variables,respectively.By a compactness argument with necessary estimates,we show that the two approximation sequences converge to the same limit,i.e.,the solution to be determined.In addition, the decays of solutions towards the constant steady states are established via the entropy method.Finally,it is interesting to observe that the solutions just tend to the initial data u_0 as p→∞.
     Chapter 4 deals with large-time behavior of solutions for a viscous bipolar quantum hydrodynamic model.Generally,quantum effects,for example,resonant tunneling,are presented via microscopic models,such as the Wigner equation and the Schr(o|¨)dinger system. These microscopic models can be described by macroscopic variables like current densities,electron densities and temperatures.QHD model,being as the extension of the classical hydrodynamic equations with quantum corrections,can be obtained from the Wigner-Boltzmann equation by employing the moment method or the Schr(o|¨)dinger system.By applying the entropy method,we prove the exponential decays of solutions towards the constant steady states for the one-dimensional and the multi-dimensional cases.The argument is based on a series of a priori estimates.As a byproduct,the decay of solutions for the viscous hydrodynamic model is obtained as well.
引文
[1]CAHN J M,HILLIARD J E.Free energy of a non-uniform system I.Interfacial free energy[J].J.Chem.Phys.,1958,28:258-367.
    [2]ELLIOTT C M,ZHENG S M.On the Cahn-Hilliard type equation[J].Arch.Rat.Mech.Anal.,1986,4:339-357.
    [3]NOVICK-COHEN A.On Cahn-Hilliard type equations[J].Nonlinear Analysis TMA.,1990,15:797-814.
    [4]DUPAIX C,HILHORST D,KOSTIN I.The visous Cahn-Hilliard equation as a limit of the phase field model:Lower semicontinuity of the attractor[J].Journal of Dynamics and Differential Equations,1999,11:333-353.
    [5]COHEN D S,MURREY J D.A generalized diffusion model for growth and dispersal in a population[J].J.Math.Biology,1981,12:237-249.
    [6]MYERS T G.Thin films with high surface tension[J].SIAM Reviews,1998,40:441-462.
    [7]LI H L,MARCATI P.Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic models for semiconductors[J].Comm.Math.Phys.,2004,245:215-247.
    [8]GASSER I,J(U|¨)NGEL A.The quantum hydrodynamic model for semiconductors in thermal equilibrium[J].Z.Angew.Math.Phys.,1997,48:45-59.
    [9]BERNIS F,FRIEDMAN A.Higher order nonlinear degenerate parabolic equations [J].J.Differential Equations,1990,83:179-206.
    [10]L(?)PEZ J L,SOLER J,TOSCANI G.Time rescaling and asymptotic behavior of some fourth-order degenerate diffusion equations[J].Computers and Mathematics with Applications,2002,43:721-736.
    [11]CARRILLO J A,J(U|¨)NGEL A,MARKOWICH P A,et al.Entropy dissipation methods for degenerate parabolic problems and generalized sobolev inequalities[J].Monatsh.Math.,2001,133:1-82.
    [12]CARRILLO J A,Toscani G.Asymptotic L~1-decay of solutions of the porous medium equation to self-similarity[J].Indiana Univ.Math.J.,2000,49:113-141.
    [13]Del Pino M,J D.Asymptotic behavior of nonlinear diffusions[J].Mathematical Research Letters,2003,10:551-557.
    [14]Arnold A,Markowich P,Toscani G,et al.On generalized csisz(?)r-kullback inequalities [J].Monatsh.Math.,2000,131:235-253.
    [15]RALSTON J.A lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity Ⅱ.[J].J.Math.Phys.,1984,25:3124-3127.
    [16]CARRILLO J A,TOSCANI G.Long-time asymptotics for strong solutions of the thin film equation[J].Commun.Math.Phys.,2002,225:551-571.
    [17]CARLEN E A,ULUSOY S.An entropy dissipation estimate for a thin film type equation[J].Comm.Math.Sci.,2005,3:171-178.
    [18]CARLEN E A,ULUSOY S.Asymptotic equipartition and long time behavior of solutions of a thin-film equation[J].J.Differential Equations,2007,241:279-292.
    [19]BERTOZZI A,PUGH M.The lubrication approximation for thin viscous films:regularity and long time behavior of weak solutions[J].Comm.Pure Appl.Math.,1996,49:85-123.
    [20]BERETTA E,DAL PASSO R.Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation[J].Arch.Rational.Mech.Anal.,1995,129:175-200.
    [21]ANDREUCCI D,TEDEEV A.Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity[J].Interfaces Free Bound,2001,3:233-264.
    [22]ANSINI L,GIACOMELLI L.Shear-thinning liquid films:Macroscopic and asymptotic behavior by quasi self-similar solutions[J].Nonlinearity,2002,15:2147-2164.
    [23]BERNIS F.Existence results for doubly nonlinear higher order parabolic equations on unbounded domains[J].Math..Ann.,1988,279:373-394.
    [24]BERNIS F.Finite speed of propagation and continuity of the interface for thin viscous flows[J].Adv.Differential Equations,1996,1:337-368.
    [25]BERNIS F.Finite speed of propagation for thin viscous flows when 2 ≤n<3[J].C.R.Acad.Sci.Paris,S(?)r.I Math.,1996,322:1169-1174.
    [26]BERTOZZI A,PUGH M.Long-wave instabilities and saturation in thin film equations [J].Comm.Pure Appl.Math.,1998,51:625-661.
    [27]BERTSCH M,DAL PASSO R,GARCKE H,et al.The thin viscous flow equation in higher space dimension[J].Adv.Differential Equations,1998,3:417-440.
    [28]BETEL(?) S,FONTELOS M.Capillarity driven spreading of power-lawfluids[J].Appl.Math.Lett.,2003,16:1315-1320.
    [29]DAL PASSO R,GARCKE H.Solutions of a fourth-order degenerate parabolic equation with weak initial trace[J].Ann.Sc.Norm.Sup.Pisa Cl.Sci.,1999,28:153-181.
    [30]DAL PASSO R,GIACOMELLI L,GR(U|¨)N G.A waiting time phenomenon for thin film equations[J].Ann.Scuola Norm.Sup.Pisa Cl.Sci.(4),2001,30:437-463.
    [31]GIACOMELLI L,OTTO F.Variational formulation for the lubrication approximation of the hele-shaw flow[J].Calc.Var.Partial Differential Equations,2001,13:377-403.
    [32]GIACOMELLI L,OTTO F.Droplet spreading:Intermediate scaling law by pde methods[J].Comm.Pure.Appl.Math.,2002,55:217-254.
    [33]GR(U|¨)N G.Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening[J].Z.Anal.Anwendungen,1995,14:541-574.
    [34]GR(U|¨)N G.On bernis' interpolation inequalities in multiple space dimensions[J].Z.Anal.Anwendungen,2001,20:987-998.
    [35]HULSHOF J,SHISHKOV A.The thin film equation with 2≤n<3:finite speed of propagation in terms of the L~1-norm[J].Adv.Differential Equations,1998,3:625-642.
    [36]OTTO F.Lubrication approximation with prescribed non-zero contact angle[J].Comm.Partial Differential Equations,1998,23:2077-2164.
    [37]SHISHKOV A.Estimates of rate of propagation of perturbations in quasilinear divergent degenerate parabolic equations of high order[J].Ukrain.Math.J.,1992,44:1335-1340.
    [38]SHISHKOV A,SHCHELKOV A.Dynamics of the supports of energy solutions of mixed problems for quasilinear parabolic equations of arbitrary order[J].Izv.Math.,1998,62:601-626.
    [39]ALMGREN R.Singularity formation in hele-shaw bubbles[J].Phys.Fluids,1996,8:344-352.
    [40]CARR(?) A,EUSTACHE F.Spreading kinetics of shear-thinning fluids in wetting and dewetting models[J].Langmuir,2000,16:2936-2941.
    [41]DE GENNES P.Wetting:Statics and dynamics[J].Rev.Mod.Phys.,1985,57:827-863.
    [42]DUSSAN V E,DAVIS S.On the motion of fluid-fluid interface along a solid surface [J].J.F1.Mech.,1974,65:71-95.
    [43]GIACOMELLI L,OTTO F.Rigorous lubrication approximation[J].Interfaces Free Bound,2003,29:483-529.
    [44]GR(U|)N G.Droplet spreading under weak slippage:the optimal asymptotic propagation rate in the multi-dimensional case[J].Interfaces Free Bound,2002,4:309-323.
    [45]HUH C,SCRIVEN L.Hydrodynamic model of a steady movement of a solid/liquid /fluid contact line[J].J.Colloid Interface Sci.,1971,35:85-101.
    [46]ORON A,DAVIS S,BANKOFF G.Long-scale evolution of thin liquid films[J].Rev.Mod.Phys.,1997,69:931-980.
    [47]WEIDNER D,SCHWARTZ L.Contact-line motion of shear-thinning liquids[J].Phys.Fluids,1994,6:3535-3538.
    [48]BERTOZZI A,PUGH M.The lubrication approximation for thin viscous films:The moving contact line with a "porous media" cut-off of van der Waals interactions [J].Nonlinearity,1994,7:1535-1564.
    [49]DAL PASSO R,GIACOMELLI L,SHISHKOV A.The thin film equation with nonlinear diffusion[J].Comm.Partial Differential Equations,2001,26:1509-1557.
    [50]GIACOMELLI L.A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane[J].Appl.Math.Lett.,1999,12:107-111.
    [51]ANSINI L,GIACOMELLI L.Doubly nonlinear thin-film equations in one space dimension[J].Arch.Rational Mech.Anal.,2004,173:89-131.
    [52]BLEHER P,LEBOWITZ J,SPEER E.Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations[J].Comm.Pure.Appl.Math.,1994,47:923-942.
    [53]BERNIS F,FERREIRA R.Source-type solutions to thin-film equations:The critical case[J],Appl.Math.Lett.,1999,12:45-50.
    [54]DAL PASSO R,GARCKE H,GR(U|)N G.On a fourth order degenerate parabolic equation:Global entropy estimates,existence and qualitative behaviour of solutions [J].SIAM J.Math.Anal.,1998,29:321-342.
    [55]CHEN X.Global asymptotic limit of solutions of the Cahn-Hilliard equation[J].J.Differential Geom.,1996,44:262-311.
    [56]FURIHATA D.A stable and conservative finite difference scheme Cahn-Hilliard equation[J].Numer.Math.,2001,87:675-699.
    [57]GRINDELD M,NOVICK-COHEN A.Counting stationary solutions of the Cahn-Hilliard equation by trasversality arguments[J].Proc.Roy.Soc.Edinburgh Sect.,1995,125A:351-370.
    [58]Y HE Y L.Stability and convergence of the spectral galerkin method for the Cahn-Hilliard equation[J].Numer.Methods PDEs,2008,24:1485-1500.
    [59]HE Y,LIU Y,TANG T.On large time-stepping methods for the Cahn-Hilliard equation[J].Appl.Numer.Math.,2007,57:616-628.
    [60]LAUGESEN R,PUGH M.Linear stability of steady states for thin film and Cahn-Hilliard type equations[J].Arch.Rational Mech.Anal.,2000,154:3-51.
    [61]LIU C.On the convective Cahn-Hilliard equation with degenerate mobility[J].J.Math.Anal.Appl.,2008,344:124-144.
    [62]LIU C,QI Y,YIN J.Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility[J].Acta Math.Sin.,2006,22:1139-1150.
    [63]LIU S,WANG F,ZHAO H.Global existence and asymptotics of solutions of the Cahn-Hilliard equation[J].J.Differential Equations,2007,238:426-469.
    [64]MIRANVILLE A.Some models of Cahn-Hilliard equations in nonisotropic media [J].Math.Model.Numer.Anal.,2000,34:539-554.
    [65]MIRANVILLE A.Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions[J].Physica D,2001,158:233-257.
    [66]MIRANVILLE A.Some generalizations of the Catm-Hilliard equation[J].Asymptotic Anal.,2000,22:235-259.
    [67]PR(U|¨)SS J,RACKE R,ZHENG S M.Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions[J].Annali di Matematica Pura ed Applicata,2006,185:627-648.
    [68]WEI J,WINTER M.Stationary solutions for the Cahn-Hilliard equation[J].Ann.Inst.H.Poincar(?) Anal.Non Lin(?)aire,1998,15:459-492.
    [69]YIN J.On the Cahn-Hilliard equation with nonlinear principal part[J].J.Partial Diff.Eqs.,1994,7:77-96.
    [70]YIN J.On the existence of nonnegative continuous solutions of the Cabn-Hilliard equation[J].J.Differential Equations,1992,97:310-327.
    [71]YIN L,LI Y,HUANG R,et al.Time periodic solutions for a Cahn-Hilliard type equation[J].Math.Comput.Modelling,2008,48:11-18.
    [72]YE X.The Fourier collocation method for the Cahn-Hilliard equation[J].Comput.Math.Appl.,2002,44:213-229.
    [73]ZHENG S M.Asymptotic behavior of solution to the Cahn-Hilliard equation[J].Appl.Anal.,1986,23:165-184.
    [74]XU M,ZHOU S.Existence and uniqueness of weak solutions for a generalized thin film equation[J].Nonlinear Anal.,2005,60:755-774.
    [75]伍卓群,尹景学,王春朋.椭圆与抛物型方程引论[M].北京:科学出版社,2003.
    [76]GARDNER C.The quantum hydrodynamic model for the semiconductor devices [J].SIAM J.Appl.Math.,1994,54:409-427.
    [77]GASSER I,MARKOWICH P.Quantum hydrodynamics,Winger transforms and the classical limit[J].Asymptot.Anal.,1997,14:97-116.
    [78]GASSER I,MARKOWICH P A,RINGHOFER C.Closure conditions for classic and quantum moment hierarchies in the small temperature limit[J].Transport Theory Statist.Phys.,1996,25:409-423.
    [79]BREZZI F,GASSER I,MARKOWICH P A,et al.Thermal equilibrium states of the quantum hydrodynamic model for semiconductors in one dimension[J].Appl.Math.Lett.,1995,8:47-52.
    [80]GAMBA I,J(U|¨)NGEL A.Positive solutions to singular second and third order differential equation for quantum fluids[J].Arch.Ration.Mech.Anal.,2001,156:183-203.
    [81]GYI M T,J(U|¨)NGEL A.A quantum regularization of the one-dimensional hydrodynamic model for semiconductors[J].Adv.Difference Equ.,2000,5:773-800.
    [82]J(U|¨)NGEL A.A steady-state quantum euler-possion system for potential flows[J].Comm.Math.Phys.,1998,194:463-479.
    [83]ZHANG B,JEROME J.On a steady-state quantum hydrodynamic model for semiconductors [J].Nonlinear Anal.,1996,26:845-856.
    [84]J(U|¨)NGEL A,MARIANI M C,RIAL D.Local existence of solutions to the transient quantum hydrodynamic equations[J].Math.Models Methods Appl.Sci,2002,12:485-495.
    [85]J(U|¨)NGEL A,LI H L.Quantum euler-poisson system:global existence and exponential decay[J].Quart.Appl.Math.,2004,62:569-600.
    [86]GASSER I,J(U¨)NGEL A.Asymptotic limits for quantum trajectory models[J].Comm.Partial Differential Equations,2002,27:669-691.
    [87]GOUDON T,J(U|¨)NGEL A,PENG Y J.Zero-mass-electrons limits in hydrodynamic models for plasmas[J].Appl.Math.Lett.,1999,12:75-79.
    [88]J(U|¨)NGEL A,PENG Y J.A model hierarchy for semiconductors and plasmas[J].Nonlinear Anal.,2001,47:1821-1832.
    [89]WANG S.Quasineutral limit of euler-poisson system with and without viscosity [J].Comm.Partial Differential Equations,2004,29:419-456.
    [90]GUALDNI M P,J(U|¨)NGEL A,TOSCANI G.Exponential decay in time of solutions of the viscous quantum hydrodynamic equations[J].Appl.Math.Lett.,2003,16:1273-1278.
    [91]J(U|¨)NGEL A.Nonlinear problems in quantum semiconductor modeling[J].Nonlinear Anal.,2001,47:5873-5884.
    [92]J(U|¨)NGEL A,MATTHES D.The Derrida-Lebowitz-Speer-Spohn equation:existence,non-uniqueness,and decay rates of the solutions[J].SIAM J.Math.Anal.,2008,39:1996-2015.
    [93]J(U|¨)NGEL A,VIOLET I.First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation[J].Discrete Cont.Dyn.Sys.B,2007,8:861-877.
    [94]J(U|¨)NGEL A,VIOLET I.The quasineutral limit in the quantum drift-diffusion equations[J].Asympt.Anal.,2007,53:139-157.
    [95]J(U|¨)NGEL A,MILISIC J P.Physical and numerical viscosity for quantum hydrodynamics [J].Commun.Math.Sci.,2007,5:447-471.
    [96]MARCATI P,NATALINI R.Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift diffusion equations[J].Arch.Rat.Mech.Anal.,1995,129:129-145.
    [97]MARCATI P,NATALINI R.Weak solutions to a hydrodynamic model for semiconductors:The Cauchy problem[J].Proc.Roy.Soc.Edinburgh,1995,A125:115-131.
    [98]GADAU S,J(U|¨)NGEL A.A three-dimensional mixed finite-element approximation of the semiconductor energy-transport equations[J].SIAM J.Sci.Comput.,2008,31:1120-1140.
    [99]BRUNK M,J(U|¨)NGEL A.Simulation of thermal effects in optoelectronic devices using coupled energy-transport and circuit models[J].Math.Models Meth.Appl.Sci.,2008,18:1-26.
    [100]D(U|¨)RING B,J(u|¨)NGEL A,VOLKWEIN S.A sequential quadratic programming method for volatility estimation in option pricing[J].J.Optim.Theory Appl.,2008,139:515-540.
    [101]CARRILLO J A,GUALDANI M P,J(U|¨)NGEL A.Convergence of an entropic semidiscretization for nonlinear Fokker-Planck equations in Rd[J].Publicacions Matematiques,2008,52:413-433.
    [102]BRUNK M,J(U|¨)NGEL A.Numerical coupling of electric circuit equations and energy-transport models for semiconductors[J].SIAM J.Sci.Comput.,2008,30:873-894.
    [103]AMSTER P,J(U|¨)NGEL A,MATTHES D.Non-homogeneous boundary conditions for a fourth-order diffusion equation[J].C.R.Acad.Sci.Paris,Ser.I,2008,346:143-148.
    [104]TAGUCHI S,J(U|¨)NGEL A.A two-surface problem of the electron flow in a semiconductor on the basis of kinetic theory[J].J.Stat.Phys.,2007,130:313-342.
    [105]KRAUSE S,J(U|¨)NGEL A,PIETRA P.A hierarchy of diffusive higher-order moment equations,for semiconductors[J].SIAM J.Appl.Math.,2007,68:171-198.
    [106]SMYTH N F,HILL J M.Higher order nonlinear diffusion[J].IMA J.Appl.Math.,1988,40:73-86.
    [107]SMYTH N F,HILL J M.The mathematics of moving contact lines in thin liquid films[J].Notices Amer.Math.Soc.,1998,45:689-697.
    [108]KING J R.Two generalization of the thin film equation[J].Math.Comput.Modelling,2001,34:737-756.
    [109]BOUTATA M,HILOUTB S,.RAKOTOSONC J E,et al.A generalized thin-film equation in multidimensional space[J].Nonlinear Analysis,2008,69:1268-1286.
    [110]EVANS L C.Partial Differential Equations[M].Providence,RI:American Mathematical Society,1998.
    [111]GILBARG D,TRUDINGER N S.Elliptic Partial Different Equations of Second Order(Second ed.)[M].New York:Springer-Verlag,1983.
    [112]ADAMS R A.Sobolev Space[M].New York:Academic Press,1975.
    [113]SIMON J.Compact sets in the space L~p(O,T;B)[J].Ann.Math.Pura.Appl.,1987,146:65-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700