无人机飞行控制系统若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人机在整个航空领域扮演着越来越重要的角色,飞控系统是无人机系统的核心组成部分,其性能直接影响着无人机的飞行性能和飞行品质,直接关系到无人机的飞行安全。本文在总结相关领域研究成果与发展现状基础上,针对某固定翼无人机,从空中飞行与地面滑跑动力学建模、模型简化、控制律设计及实现、干扰观测器设计、控制律评估与确认、半物理仿真与飞行试验等方面展开了相应研究。
     首先,在考虑发动机扭转力矩、推力偏心及初始停机角影响的情况下,建立了无人机空中飞行和地面滑跑的六自由度非线性模型,将无人机沿跑道中心线作定常直线无侧滑运动作为地面滑跑基准运动,实际运动是在基准运动基础上的小扰动运动,利用小扰动原理显式地给出了无人机空中飞行、地面三轮及两轮滑跑的线性化模型表达式,为控制系统设计与进一步的评估验证打下基础。
     研究了鲁棒伺服LQR控制方法,采用鲁棒伺服LQR控制及经典控制相结合的方法设计了无人机空中飞行纵向运动及横侧向运动的控制律,通过仿真证明上述方法比常规PID控制器响应更加平缓,俯仰角响应超调量减小50%,滚转角响应超调量减小70%,且很好地抑制了响应初期舵指令突变而导致无人机瞬间产生较大角速率的现象,大大降低了对机体可用过载的要求;对航迹跟踪回路采用偏航角速率、偏航角、侧偏速度及偏航距反馈的控制方式,仿真证明该方法能使无人机很好地跟踪预设航迹。
     为消除无人机飞行过程中铰链力矩干扰对控制精度的影响,将干扰观测器应用于飞行控制律的设计中,分析了干扰观测器与控制器设计的独立性以及干扰观测器的鲁棒稳定性;以盘旋飞行模态为例设计了基于干扰观测器的飞行控制律,通过仿真验证了带干扰观测器的控制律可消除不带干扰观测器时产生的3.2°滚转角稳态误差,滚转角控制精度得到大幅提高;采用分块离散方法和单模态瞬变抑制法分别解决了控制律工程实现中的非线性控制律离散化及控制律切换时舵面跳变的问题。
     针对自主滑跑模型的零极点分布范围较大且滑跑模型中实际参数不易准确获取的情况,对三轮滑跑的纵向控制采用升降舵保证前后轮压力比为定值的控制方式,对横侧向控制的偏航角速率、偏航角和侧偏距回路分别设计了基于参考模型的自适应控制律、定参数控制律及增益调节控制律;对两轮滑跑阶段横侧向控制的偏航角及侧偏距回路分别设计了基于PD增益自适应调节控制律和定参数控制律;通过仿真验证了当无人机存在2.5°初始偏航角和0.2m初始侧偏距的情况下,设计的控制律能迅速消除偏差,使无人机沿跑道中心线滑跑。
     为减少试飞次数,提高飞行试验成功率,在无人机空中飞行存在气动、惯性等不确定因素时,采用基于多项式的方法基于不稳定特征值判断准则对控制律进行了评估和确认,得到标称状态下无人机在整个飞行包线内的可用迎角为[-2°,18°],单个不确定参数摄动时的可用迎角范围为[0°,15°],多个不确定参数同时摄动时可用迎角范围减小为[0°,11°]。
     最后,通过半物理仿真试验、滑跑试验与飞行试验对上述研究工作的实际应用效果进行了验证,半物理仿真试验与数字仿真吻合较好;无人机外场飞行试验俯仰角控制的实际稳态误差为0.2°,滚转角控制的实际稳态误差为0.4°,高度控制的实际稳态误差为1m,满足国军标对飞行控制系统的指标要求;对自主滑跑控制律完成了外场自主滑跑试验,结果表明,整个滑跑过程中的最大偏航角为2°,最大侧偏距为1.5m,且对侧风干扰有较强的抑制作用。
UAV plays an increasingly important role throughout the whole aviation ministry.Flight control system is one of the core components of the UAV, whose performancedirectly affects the flight performances, flying qualities and flight safety. On the basisof summarizing the research results and development status of related fields, thisthesis has a central research on a fixed-wing UAV, including dynamics modeling offlying and taxiing, model simplifying, control law design and implementation,disturbance observer design, clearance of control law, hardware in loop simulationand flight test.
     Firstly, considering the engine torque, thrust eccentric and ground angle, the sixdegree of freedom nonlinear equations of flying and taxiing is established.Taking theUAV moving along the centerline of the runway constantly without sliding as thereference movement, the actual movement is small perturbation motion based on thereference movement. The linear state space expression of flying, taxiing with threewheels and two wheels is derived using small perturbation principle, which lays afoundation for design and clearance of the control system.
     The robust servo LQR control method is studied, the longitudinal and lateralflight control law is designed combining the robust servo LQR and the classicalcontrol. The simulation results shows that the response of the method is more gentlethan conventional PID controller, with the overshoot of pitch angle responsedecreasing by50%, and the overshoot of roll angle response decreasing by50%. Thephenomenon of a larger angle rate because of servo command mutation is suppressedin initial response, the requirements of available overload is greatly reduced. The control structure of flight path tracking loop uses the feedback of yaw rate, yaw angle,yaw speed and yaw distance. The simulation results show that this control method cantrack the default flight path accurately.
     Disturbance observer is applied to the flight control law design to eliminate theeffects of hinge moment to control accuracy during flight, the independence ofdisturbance observer design and controller design is proved, the robust stability ofdisturbance observer is analyzed. Taking the circle flight mode for example, thesimulation results show that the control law with a disturbance observer can eliminatethe3.2°roll angle steady-state error generated by the control law without disturbanceobserver, the control accuracy of the roll angle is improved. The nonlinear control lawdiscretion issues in engineering implementation is solved using the block discretemethod and the servos transition issues when the control law switching is solvedusing single-mode transient suppression method.
     For the situation of extensive pole-zero distribution of the taxiing model and theactual parameters are hard to obtained accurately, longitudinal control of three wheelstaxiing is designed to ensure that the front and rear wheels pressure ratio is constantthroughout the deflection of elevator. The model reference adaptive control law, givenparameter control law and gain scheduling control law are designed respectively forthe yaw rate, yaw angle and yaw distance loop of lateral control. The PD gainadaptive control law and given parameter control law are designed respectively for theyaw angle and yaw distance loop of two wheels taxiing lateral control. The simulationresults show that the control law can eliminate the deviation quickly when there existsinitial yaw angle2.5°and initial yaw distance0.2m, so as to the UAV taxis alongcenterline of the runway.
     To increase the success rate of flight test, the control law is cleared and verifiedbased on unstable eigenvalues criterion using polynomial approach when there existsthe inertia, pneumatic and other uncertainties during flight. The clearance results showthat the available angle of attack throughout the whole flight envelope in nominalstate is [-2°,18°], the available angle of attack range with single uncertain parameterperturbation is [0°,15°],the available angle of attack range with multiple uncertainparameters simultaneously perturbation is reduced to [0°,11°].
     Finally, the research works mentioned above are verified through hardware inloop simulation for taxiing test and flight test. The simulation results agree well withthe digital simulation, the actual pitch angle control steady-state error is0.2°in outfield flight test, the actual roll angle control steady-state error is0.4°, the actualheight control steady-state error is1m. All the above meet the military standardrequirements. The outfield autonomous taxiing test is completed to verify the adaptivecontrol law. The results show that the maximum yaw angle is2°, the maximum yawdistance is1.5m, the crosswind disturbance is well inhibited.
引文
[1]西风.美军无人机大全[M].北京:中国市场出版社,2013
    [2]魏瑞轩,李学仁.无人机系统及作战使用[M].北京:国防工业出版社,2009
    [3]陈贵春.军用无人机[M].北京:解放军出版社,2007
    [4]杨晶梅.军用无人机揭秘[M].北京:国防大学出版社,2004
    [5]《世界无人机大全编写组》.世界无人机大全[M].北京:航空工业出版社,2004
    [6]淳于江民,张珩.无人机的发展现状与展望[J].飞航导弹,2005(2):23-27
    [7]邹湘伏,何清华,贺继林.无人机发展现状及相关技术[J].飞航导弹,2006(10):9-14
    [8]秦博,王蕾.无人机发展综述[J].飞航导弹,2002(8):4-10
    [9]周义等.大气层侦察卫星-全球鹰无人机的应用与发展趋势[J].飞航导弹,2003(11):26-29
    [10] Y. C. PAW. Synthesis and Validation of Flight Control for UAV[D]:[DissertationApplying for Doctor Degree]. The University of Minnesota,2009
    [11] V. Klein, E. A. Morelli. Aircraft system identification: Theory and Practice[R].AIAA,2006
    [12] N. M. Jodeh, P. A. Blue, A. A. Waldron. Development of small unmanned aerialvehicle research platform: Modeling and simulating with flight test validation[C],AIAA Modeling and Simulation Technologies Conference and Exhibit,2006
    [13] M. Selier, U. Korte, C. Fielding et al. New analysis techniques for clearance offlight control laws[C]. AIAA Guidance, Navigation and Control Conference andExhibit, Austin, Texas,2003:976-984
    [14] U. Selier, C. F. Korte, R. Luckner. New analysis techniques for clearance offlight control laws[C], AIAA Guidance, Navigation and Control Conference andExhibit, Austin, Texas,2003
    [15] C. R. Hanke. The simulation of a large jet transport aircraft[R]. NASA-CR-1756,1971
    [16] C. R. Hanke. The simulation of a large jet transport aircraft[R]. US NationalTechnical Information Service N73-10027,1970
    [17] A. G. Barnes, T. J. Yager. Simulation of aircraft behavious and close to theground[R]. AGARD-AG-285,1985
    [18] A. G. Barnes, T. J. Yager. Enhencement of aircraft Ground Handling SimulationCapability[R]. AGARD-AG-333,2000
    [19]赵震炎,许佩珍,余思尧.飞机地面运动的模拟[J].飞行力学,1985(2):8-24
    [20]于静.无人机方向舵有限卡死的起飞滑跑研究[D]:[硕士学位论文].沈阳:沈阳航空工业学院,2010
    [21]王孝英,诸德培.飞机操纵前轮转弯运动的数学模型及数值仿真[J].应用力学学报,1997,14(4):46-50
    [22]高泽炯.飞机地面操纵减摆系统及地面运动力学[M].北京:航空学报杂志社,1997
    [23]顾宏斌.飞机地面运动的动力学模型[J].航空学报,2003,22(2):163-167
    [24]顾宏斌.飞机地面运动的综合仿真研究[D]:[博士学位论文].南京:南京航空航天大学,2001
    [25]程雪梅.无人机滑跑航迹控制模型与控制精度分析火力与指挥控制[J].2010,35(2):72-74
    [26]王鹏.飞翼无人机着陆滑跑建模和控制仿真研究[J].系统仿真学报,2011,23(1):118-122
    [27]陈磊.飞翼无人机主轮差动刹车系统的建模与仿真[J].计算机技术与发展,2009,19(6):186-190
    [28]邓寅平.无人机四轮滑跑纠偏控制系统设计与仿真[J].系统仿真学报,2008,20(21):5929-5935
    [29]贺成龙.无人机地面滑行自主起飞的建模与控制[J].航空学报,2008,29(5):215-219
    [30]陈晨.无人机滑跑起飞过程及其数学模型研究[J].科学技术与工程,2007,7(13):3198-3201
    [31]宁东方.无人机自动起飞系统建模和控制律设计研究[J].计算机测量与控制,2008,16(1):66-68
    [32]龚超.无人机自动起飞地面滑跑技术的研究与仿真[J].现代电子技术,2008,285(22):136-138
    [33]段松云,朱纪洪,孙增圻.无人机着陆数学模型研究—三轮着地滑行[J].系统仿真学报,2004,16(6):1296-1299
    [34]李峰.某型无人机着陆过程中地面滑行段的建模与仿真[J].指挥控制与仿真,2006,28(2):91-94
    [35] F. Borrelli, T. Keviczky, G. J. Balas. Collision-free UAV Formation Flight usingDecentralized Optimization and Invariant Sets[C].43rd IEEE conference onDecision and Control, Atlantis: Paradise Island,2004:1099-1104
    [36] K. Ryan. Full Capability Formation Flight Control[D]:[Dissertation Applyingfor Doctor Degree]. Air Force Institute of Technology Air University,2005
    [37] V. Crum, D. Homan, R.Bortner. Certification Challenges for Autonomous FlightControl System[C]. AIAA Guidance, Navigation and Control Conference andExhibit, Providence: Rhode Island,2005
    [38] G. J. J. Ducard. Fault-tolerant Flight Control and Guidance Systems for a SmallUnmanned Aerial Vehicle[D]:[Dissertation Applying for Doctor Degree]. ETH,Eürich,2007
    [39] J. Brinker, K. A. Wise. Flight Testing of a Reconfigurable Flight Control Law onthe X-36Tailless Fighter Aircraft[C]. In Proceedings of the AIAA Guidance,Navigation and Control Conference, Denver,2000
    [40] D. B. Doman, A. D. Ngo. Dynamic Inversion-Based Adaptive/ReconfigurableControl of the X-33on Ascent[J]. Journal of Guidance,Control andDynamics,2002,25(2):275-284
    [41] S. Singh, R. Padhi. Automatic Path Planning and Control Design forAutonomous Landing of UAVs using Dynamic Inversion[C].2009AmericanControl Conference,2009:2409-2414
    [42] D. Enns, D. Bugajski; R. Hendrick. Dynamic inversion–an evolvingmethodology for flight control design[J]. International Journal of Control,1994,1:71-91
    [43] S. Sieberling, Q. P. Chu, J. A. Mulder. Robust Flight Control Using IncrementalNonlinear Dynamic Inversion and Angular Acceleration Prediction[J]. Journal ofGuidance,Control and Dynamics,2010,33(6):1732-1742
    [44] W. Siwakosit, S. A. Snell, R. A. Hess. Robust Flight Control Design withHandling Qualities Constraints Using Scheduled Linear Dynamic Inversion andLoop-Shaping[J]. Transations on Control Systems Technology,2000,8(3):483-494
    [45]王飞.高超声速飞行器QFT/μ鲁棒动态逆控制技术研究[D]:[博士学位论文].哈尔滨:哈尔滨工程大学,2013
    [46]刘芳,陈万春.应用Lyapunov方法分析自旋导弹动态逆控制器鲁棒性[J].北京航空航天大学学报,2013,39(1):132-137
    [47]刘凯,朱纪洪,余波.推力矢量飞机纵向鲁棒动态逆控制[J].控制与决策,2013,28(7):1113-1116
    [48]龙晋伟,潘文俊,王立新.战斗机动态逆控制律对比研究[J].飞行力学,2013,31(4):297-300
    [49]徐喆垚.无人机非线性姿态控制研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2013
    [50] E. J. Davison. The Output Control of Linear Time Invariant MultivariableSystem with Unmeasurable Arbitrary Disturbances[J]. IEEE Transaction onAutomatic Control,1971,17:621-630
    [51] E. Prempain, I. Postlethwaite Static output feedback stabilisation with H∞performance for a class of plants[J]. Systems and Control Letters,2001,43(3):159-166
    [52] A. J. Smerlas, D. J. Walker, I. Postlethwaite. Evaluating H∞controllers on theNRC Bell205fly-by-wire helicopter[J]. Control Engineering Practice,2001,9(1):1-10
    [53] I. Postlethwaite, E. Prempain, E. Turkoglu. Design and flight testing of variouscontrollers for the Bell205helicopter[J]. Control Engineering Practice,2005,13(3):383-398
    [54] M. C. Turner, D. J. Walker, A. G. Alford. Design and ground-based simulation ofa limited authority flight control system for the Westland Lynx Helicopter[J].Aerospace Science and Technology,2001,5(3):221-234
    [55] G. M. Voorsluijs, S. Bennani, C. W. cherer. Linear and Parameter-dependentRobust Control Techniques applied to a Helicopter UAV[C].38th AIAAGuidance, Navigation and Control Conference, Providence: Rhode Island,2004:16-19
    [56] D. J. Walker Multivariable control of the longitudinal and lateral dynamics of afly-by-wire helicopter[J]. Control Engineering Practice.2003,11(7):781-795
    [57] E. Prempain, I. Postlethwaite. Static H∞loop shaping control of a fly-by-wirehelicopter[J]. Automatica,2005,41(9):1517-1528
    [58] C. C. Luo, R. F. Liu, C. D. Yang. Helicopter H∞control design with robust flyingquality[J]. Aerospace Science and Technology,2003,7(2):159-169
    [59] D. J. Walker. Multivariable control of the bell412helicopter[C].45th IEEEConference on Decision and Control. san Diego: CA,2006:1527-1533
    [60] H. S. Dai, J. H. Zhu. An application of robust control techniques to control lawdesign of unmanned air vehicle[C]. Control Conference (CCC),2010:1865-1869
    [61] J. Ke. Design of Robust roll angle control system of Unmanned Aerial Vehiclesbased on atmospheric turbulence attenuation[J]. Intelligent Control andAutomation,2010:3746-375
    [62] G. W. Ca. Design and implementation of robust flight control system for asmall-scale UAV helicopter[C]. Asian Control Conference,2009:691-697
    [63] T. Lee. Nonlinear robust tracking control of a quadrotor UAV[C]. AmericanControl Conference (ACC),2012:4649-4654
    [64] F. Santoso, M. Liu. H2and H∞robust autopilot synthesis for longitudinal flight ofa special unmanned aerial vehicle: a comparative study[J]. Control Theory&Applications,2008(7):583-594
    [65] D. Gadewadikar, J. Lewis, F. Subbara. Attitude Control System Design forUnmanned Aerial Vehicles using H-Infinity and Loop-shaping Methods[C].Control and Automation IEEE International Conference,2007:1174-1179
    [66] R. Wang, Z. Zhou, Y. H. Shen. Flying-Wing UAV Landing Control andSimulation Based on Mixed H2/H∞[C]. Mechatronics and AutomationInternational Conference,2007:1523-1528
    [67] J. F. Magni, S. Bennani, J. Terlouw. Robust Flight Control: A DesignChallenge[M]. London: Springer-Verlag,1997
    [68] D. G. Ward, J. F. Monaco, M. Bodson. Development and Flight Testing of aParameter Identification Algorithm for Reconfigurable Control[J]. AIAA Journalof Guidance, Control and Dynamics,1998,21(6):948-956
    [69] J. Urnes, R. Yeager, J. Stewart. Flight Demonstration of the Selfrepairing FlightControl System in a NASA F-15Aircraft[C]. In National Aerospace ElectronicsConference,1990
    [70] S. Fekri, M. Athans, A. Pascoal. Issues, Progress and New Results in RobustAdaptive Control[J]. International Journal of Adaptive Control and SignalProcessing,2006,20(10):519-579
    [71] S. Ferrari, R. F. Stengel. Online Adaptive Critic Flight Control[J]. AIAA Journalof Guidance, Control and Dynamics,2004,27(5):777-786
    [72] M. Bodson. Reconfigurable Nonlinear Autopilot[J]. AIAA Journal of Guidance,Control and Dynamics,2003,26(5):719-727
    [73] K. A. Wise, E. Lavretsky, N. Hovakimyan. Adaptive Control of Flight: Theory,Applications, and Open Problems[C]. In proceedings of the IEEE AmericanControl Conference, Minneapolis: MN,2006:5966-5971
    [74] X. L. Ma, G Tao. Adaptive Actuator Compensation Control with FeedbackLinearization[J]. IEEE Transactions on Automatic Control,2000,45(9):1705-1710
    [75] A. V. Roup, D. S. Bernstein. Adaptive Stabilization of a Class of NonlinearSystems with Nonparametric Uncertainty[J]. IEEE Transactions on AutomaticControl,2001,46(11):1821-1825
    [76]陶冶,房建成,盛蔚.一种微小型无人机带死区变增益PID自适应控制器的设计与实现[J].自动化学报,2008,34(6):716-721
    [77]李雪松,李颖晖,等.小型无人机L1自适应纵向控制设计[J].飞行力学,2011,29(2):58-62
    [78]王洋,张京娟,刘伟,等.基于自适应控制器的无人机飞行控制系统研究[J].弹箭与制导学报,2010,30(4):15-18
    [79]刘曌.软式自主空中加油受油机飞行控制技术研究[D]:[硕士学位论文].南京:南京航空航天大学,2012
    [80]贺跃帮.小型无人直升机鲁棒非线性控制研究[D]:[硕士学位论文].广州:华南理工大学,2013
    [81] J. H. Chen, Y. Z. Yea. Neural network model Predictive control for nonlinearMIMO Processes with unmeasured dist Urbanees[J]. Chemical Engineering,2002,35(2):150-159
    [82] S. N. Huang, K. K. Tan, T. H. Lee. Further Results on Adaptive Control for aClass of Nonlinear Systems Using Neural Networks[J]. IEEE Transactions onNeural Network,2003,14(3):719-722
    [83] C. K. Lin. Adaptive Critic Control of Autonomous Underwater Vehicles UsingNeural Networks[C]. Proceedings of the Sixth International Conference onIntelligent Systems Design and Applications(ISDA'06),2006,238-243
    [84] B. M. Akesson, H. T. Toivonen. A new network model Predictive controller[J].Joumal of Control,2006,16(9):937-94
    [85]胡孟权,王建培.自适应模糊-滑模控制在重构飞行控制中的应用[J].航空学报,2002,23(6):538-541
    [86]刘亚,胡寿松.基于模糊模型的鲁棒自适应重构飞行控制[J].航空学报,2004,25(2):143-147
    [87]刘小雄,章卫国,武燕,李广文.直接自适应鲁棒飞行控制技术研究[J].西北工业大学学报,2008,26(3):341-345
    [88]刘燕斌,陆宇平,何真.高超音速飞机鲁棒自适应控制的研究[J].宇航学报,2006,27(4):620-624
    [89]周丽.基于回馈递推方法的近空间飞行器鲁棒自适应控制[D]:[博士学位论文].南京:南京航空航天大学,2008
    [90]刘小雄.飞行控制系统故障隔离与自适应重构技术研究[D]:[博士学位论文].西安:西北工业大学,2006
    [91]吴文海,高丽,周胜明.飞行控制系统设计方法现状与发展[J].海军航空工程学院学报,2010,25(4):421-426
    [92] D. G. Bates, R. Kureemum, M. J. Hayes, I. Postlethwaite. Clearance of theHIRM+RIDE flight control law: A μ-analysis approach[R]. GARTEURTechnical-Publication TP-119-11,2001
    [93] T. Mannchen, Y. Klett, C. Pertermann. Flight Control Law Clearance of theHIRM+Fighter Aircraft Model Using μ-analysis[R]. GARTEUR technical reportTP-119-12-v2,2001
    [94] J. Y. Shin, G. J. Balas, A. K. Packard, Worst-case analysis of the X-38crewreturn vehicle flight control system[J]. AIAA Journal of Guidance and Control,2001,24(2),261-269
    [95] T. Wilmes. Clearance of HIRM+RIDE non-linear augmented aircraft model[R].GARTEUR technical report, TP-119-09-v2,2000
    [96] D. G. Bates, R. Kureemun, M. J. Hayes. Clearance of the HIRM plus RIDEFlight Control Law: A μ-analysis approach[R]. GARTEUR technical report,TP-119-11,2001
    [97] G. Vinnicombe. Approximating uncertainty representations using the v-gapmetric[C]. In Proceedings of the1999European Control Conference, Karlsruhe,Germany,1999
    [98] G. Vinnicombe. Uncertainty and Feedback: H1loop-shaping and the v-gapmetric[M]. London: Imperial College Press,2000
    [99] K. Glover, G. Vinnicombe, G. Papageorgiou. Guaranteed multi-loop stabilitymargins and the gap metric[C]. The38th IEEE Conference on Decision andControl,2000,4084–4085
    [100]刘林,等.飞行控制律开发中的不确定性及评估与确认方法[J].系统仿真学报,2007,19(4):840-843
    [101]刘林,等.v-gap度量及其在飞行控制律评估中的应用[J].航空学报,2007,28(4):931-934
    [102]刘林,等.现代飞行控制律评估与确认先进方法研究[J].飞行力学,2007,25(1):1-4
    [103]纪多红,刘林,等.分析在飞控系统稳定裕度评估中的应用[J].飞行力学,2007,25(4):64-68
    [104]吕全喜,刘林,等.飞行控制律全包线鲁棒稳定性评估[J].飞行力学,2008,26(5):32-35
    [105]张明.飞机地面动力学若干关键技术研究[D]:[博士学位论文].南京,南京航空航天大学,2009
    [106]段松云.无人机起飞/着陆阶段建模和飞行动力学仿真系统设计[D]:[硕士学位论文].北京,清华大学,2004
    [107] B. Li, Z. X. Jiao, S. P. Wang. Research on modeling and simulation of aircrafttaxiing rectification[C]. IEEE Conference on Robotics, Automation andMechatronics. USA: IEEE,2006:1-5
    [108]张华亮,周洲.飞翼无人机地面滑跑建模与航向控制[J].系统仿真学报,2008,20(24):6759-6762
    [109]王鹏,周洲.飞翼无人机着陆滑跑建模和控制仿真研究[J].系统仿真学报,2011,23(1):118-122
    [110] C. J. Kempf, S. Kobayashi. Disturbance Observer and Feedforward Design for aHigh-Speed Direct-Drive Positioning Table[J]. IEEE Transactions on ControlSystem Technology,1999,7:513-526
    [111] J. C. Doyle, B. Francis, A. R. Tannenbaum. Feedback Control Theory[M].London: Macmillan Publishing,1992
    [112] K. Ohnishi. A new servo method in mechatronics[J]. Trans. Jpn. Soc. Elect. Eng,1987,107:83-86
    [113] T. Umeno, T. Kaneko, Y. Hori. Robust sercosystem design with two degrees offreedom and its application to novel motion control of robot manipulators[J].IEEE Trans.Ind.Electron,1993,40:437-485
    [114]唐斌.无人机自动起飞/着陆控制技术研究[D]:[硕士学位论文].南京:南京航空航天大学,2007
    [115]王勇,王英勋.无人机滑跑纠偏控制[J].航空学报,2008,29(S1):S142-S149
    [116] V. Kharitonov. Asymptotic stability of an equilibrium position of a family ofsystems of linear differential equations[J]. Differential Equations,1979,14
    [117] C. Fielding, A. Varga, S. Bennani, et al. Advanced techniques for clearance offlight control laws[M]. New York: Springer-Verlag,2002
    [118]单家元,孟秀云,丁艳.半实物仿真[M].北京:国防工业出版社,2008
    [119]张德发,叶胜利,等.飞行控制系统的地面与飞行试验[M].北京:国防工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700