非线性板球系统的监督分层智能自适应控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板球系统(Ball and Plate System)是一个典型的多变量不确定非线性控制对象。已经成为控制理论的典型benchmark实验研究平台。针对非线性板球系统的模型不确定性、欠驱动、耦合等非线性特性,许多学者仅考虑非线性板球系统的简化模型设计控制算法。另外,基于操作者的大量实验调试及语言经验知识的智能控制算法能够应用于类似于板球系统的不确定系统,因而针对这类不确定非线性系统,智能控制算法与典型的非线性控制算法的结合具有极其有效性。
     通常,影响板球系统运行性能的主要因素包括两方面,即环境与任务约束、小球运动速度。当根据环境与任务要求所确定的小球运动轨迹的曲率变化频繁或曲率较大,以及要求小球运动速度较高时,都将为控制提出更高的要求。因此,设计一种可以随时监督系统稳定性和状态变量变化的监督分层控制器具有重要意义。本文将控制器分成两层:上层为监督与优化层;下层是结合自适应规则和滑模理论、智能算法的优点设计的控制器。
     主要研究内容包含几个方面:
     1、针对忽略两个方向轴耦合与小球平板摩擦力的非线性板球系统,提出了两层控制器:将基本控制器设计成基于神经网络的比率、微分、积分控制器(PID),作为底层控制器;将补助控制器设计成基于粒子群-差分进化(PSO-DE)算法的控制器作为上层控制器。此两层控制器利用PSO-DE算法研究了基于神经网络PID控制器加权因子在线学习机构的自适应控制器。由PID控制器的基本控制规则与人类经验,给出了神经网络PID的层数目、各层的神经元数目、每个神经元之间的连接方法,从且使得神经网络PID具有在线学习能力、记忆能力和对任何函数的近似能力。此外,非线性板球闭环系统,通过上层控制器的PSO-DE优化过程调整了神经网络PID (NN-PID)控制器的每个连接线加权值,保证了板球系统的稳定性与收敛性。本文提出的方法克服了反向传播算法(BP)的缺点(即,容易落在局部优化点),同时使得了控制器具有PID控制器的优点:简化机构、良好的动态性和稳定性。
     2、针对小球在高速运动时非线性板球系统明显的不确定性和干扰变动等情况,提出了基于稳定性监督的监督分层模糊自适应直接型滑模控制器设计方法。基于Lyapunov稳定性理论与状态变量变化范围监督,此控制器采用模糊自适应规则的上层监督补助控制器设计方法,提出了以直接型滑模控制器为底层控制器的算法。本文将两个方向轴之间耦合项与摩擦力项等外部干扰相加,得到多种干扰项之和d(t),并分别研究了两个轴的小球运动而将板球系统分解成四个子系统。同时,分别对每个子系统定义了滑模面,利用耦合系数将滑模面结合构建了直接型滑模控制器。构造了以滑模表面与滑模表面微分函数为模糊输入变量的模糊自适应规则,基于Lyapunov稳定性理论和状态变量变化范围监督策略,设计了调节滑模耦合系数的自适应规则,从而实现了板球系统的稳定控制并避免了复杂的计算。本文对所提出的控制方法进行了仿真实验验证。仿真结果表明,此方法能够较好地实现非线性不确定系统的镇定控制和轨迹跟踪问题。
     3、针对不确定多变量非线性板球系统,提出了一种具有监督控制与自适应补偿功能的监督分层间接型模糊自适应控制算法。近几十年来,模糊自适应控制方法经常被应用于不确定SISO非线性系统,可对于实际工程中常见的多变量、控制矩阵不可逆的非线性系统却缺乏一定的适用性。在不确定非线性板球系统的运行过程中,当控制增益矩阵的行列式等于零的时刻,即控制矩阵不可逆的时刻,则球处在失控状态。因此,针对控制增益矩阵不可逆的多变量不确定系统,设计模糊自适应控制是有意义的。本文研究了能够克服上述难题的方法,通过与第五章相似的设计过程推导出了以上层的算法为监督分层模糊自适应控制算法和基于函数误差与状态变量误差的误差自适应补偿控制,底层控制器由间接型模糊控制律构成。该方法不要求控制对象的增益矩阵可逆性。因此,针对典型的不确定非线性MIMO系统即不确定非线性板球控制系统,在不要求控制增益矩阵可逆的条件下提出了一种具有监督控制项的间接模糊自适应控制方法。而且基于Lyapunov稳定性理论设计了自适应控制规则和自适应补偿控制律的参数,以能够保证闭环系统的稳定性和跟踪误差趋于零的小领域内的收敛性。
     在板球系统实验平台BPVS-JLU-II上,上述的控制算法完成了板球系统的大范围变动镇定仿真实验和各种轨迹(圆形、方形和8字形等)跟踪控制仿真实验。
     综上所述,本文针对不确定非线性板球系统,设计了监督分层智能自适应控制器,并且进行了深入的理论和实验研究,所设计的控制方案的有效性、可行性、稳定性和收敛性可以很好地保证。
The ball and plate system is a typical multivariable, uncertain and nonlinear controlobject. It has become a typical benchmark experimental research platform of control theory.In order to consider nonlinear characteristics such as underactuation and coupling, modeluncertainty, much attention have been paid to design control strategies based on a simplifiedmodel of the non-linear ball and plate system. In addition, intelligent control algorithmsbased on a large number of trial and error and language experiential knowledge can beapplied to uncertain systems such as the ball and plate system, therefore the combination ofintelligent control and nonlinear control approaches is extremely effective for the uncertainnonlinear systems.
     In general, the main factors which affect the control performance of the BPS includetwo aspects: environment and task constraint, and the movement speed of the ball. Whenmotion trajectory of the ball which is determined by environment and task requirements hasa frequent curvature change or a big curvature, and a high movement speed of the ball isrequired, it has put forward higher demands for control system.
     In this paper, the specific research content is as follows:
     1. In the condition of the nonlinear ball and plate system to ignore the shaft coupling oftwo direction and the friction of small ball plate, the controller of two layers is proposed. Thebasic controller is composed of the ratio, differential and integral controller (PID) based onneural network as the underlayer controller. The complement controller is designed by thecontroller using the particle swarm-differential evolution (PSO-DE) algorithm as theupperlayer controller that is the adaptive controller for online learning structure of theweighted factor of PID neural network controller using the PSO-DE algorithm. From thebasic rules of PID controller and human experience, gave out the layer number of PID neuralnetwork, the number of neurons in each layer and the connection methods between eachneuron. Thus the PID neural network has the ability of online learning, remembering andapproximation for any function. Moreover, for closed-loop system of the nonlinear ball andplate, each connecting weighted value of PID neural network (PIDNN) controller is adjustedby the PSO-DE optimization process of the upperlayer controller, therefore the stability andconvergence of the ball and plate system was assured. The proposed approach overcame thepropagation algorithm (BP) disadvantage easy falling in local optimum, at the same time,make the controller has the advantages of PID controller: the simplification mechanism,good dynamic characteristics and stability.
     2. The design method of the hierarchical supervisory direct adaptive fuzzy slidingmode controller based on the stability supervision is proposed for the uncertainty andinterference of the nonlinear ball and plate system when the small ball is moved with the high speed. Based on the Lyapunov stability theory and supervision of state variables, theupper supervision-complement controller was researched, and the underlying controlleralgorithm is proposed as a direct sliding mode controller. The external interference based onthe coupling between the two axis direction and the friction term etc is behaved as sum h(t)of a variety of disturbance terms, and ball movement of two axes is respectively studied. Andthe ball and plate system is decomposed into four subsystems, each subsystem definesrespectively the sliding surface, two sliding surfaces is combined to one sliding surface bythe coupling coefficient, thereby a direct fuzzy sliding mode controller is constituted. Thefuzzy adaptive rule was constructed by the fuzzy input variables: the sliding surface anddifferential function of the sliding mode surface. Based on Lyapunov stability theory and thesuroervition of state variables, the adaptive rule of the coupling coefficient of sliding modesurface is designed, so the stability control of the ball and plate system is achieved, and thecomplex calculation was avoided. The experiment result shows that this proposed controlmethod can realize better the stabilization control and trajectory tracking problems ofnonlinear uncertain systems.
     3. For the strong coupling and the uncertain friction of the multivariable nonlinearsystem-ball and plate system, the hierarchical supervisory fuzzy adaptive indirect controlalgorithm which has the supervisory control and adaptive compensation function has beenproposed. In fact, in recent decades, the fuzzy adaptive control method is proposed for theuncertain SISO nonlinear system. But, in the practical engineering, a kind of commonsystems are all the multivariable nonlinear system are easy to encounter. Also, in manypractical engineering, control gain matrix is irreversible nonlinear. When the ball is movedon the laboratory plate, the moment that the control gain matrix determinant equal to zero isexist, exactly is appear the moment which the control matrix is irreversible, this time the balleasily exist in the out of control state. Therefore, for the multivariable uncertain systemswhich the control gain matrix is irreversible, the fuzzy adaptive controller design ismeaningful. In this paper, the method that can overcome the above problems is researched.Through as same design algorithm of previous chapter, the upperlayer controller is designedas the hierarchical supervisory fuzzy adaptive controller and the error adaptive compensationcontroller based on tracking function error and state variable error, and that the underlyingcontroller is composed of the indirect type fuzzy control law. This method does not requirethe invertibility of the control gain matrix of the objects. In this paper, for the typicaluncertain nonlinear MIMO system-uncertain nonlinear ball and plate control system, underthe condition that does not require the reversible control gain matrix, a kind of indirect fuzzyadaptive control method with the supervisory control term is proposed. The Adaptive controlrule and the adaptive compensation control law parameters is induced by Lyapunov stabilitytheory, so can guarantee the stability of the closed-loop system and the convergence of thetracking error to zero within a small territory.
     On the ball and plate experimental platform BPVS-JLU-II, With the proposed controlalgorithm, completed stable simulation experiment of a wide change of variables and various trajectory tracking control simulation experiment (circular, square and curve eight, etc.) withthe proposed control algorithm.
     In conclusion, in this paper, the hierarchical supervisory intelligent adaptive controllerfor the uncertain nonlinear ball and plate systems is designed, had in-depth theoretical andexperimental research. Through the simulation experiment research of the uncertainnonlinear ball and plate system BPVS JLU–II, the research results clearly show that theeffectiveness of the proposed control scheme, feasibility, stable and convergence.
引文
[1] Khalil H. K. Nonlinear Systems (3rd edition)[M], Upper Saddle River, NJ, Prentice Hall,1996.
    [2] Krstic M., Kanellakopoulos I., Kokotovoc P. Nonlinear and adaptive control design[M], New York:Wiley Interscience,1995.
    [3] Isidori A. Nonlinear Control Systems(3rd edition)[M], Berlin, Springer-Verlag,1995.
    [4] Sastry S., Isidori A. Adaptive control of linearizable systems[J], IEEE Transactions on AutomaticControl,1989,34(11):1123-1131.
    [5] Corless M.J., Leitmann G. Continous state feedback guaranteeding uniform ultimate boundedness foruncertain dynamic systems[J], IEEE Transactions on Automatic Control,1981,26(5):1139-1143.
    [6] Kanellakopoulos I., Kokotovic P. V. Systematic design of adaptive controllers for feedbacklinearizable systems[J], IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
    [7] Kristic M., Kanellakopoulos I., Kokotovic P. V. Nonlinear and Adaptive Control Design[M], NewYork, John Wiley&Sons,1995.
    [8] Utkin V.I. Sliding modes in control optimization[M], New York, Springer-verlag, CCES1992.
    [9] Vander S., Chaft A. J. L2-gain analysis of nonlinear systems and nonlinear state feedback H∞Control[J], IEEE Transactions on Automatic Control,1992,37(6):770-78.
    [10] Chen C. S. Dynamic structure adaptive neural fuzzy control for MIMO uncertain nonlinearsystems[J], Information Sciences,2009,176(15):2676-2688.
    [11] Luo X. Y., Zhu Z. H., Guan X. P. Adaptive fuzzy dynamic surface control for uncertain nonlinearsystems[J], International Journal of Automation and Computing,2009:6(4):385-39.
    [12] Wang D., Lan W. Y. Adaptive neural control for a class of uncertain nonlinear systems with unknowntime delay[J], International Journal of Robust and Nonlinear Control,2009,19(7):807-821.
    [13] Ho H. F., Wong Y. K., Rad A. B. Adaptive fuzzy approach for a class of uncertain nonlinear systemsin strict-feedback form[J], ISA Transactions,2008,47(3):286-299.
    [14] Li P., Yang G. H. Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuatorfaults[J], Journal of Control Theory and Applications,2009,7(3):248-256
    [15] Han K. W., Tain Y. T., Kong Y. S., and et al. Tracking control of ball and plate system using aimproved PSO on-line training PID neural network[C], IEEE International Conference Mechatronicsand Automation, ICMA, Aug.2012,12:2297-2302.
    [16] Wang Li-xin. A supervisory controller for fuzzy control systems that guarantees stability[J], IEEETransactions on Automatic Control,1994,39(9):1845-1847.
    [17] Seto D. Annaswamy A. M., Baillieul J. Adaptive control of nonlinear systems with a triangularstructure[J], IEEE Transactions on Automatic Control,1994,39(7):1411-1428.
    [18] Yao B., Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedbackform[J], Automatica,2001,37(9):1305-1321.
    [19] Cai Z., Queiroz M.S., Dawson D. M. Asymptotic adaptive regulation of parametric strict-feedbaeksystems with additive disturbance[C], Proeeeding of Ameriean Control Conferenee, June8-10,2005:3707-3712.
    [20] Kanellakopoulos I., Kokotovic P.V., Morse A.S. Systematic design of adaptive controllers forlinearizable systems[J], IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
    [21] Seto D., Annaswamy A.M., Baillieul J. Adaptive control of nonlinear systems with a triangularstructure [J], IEEE Transactionson Automatic Control,1994,39(7):1411-1428.
    [22] Yao B., Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedbackforms[J], Automatica,2001,37(9):1305-1321.
    [23] Qian C. J., Lin W. Smooth output feedback stabilization of planar systems without controllable/observable linearization[J], IEEE Transactions on Automatic Control,2002,47(12):2068-2073.
    [24] Ye X. D., Adaptive nonlinear output-feedback control with unknown high-frequency gain sign[J],IEEE Transactions on Automatic Control,2001,46(l):112-115.
    [25] Jain S., Khorrami F. Decentralized adaptive control of a class of large-seale interconnected nonlinearsystems[J], IEEE Transactions on Automatic Control,1997,42(2):136-154.
    [26] Liu Y. S., Li X. Y. Decentralized robust adaptive control of nonlinear systems with unmodeleddynamics[J], IEEE Transactions on Automatic Control,2002,47(5):848-856.
    [27] Klstic M., Kanellakopoulos L. Kokotovic P. V. Nonlinear Adaptive Control Design[M], WileyInterscience, NewYork,1995.
    [28] Hornik K. Approximation capabilities of multiplayer feedforward networks[J], Neural Networks,1991,4(2):251-257.
    [29] Wang L. X., Mendel J. M. Fuzzy basis functions, universal approximation, and orthogonal Least-Suqares Learning[J], IEEE Transactions on Neural Networks,1992,3(5):807-814.
    [30] Wang L. X. Fuzzy systems are universal approximators[C], Proeeeding of IEEE InternationalConference on Fuzzy Systems, San Diego, USA,1992:1163-1170.
    [31] Wang L. X. Stable adaptive fuzzy control of nonlinear systems[J], IEEE Transaetions on FuzzySystems,1993, l(2):146-155.
    [32] Diaz D. V. Tang Y. Adaptive robust fuzzy control of nonlinear systems[J], IEEE TransactionsSystems, Man, and Cybernetics-Part B: Cybernetics,2004,34(3):1596-1601.
    [33] Boulkroune A., Tadjine M., M’Saad M., Farza M. How to design a fuzzy adaptive controller basedon observers for uncertain affine nonlinear systems[J],Fuzzy Sets and Systems,2008,159(8):926-948.
    [34] Phan P. A., Gale T. Two-mode adaptive fuzzy control with approximation error estimator[J], IEEETransactions on Fuzzy Systems,2007,15(5):943-955.
    [35] Lewis F. L., Yesildirek A., Liu K. Multilayer neural-net robot controller with guaranteed traekingperformance[J], IEEE Trans. Neural Networks,1996,7(2):388-398.
    [36] Tong S. C.,Tang J. T., Wang T. Fuzzy Adaptive Control of Multivariable Nonlinear Systems[J],Fuzzy Sets and Systems,2000,111(3):153-167.
    [37] Chang Y. C. Robust traeking control for nonlinear MIMO systems via fuzzy approaches[J],Automatiea,2000,36(10):1535-1545.
    [38] Zhang T. P. Stable adaptive fuzzy sliding mode control of interconnected systems[J], Fuzzy Sets andSystems,2001,122(1):5-19.
    [39] Zhang T. P., Ge S. S. Adaptive neural control of MIMO nonlinear state time-varing delay systemswith unknown deed-zones and gain signs[J], Automatica,2007,43(6):1021-1033.
    [40] Ge S. S., Wang C. Adaptive neural control of uncertain MIMO nonlinear systems[J], IEEE Trans.Neural network,2004,15(3):674-692.
    [41] Yang Y. S., Zhou C. J. Adaptive Fuzzy H∞Stabilization for striet-feedback canonical nonlinearsystems via backstepping and small-gain approach[J]. IEEE Transactions on Fuzzy Systems,2005,13(1):104-114.
    [42] Yang Y. S., Zhou C. J., Robust adaptive fuzzy traeking control for a class of perturbed striet-feedbacknonlinear systems via small-gain approach[J], Information Sciences,2005,170(2):211-234.
    [43] Wang M., Chen B., Sai S.L., Direct adaptive fuzzy tracking control for a class of Perturbedstrict-feedback nonlinear systems[J], Fuzzy Sets and Systems,2007,158(24):2655-2670.
    [44] Tong S. C., Li Y. M., Shi P., Fuzzy adaptive backstepping robust control for SISO nonlinear systemwith dynamic uncertainties[J], Information Sciences,2009,179(9):1319-1332.
    [45] Zou A.M., Hou Z. G., Tan M., Adaptive control of a class of nonlinear Pure-feedback systems usingfuzzy backstepping approach[J], IEEE Transactions on Fuzzy Systems,2008,16(4):886-897.
    [46] Yang Z.J., Nagai T., Kanae S., Wada K. Dynamic surface control approach to adaptive robust controlof nonlinear systems in semi-strict feedback form[J], International Journal of Systems Seience,2007,38(9):709-24.
    [47] Zhou S. S., Feng G., Feng C. B. Robust control fo ra class of uncertain nonlinear systems: Adaptivefuzzy approach based on backstepping[J], Fuzzy Sets and Systems,2005,151(I): l-20.
    [48]刘艳军,王伟,王向东.一类不确定非线性纯反馈系统的自适应鲁棒模糊控制[J],控制与决策,2007,22(6):697-701.
    [49] Kang Q., Wang W., Liu Y. J. Robust adaptive fuzzy control for a class of nonlinear Interconnectedsystems[J], International Joumal of Innovative Computing, Information and Control,2009,5(2):323-335.
    [50] Chen W. S., Li J. M., Decentralized output-feedback neural control for systems with unknowninterconneetions[J], IEEE Trans. Systems, Man, and Cybemetics, partB: Cyberneties,2008,38(l):258-266.
    [51]张化光,黎明.基于H∞观测器原理的自适应模糊控制器设计[J],自动化学报,2002,28(6):969-973.
    [52] Boukezzoula R., Galiehet S., Foulloy L., Observer-based fuzzy adaptive control for a class ofnonlinear systems: real-time implementation for a robot wrist[J], IEEE Transactions on ControlSystems Technology,2004,12(3):340-351.
    [53] Gole’a N., Gole’a A., Barra K., Bouktir T. Observer-based adaptive control of robot manipulators:Fuzzy systems approach[J], Applied Soft Computing,2008,8(l):778-787.
    [54] Frey C.W., Kuntze H. B. A neuro-fuzzy supervisory control system for industrial batch processes[J],IEEE Transactions on Fuzzy Systems,2001,9(4):570-577.
    [55] Korrami F., Sandeep J. Nonlinear control with end-point acceleration feedback for a two-link flexiblemainpulator: Experimental results[J], Journal of Robotic Systems,1993,10(4):505-530.
    [56]王颧,模糊变结构控制的研究[M],控制理论与应用,1999,(4):550-552.
    [57]王伟.多模型自适应控制[M],科学出版社,2001.
    [58]张智焕.非线性系统的多模糊模型控制自动切换方法的研究[J],机电工程,2000,(2):3-84.
    [59] Glankwamdee S., Chariyavilaskul P. Fuzzy supervisory control system of a binary distillationcolumn[C],6thIEEE International Conference on Neural Information Processing(ICONIP),1999,1:304-307
    [60]赵春雨等,同向回转双机传动振动系统相位差的模糊监督控制[J],振动工程学报,2001,(1):42-46.
    [61] Yubazaki N., YI J. Q., Otani M., Unemura N. Trajectory Tracking Control of Unconstrained ObjectsBased on the SIRMs Dynamically connected Fuzzy Inference Model[J], Fuzzy and System,1997,2:609-614.
    [62]苏金涛,田彦涛,白明.基于监督模糊的板球系统轨迹控制研究[C], Proceedings of the25thChinese Control Conference, Harbin, China,7-11August,2006:1528-1532.
    [63] Wang Li-Xin. A Course in Fuzzy Systems and Control[M], Prentice Hall, Inc,1997.
    [64] Ioannidis Stratos, Tsourveloudis Nikos. Valavanis Kimon Fuzzy Supervisory Control ofManufacturing Systems[J], IEEE Transactions on Robotics and Automation,2004,20(3):379-389.
    [65] Han K. W., Tian Y. T., and et al. An Overview on the Ball and Plate Control System[C].2014International Conference on Mechanical Engineering and Automation, Jan.03~05,2014, Beijing,China, DES-tech Publications Inc. Lancaster, Pennsylvania,17602U.S.A. ISBN:978-1-60595-155-3, ICMEA2014,1-7.
    [66] Hauser J., Sastry S., Kokotovic P. Nonlinear control via approximate input-output linearization: Theball and beam example[J], IEEE Transactions on Automatic Control,1992,37(3):392-398.
    [67] HUMUSOFT Ltd, CE151Ball&Plate Apparatus Users Manual[M],1993.
    [68] Matsuo T., Tsuruta K., Suemitsu H. Fuzzy adaptive identification method based on Riccati equationand its application to ball-plate control system[C], IEEE International Conference on Systems, Man,and Cybernetics,1999,6:162–167.
    [69] Tomlin C., Sastry S. Switching through singularities[J], Systems and Control Letters,1998,35:145-154.
    [70] Sastry S. Nonlinear System Analysis, Stability and Control[M], New York:Springer-verlag,1999.
    [71]胡跃明.非线性控制系统理论与应用[M],北京,国防工业出版社,2002.
    [72]马国梁.球杆系统的切换控制[C],第五届全球智能控制与自动化大会,杭州,2004:1084-1087.
    [73] Tian Y. T., Bai M., Su J. T. A non-linear switching controller for ball and plate system[J], Inter-national Jounal on. Modelling, Identification and Control,2006,1(3):177-182.
    [74]滕树杰,张乃尧,范醒哲.板球系统的T-S模糊多变量控制方案[J],信息与控制,2002,31(3):268-271.
    [75]滕树杰,张乃尧.分层模糊控制器的解析表达式及自适应控制方法[J],清华大学学报(自然科学版),2002,42(9):1248-1252
    [76] Caro L., Alireza F., Danial S., Mohsen M.T. Implementation of a Genetically Optimized InterpolativeFuzzy Inference Engine in Controlling a Ball-Plate Laboratory Setup [C], Proceedings of DETC’03,ASME2003Design Engineering Technical Conferences and Computers and Information inEngineering Conference, Chicago, Illinois USA, September2-6,2003:1-10.
    [77] Awtar S., Bernard C., Boklund N., Master A., Ueda D., Craig K. Mechatronic design of aball-on-plate balancing system[J], Mechatronics,2002,12(2):217-228.
    [78] Zia A. Polar and polygon path traversal of a ball and plate system[C], International Conference onElectrical and Control Engineering,2011,4005–4009.[79] Phillip Yip. Sybol-based Control of a Ball-on-plate Mechanical System[D], Master Thesis,University of Maryland,2004.
    [80]易建强,不受约束物体的轨道跟踪控制[J],机器人,2002年8月,24卷7期,629-633.
    [81] Milighetti G., Kuntze H. Multi-sensor robot control for Two-Arm humanoid skills[C], ISRProceedings of the Joint Conference on Robotics,37thInternational Symposium on Robotics. Munich:ISR,2006:65-71.
    [82] Ker C. C., Lin C. E., Wang R. T. Tracking and balance control of ball and plate system[J], Journal ofthe Chinese institute of engineers,2007,30(3):459-470.
    [83] Lin C. E., Ker C.C. Control implementation of a magnetic actuating ball and plate system [J],International Journal of Applied Electromagnetics and Mechanics,2008,27(1):133-151.
    [84] Zeeshan A., Nauman N., Khan M. J. Design Control and Implementation of a Ball on Plate BalancingSystem[C], Proceedings of20129th International Bhruban Conference on Applied Sciences&Technology(IBCAST), Islamabad, Pakistan,January,2012:22-27.
    [85]李军,孙政顺.模糊控制在板球系统中的仿真研究[J],电机与控制学报,2001,5(4):270-273.
    [86]王赓,孙政顺.板球控制系统的PD型模糊控制算法研究[J],电气传动,2004,4:23-25.
    [87]王赓.基于视觉系统的板球控制装置的设计与开发[D],清华大学硕士论文,2004.
    [88]胡琳静,赵世敏,孙政顺.基于模糊控制的板球控制系统实验装置[J],实验技术与管理,2005,22(4):16-20.
    [89]李登辉,赵世敏,孙政顺.板球系统的模糊神经网络控制算法研究[J],科学技术与工程,2006,16(5):540-543.
    [90]苏信,孙政顺,赵世敏.板球系统的模糊控制方法研究[J],计算机仿真,2006,23(9):165-167.
    [91] Bai Ming, Tian Yan-tao, Su Jin-tao. Position control ball and plate system based on ANFIS[C],Dynamics of continuous discrete and implsive systems-serise B-applications&algorithms,2006,13:165-168.
    [92]赵艳花,邵鸿翔.基于视觉的板球控制系统研究[M],自动化技术与应用,2011,30(10):12-15.
    [93]章自群.台面球XY轨迹气动控制系统设计[D],上海交通大学硕士论文,2007.
    [94]宋小冬,章自群,金惠良.台面球X—Y轨迹气动控制系统设计[M],机电工程技术2007,36(4):49-52.
    [95] Yuan D., Zhang Z. Modelling and control scheme of the ball–plate trajectory-tracking pneumaticsystem with a touch screen and a rotary cylinder[J], IET Control Theory Appl.,2010,4(4):573–589.
    [96] Bai Ming, Tian Yan-tao, Su Jin-tao. Trajectory Tracking Control for Unconstrained Objects Based onSupervisory Fuzzy Scheme[C], ICSCA2006, Chongqing, China,2336-2341.
    [97]王玉香..基于视觉伺服的无约束运动提的轨迹控制研究[D],吉林大学硕士论文,2004.
    [98]顾庆..基于视觉信息的运动体位置提取算法和实验研究[D],吉林大学硕士论文,2007.
    [99]丁策.具有间隙迟滞非线性系统的补偿控制算法研究[D],吉林大学硕士论文,2008.
    [100]伏思燕.欠驱动板球系统的非线性控制算法与实验研究[D],吉林大学硕士论文,2009.
    [101]赵建波.超铰接无约束运动体轨迹控制与运动规划研究[D],吉林大学硕士论文,2005.
    [102]Bai Ming, Tian Yan-tao, Su Jin-tao, Zhao Jian-bo. Mathematic Model and Fuzzy Control of SuperArticulated Ball and Plate System[C], Proceeding of the24th Chinese Control Conference,Guangzhou,2005:1147-1151.
    [103]苏金涛,田彦涛,白明.基于监督模糊的板球系统轨迹控制研究[C],第25届中国控制会议.哈尔滨,2006年8月,1528-1532.
    [104]Bai Ming, Lu Hui-qiu, Su Jin-tao, Tian Yan-tao. Motion Control of Ball and Plate System UsingSupervisory Fuzzy Controller[C], The7th World Congress on Intelligent Control and Automation,Dalin, June2006:8127-8131.
    [105]张雪菲,田彦涛,王红睿,丁策.基于扩展卡尔曼滤波的板球系统摩擦力估计[C],第26届中国控制会议,张家界,2007年7月:375-379.
    [106]王红睿,田彦涛,隋振.板球系统的非线性摩擦补偿控制[J],吉林大学学报(工学版),2010,(40)3:788-794.
    [107]苏金涛.无约束运动体路径规划与高精度轨迹控制研究[D],吉林大学硕士论文,2006.
    [108]Wang Hong-rui, Tian Yan-tao etc. Tracking control of ball and plate system with a double feedbackloop structure[C], Proceeding of International Conference on Mechatronics and Automation, Haerbin,2007,1114-1119.
    [109]张雪菲.板球系统摩擦特性分析与补偿控制算法研究[D],吉林大学硕士论文,2007.
    [110]白明.非线性板球系统解耦与控制算法研究[D],吉林大学博士论文,2008.
    [111]王红睿.一类欠驱动系统输出跟踪控制问题的理论和方法研究[D],吉林大学博士论文,2009.
    [112]段慧达.一类不确定高阶非线性系统的级联自抗扰控制策略研究[D],吉林大学博士论文,2012.
    [113]Wang Hong-rui, Tian Yan-tao et al. Output regulation of ball and plate system with a nonlinearvelocity observer[C]. IEEE Proceedings of the7thWorld Congress on Intelligent Control andAutomation, Piscataway: IEEE Inc,2008,2164-2169.
    [114]Miad Moarref, Mohsen Saadat, Gholamreza Vossoughi. Mechatronic design and position control of anovel ball and plate system[C],16th Mediterranean Conference on Control and Automation CongressCentre, Ajaccio, France, June,2008,25-27.
    [115]Duan Hui-da, Tian Yan-tao, Wang Guang-bin. Trajectory Tracking Control of Ball and Plate SystemBased on Auto-Disturbance Rejection Controller[C], Proceedings of the7th Asian ControlConference, Hong Kong, China, August,2009,27-29.
    [116]Duan Hui-da, Tian Yan-tao, Yang Mao. Cascade control with low order active disturbance rejectioncontroller for higher order nonlinear cascade system[C], IEEE International Conference onIntelligent Computing and Intelligent Systems,2009,2:241–245.
    [117]Duan Hui-da, TianYan-tao, Wang Guang-bin. Trajectory tracking controller design of high-order balland plate system based on improved auto-disturbance rejection controller[C],20103rd InternationalSymposium on Systems and Control in Aeronautics and Astronautics (ISSCAA),80–85.
    [118]王红睿,田彦涛,隋振,孙瑞东.板球系统的非线性自适应控制[J],系统仿真学报,2010,22(5):1251-1256.
    [119]王红睿,田彦涛.一类欠驱动系统的非线性输出跟踪控制[J],控制与决策,2011,26(6):953-956.
    [120]Bai Ming, Tian Yan-tao, Wang Yong-xiang. Decoupled fuzzy sliding mode control to ball and platesystem[C], The2nd International Conference on Intelligent Control and Information Processing, july,25-28,2011,686-691.
    [121]白明,田彦涛,王永祥.基于反馈线性化的板球智能切换控制[C], Proceedings of the30th ChineseControl Conference, Yantai, China, July22-24,2011,688-693.
    [122]段慧达,田彦涛,李津淞,王光彬.一类高阶非线性系统的级联自抗扰控制[J],控制与决策,2012,27(2):216-220.
    [123]Duan Hui-da, Tian Yan-tao, Liu De-jun. Design of sliding mode control based on Nonlinear observer forNonlinear System[J], Applied Materials,2012,109:541-546.
    [124]Knuplez A. Chowdhury A, Svecko R. Modeling and control design for ball and plate system[C],IEEE. Proceedings of the IEEE International Conference on Industrial Technology2003, Piscataway:IEEE Inc,2003:1064-1067.
    [125]吕凯.基于视觉传感的板球系统的控制实现[D],中南大学硕士论文.2007.
    [126]Googoltech Inc. Ball and plate system.[EB/OL].[2009-02-01]. www.googoltech.com.cn/uploads/catalog/1477/B&P.pdf.
    [127]深圳元创兴科技有限公司.视觉板球系统REBP450,[EB/OL],[2009-04-07].http://www.reinovo.com/3_zidong.asp?classid=1300&typeid=1302.http://www.reinovo.com/2_zidong_01.asp?id=94&classid=1300&typeid=1302.
    [128]Carnevali G., Buttazzo. A virtual laboratory environment for real-time experiments[C], IFACProceedings of the5th IFAC International Symposium on Intelligent Components and Instrumentsfor Control Applications. Aveiro, IFAC,2003,39-44.
    [129] Greg A., Chris C., Aaron H. Ball on plate balancing system, Proposal for ECSE-4962ControlSystems Design[M], February18,2004, Rensselaer Polytechnic Institute.
    [130]Yuan De-hu, Jin Hui-liang, Meng Guo-xiang, Liu Chun-yuan. Global Sliding Mode VariableStructure Control Applied to Pneumatic Servo System[M], IEEE International Symposium onKnowledge Acquisition and Modeling Workshop,2008,806–809.
    [131]Cheng Chih-yung, Liu Hsin-yu, Lo Chien-chou. Toward a robot basketball game[C], The33rdAnnual Conference of the IEEE Industrial Electronics Society(IECON), Taipei, Taiwan, Nov.5-8,2007,3013-3017.
    [132]Jadlovska A., Jajcisin S., Lonscak R. MODELLING AND PID CONTROL DESIGN OFNONLINEAR EDUCATIONAL MODEL BALL&PLATE,17th International Conference onProcess Control, Strbsk′e Pleso, Slovakia, June9–12,2009,474-483.
    [133]Liu Hong-wei, Liang Yan-yang. Trajectory tracking sliding mode control of ball and plate system[C],2nd International Asia Conference on Informatics in Control, Automation and Robotics,2010,142-145.
    [134]申铁龙.机器人鲁棒控制基础[M],北京,清华大学出版社,2000.
    [135]Tkagi H. Introduction to Japanese consumer products that apply neural networks and fuzzysystems[M], Personal communication,1992.
    [136]Togai M., Chiu S. A fuzzy accelerator for a programming environment for real-time fuzzy control[C],Proc.2ndIFSA Congress, Tokyo, Japan,1987,147-151.
    [137]Wang Li-xin. Stable adaptive fuzzycontrol of nonlinear systems[J], IEEE Trans. on Fuzzy systems,1993,1(2):146-155.
    [138]Mamdnai E. Application of fuzzy algorithm of control of simple plnat[M], Aademic Perss:New York,1974.
    [139]Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J],IEEE transaction on system man,cyberntic,1985, SMC-15:116-132.
    [140]Tanaka K., Ikeda T., Wang H. Robust stabilization of a class of uncertain nonlinear system via fuzzycontrol, quadratic stabilizability, H∞control theory and linear matrix inequalities[M], IEEEtansaction on fuzzy system,1996,4(l):1-13.
    [141]Chang Y. Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS H∞approa-ches[J], IEEE transactin on fuzzy system,2001,9(2):278-292。
    [142]Yang Y., Fang G., Ren J. Acombined backstepping and small-gain approach to robust adaptive fuzzycontrol for strict-feedback nonlinear systems[M], IEEE transaction on system, man, cybernetic,2004,34(3):406-420.
    [143] Wilfrid P. Sliding mode control in engineering[M], Dekker M.,2002.
    [144]Utkin V. I. Sliding Modes in Control and Optimization (Communications and Control Engineer-ing)[M], Springer,1992.
    [145] Weibing G. James C. H. Variablesstructure control of nonlinear systems: A new approach[J], IEEETransactions on Industrial Eleetronics,1993,40(1):45-55.
    [146]Reza O. S., Alezander M. Controller Design for the beam-and-ball system[C], Proc. of the37thConference on Decision and Control, Tampa, Fl, Dec1998,4555-4560.
    [147]Awtar S., Bernard C., Boklund N., Master A., Ueda D., Craig K. Mechatronic design of aball-on-plate balancing system[J], Mechatronics,2002,12:217-228.
    [148]管靖,刘文彪.理论力学简明教程[M],北京,:科学出版社,2008.
    [149]Duan Hui-da, Tian Yan-yao, Wang Guang-bin. Tracking control of ball and plate system based onauto-disturbamce rejection controller[J], in Proc. of7thAsian Control, Conference, August,2009,471-476.
    [150]Jadlovská A., Jaj i in., Lon ák R. Modelling and PID Contorl Design of Nonlinear EducationalModel Ball&Plate[C],17th International Conference on Process Control2009, June9-12,2009,trbsk′e Pleso, Slovakia,475-483.
    [151]Rad A., Chan P., Lo W. An online learning fuzzy controller[J], IEEE Transaction on IndustrialElectronics,2003,50(5):1016-1021.
    [152]Shu H., Pi Y. PID neural networks for time-delay systems[J], Computers and Chemical Engineering,2000,24:859-862.
    [153]Dorigo M., Maniezzo V., Colorni A. Ant System:Optimization by a Colony of Cooperating agents[J],IEEE Transaction on System Man and Cybernetics-Parts B,1996,26(1):29-41.
    [154]Duan Y., Gao Y. A new improved particle swarm optimization algorithm[C], Proceedings of the7thInternational conference on Computational Intelligence and Security,2011,42-46.
    [155]Das S., Abraham A., Konar A. Particle swarm optimization and differential evolution algorithm:Technical analysis, applications and hybridization perspectives[M], in Advances of ComputationalIntelligencein Industrial Systems,2008,1-38.
    [156]Fleming P. J., Purshouse R. C. Evolutionary algorithms in control systems engineering: a survey[J],Control Engineering Practice,2002,10(11):1223–1241.
    [157]Crews J. H., Mattson M. G., Buckner G. D. Multi-objective control optimization for semi-activevehicle suspensions[J], Journal of Sound and Vibration,2011,330:5502-5516.
    [158]Kennedy J., Eberhart R.C. Particle swarm optimization[C], Proceeding of the IEEE InternationalConference on neural networks, november1995,1942-1948.
    [159]Rana S., Jasola S. A review on particle swarm optimization algorithms and their applications to dataclustering [J], Artificial Intelligence Review,2011,35(3):211-222.
    [160]Valle Y., Venayagamoorthy G. K., Mohagheghi S., Hernandez J. C., Harley R. G. Particle swarmoptimization: Basic concepts, variants and applications in power systems[J], IEEE Transactions onEvolutionary Computation,2008,12(2):171-195.
    [161]Clerc M., Kennedy J. The particle swarm-explosion, stability, and convergence in a multi-dimensionalcomplex space [J], IEEE Transactions on Evolutionary Computation,6(1)(2002)58–73.
    [162]Kadirkamanathan V., Selvarajah K., Fleming P. J. Stability analysis of the particle dynamics in particleswarm optimizer[J], IEEE Transactions on Evolutionary Computation,2006,10(3):245-255.
    [163]刘顺安,胡庆玉. PSO-BP网络算法在汽车悬架优化中的应用[J],吉林大学学报(工学版),2009,39(3):571-575.
    [164]Storn R., Price K. Differential evolution-a simple and efficient heuristic for global optimization overcontinuous spaces[J], Journal of Global Optimization1997,11(4):341–359.
    [165]Price K. V. Differential evolution vs. the functions of the2ndICEO[C], Proceedings of the IEEEConference on Evolutionary Computation, Indianapolis, USA. April,1997,153–157.
    [166]Das S., Suganthan P. N. Differential evolution: A survey of the state-of-the-art[J], IEEE Transactions onEvolutionary Computation,2011,15(1):27-54.
    [167]Neri F., Tirronen V. Recent advances in differential evolution:a survey and experimental analysis[J],Artificial Intelligence Review,2010,33:61-106.
    [168]Hendtlass T. A combined swarm differential evolution algorithm for optimization problems[J],Lecture Notes in Computer Science,2001,2070:11-18.
    [169]Zhang W. J., Xie X. F. DEPSO: Hybrid particle swarm with differential evolution operator[C],Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Washington,DC, USA,2003,4:3816-3821.
    [170]Moore P. W., Venayagamoorthy G. K. Evolving combinational logic circuits using a hybrid quantumevolution and particle swarm inspired algorithm[C], Proceedings of the2005NASA/DoDConference of Evolution Hardware(EH’05),2005,97-102.
    [171]Xin B., Chen J., Zhang J., Fang H., Peng Z. Hybridizing differential evolution and particle swarmoptimization to design powerful optimizers: A review and taxonomy[J], IEEE Transactions onSystems, Man and Cybernetics-Part C: Applications and Reviews,2011,99:1-24.
    [172]Epitropakis M. G., Plagianakos V. P., Vrahatis M. N. Evolving cognitive and social experience inParticle Swarm Optimization through Differential Evolution: A hybrid approach[J], InformationSciences,2012,216:50-92.
    [173]Zhang C., Ning J., Lu S., Ouyang D., Ding T. A novel hybrid differential evolution and particleswarm optimization algorithm for unconstrained optimization[J], Operations Research Letters,2009;37(2):117-122.
    [174]Ozcan H., Ozdemir K., Ciloglu H. Optimum cost of an air cooling system by using differentialevolution and particle swarm algorithms[J], Energy and Buildings,2013,65:93–100.
    [175]Sayah S., Hamouda A. A hybrid differential evolution algorithm based on particle swarmoptimization for nonconvex economic dispatch problems[J], Applied Soft Computing,2013,13:1608–1619.
    [176]孔英秀,赵丁选,杨林,李天宇,韩京元.基于PSO-DE和LMI的鲁棒静态输出反馈控制[J],吉利大学学报(工学版),2013,9(5):1375-1380.
    [177]张泽旭.神经网络控制与MATLAB仿真[M],哈尔滨,哈尔滨工业出版社,2011,第一版.
    [178]滕树杰,张乃尧,范醒哲.板球系统的T-S模糊多变量控制方案,信息与控制,2002,31(3):268–271.
    [179]Fan Xing-zhe, Zhang Nai-yao, Teng Shu-ji. Trajectory planning and tracking of ball and plate systemusing hierarchical fuzzy control scheme[J], Fuzzy Sets and Systems,2003,144:297–312.
    [180]王红睿,田彦涛.板球系统的参数自调整反步控制[J],控制与决策,2009,24(5):749-753.
    [181]李玮,段建民,龚建伟.外扰已知时滞不确定系统自适应滑模控制[J],吉林大学学报(工学版),2011,41(1):249-253.
    [182]Wang Li-xin. Adaptive Fuzzy Systems and Control: Design and Stability Analysis[M], EnglewoodCliffs, NJ: Prentice-Hall,1994.
    [183]Hung Jhon Y, Gao Wei-bing, Hung James C. Variable structure control: A survey[J], IEEE Trans.Ind. Electron., Feb.1993,40(1):2–22.
    [184]祖丽楠,李江抒,田彦涛.旋转倒立摆平衡姿态多模型模糊控制算法[J],吉林大学学报(工学版),2003,33(4):85-90.
    [185]Jacob S. Glower and Jeffrey Munighan. Designing fuzzy controllers from a variable structuresstandpoint[J], IEEE Transactions on fuzzy system,1997:138-144.
    [186]Lo J-chang, Kuo Ya-hui. Decoupled fuzzy sliding-mode control[J], IEEE Trans. Fuzzy Systems,1998,6(3):426-435.
    [187]Chen Shi-yuan, Yu Fang-ming, Chung Hung-yuan. Decoupled fuzzy controller design withsingle-input fuzzy logic[J], Fuzzy Sets and Systems,2002,129:335-342.
    [188]韩京元,田彦涛,等.板球系统自适应解耦滑模控制[J].吉林大学学报(工学版),2014,44(3),718-725.
    [189]Keigo Watanabe, Jun Tang, Masatoshi Nakamura, Shinji Koga, Toshio Fukuda. A fuzzy-Gaussianneural network and its application to mobile robot control[J], IEEE Trans. Control Syst. Technol.,1996,4(2):193–199.
    [190]Chen Shi-yan, Yu Fang-ming, Chung Hung-yuan. Decoupled fuzzy controller design withsingle-input fuzzy logic[J], Fuzzy and Set Systems,2002,129(3):335-342.
    [191]Wang Chi-hsu, Liu Han-leih, and Lin Tsung-chih. Direct adaptive fuzzy-neural control with stateobserver and supervisory controller for unknown nonlinear dynamical system[J], IEEE Translationson Fuzzy Systems,2002,10(1):39-49.
    [192]Li Yong-ming, Tong Shao-cheng, Li Tie-shan. Adaptive fuzzy output feedback control of MIMOnonlinear uncertain systems with time-varying delays and unknown backlash-like hysteresis [J],Neurocomputing,2012,93:55-56.
    [193]刘艳军,王伟.一类多变量非线性系统的自适应模糊控制[J],自动化学报,2007,33(11):1163-1169.
    [194]Slotine Jean Jacques E., Li Weiping. Applied Nonlinear Control[M], Prentice Hall,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700