基于邻域的图像处理方法及其在医学图像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学图像分割技术是医学图像处理与分析领域的重要研究课题之一,其目的是将图像中具有某些特殊含义的区域分割出来,同时提取相关的特征数据,从而为临床诊疗和病理学研究提供可靠依据。医学图像分割有着一般图像分割的共性问题,同时,由于人体解剖结构的复杂性、组织器官形状的不规则性及个体之间的差异性,一般图像分割方法直接应用于医学图像并不能得到理想分割效果,为此寻求有效的医学图像分割方法一直是备受关注的研究热点。
     图像分割的目标是将特征域内特征值相等或相近的像素作为同质区分割开来,同质区内部的像素在特征域内与其相邻近的像素具有很高的一致性。因此,考察像素的邻域状态是图像分割的重要手段之一。本文利用像素邻域特征实现图像分割。与以往的邻域不同,本文的邻域特征不仅仅包括邻域内像素的特征值分布,还将邻域内像素的空间分布特征进行建模,作为特征量参与分割。利用所构建的邻域特征,本论文对医学图像分割技术的关键算法和相关问题进行了研究,主要包括图像去噪、图像增强和图像分割等算法。具体包括以下几方面的工作:
     (1)医学图像模糊增强
     针对医学图像对比度较低、边缘模糊等特点,本文提出一种基于模糊理论的医学图像增强算法。首先在通过非线性变换算子对图像进行归一化的同时实现边界区域对比度拉伸,然后在变换域内采用幂次变换对图像进行进一步的对比度增强,并利用邻域信息控制增强力度,在保护同质区明显的纹理特征的同时增大区域之间的对比度。接着利用图像统计特性对多层次图像进行模糊划分,通过对各模糊子集的增强处理将算法推广为多层次模糊增强,在保护图像主要纹理特征的基础上提高不同灰度级区域间的对比度。通过与经典方法进行比较,实验结果显示本文的增强算法能很好的提高医学图像的对比度,显著提高医生临床诊断的有效性。
     (2)灰度医学图像分割
     传统的PCNN方法对噪声有很强的鲁棒性,但该方法分割效果对参数有很强的依赖性,参数选择不当,将导致欠分割或过分割,本文针对传统的PCNN模型的不足,提出基于邻域激励脉冲耦合神经网络(NIPCNN)的图像分割方法。在本方法中,点火神经元对其邻域神经元的捕捉由被捕捉神经元的强度值及其邻域决定,这个邻域包含两方面的特征,即神经元邻域元素的强度值以及强度值高于阈值的神经元的分布情况。我们将对该神经元的邻域建模,控制神经元的内部活动,决定神经元是否点火,从而实现目标区域的精确分割。实验结果表明新的模型对参数的选择依赖性明显减小,适合对医学图像的分割要求。
     (3)彩色医学图像分割
     本文通过对彩色多普勒超声图像的特点分析,提出针对该类大背景的彩色图像的分割算法。该算法采用感兴趣区域(ROI)的初步筛选,减小分割算法的处理对象,从而显著提高算法的处理速度。本文的算法基于ε邻域一致性进行分析,易于解释和实现。算法采用色差来度量像素的邻域状态,根据ε相似邻域判定准则将像素集合分成不同的等价类,然后只考虑等价类的外围边界情况将等价类演化为同质类,对应图像中不同的颜色区域。本方法在完成颜色聚类的同时完成分割,并保证分割不存在二义性。另外,根据分析确定算法的计算复杂度近似与目标区域成线性关系,因此容易实现实时处理。
Medical image segmentation technology is one of the important subjects within medical image processing and analysis research field. The main purpose of medical image segmentation is to divide the image into different regions with special signification, and extract the correlative properties at the same, which can provide the credibility gist for clinic diagnose and pathology research. Besides the common properties of the image segmentation, as the complexity of human anatomic structure, the abnormity of the tissue shape and the difference among individuals, the common image segmentation methods are not fit for the medical images. Hence, to seek effective medical image segmentation method is all through the hotspot in medical image processing.
     The task of the image segmentation is to divid objects in an image that are touching each other into separate objects as homogeneous areas. The local characteristics of the pixels in a homogeneous area is similar to each other. Hence, it is significative to evalue the neigbourhoods of the pixels. In this thesis the segmentation methods by means of evaluing the neigbourhoods of the pixels are discussed. Differing from the existing“neigbourhoods”, it concerns the spacial distribution of the neigbours in this neigbourhoods. By employing the neigbourhoods features proposed, the dissertation discusses the key algorithms and relative issues of medical image segmentation, involving image denoising, enhancement and segmentation. Its main contents include:
     (1) Medical images enhancement based on fuzzy logic
     A medical images enhancement algorithm based on fuzzy logic is proposed in order to improve the low contrast and blurring of the image. The nonlinear operator is applied to normalization operation to enlarge the contrast in boundary regions, followed by exponential transformation. The neighborhoods are adopted to control the enhancement in order to enhance the contrast between the regions and preserve the texture in homogenous regions. For multi-level greyscale images, they are partitioned into several fuzzy sets according to their statistical properties. The multilevel enhancement is implemented by combining enhancement on each fuzzy set. Comparing the classical methods, the results obtained using the proposed method are shown to have higher contrast, thereby better representing the anatomical structures of interrogated tissue.
     (2) Medical gray images segmentation
     PCNN model is robust to noise, but the performance of the classical pcnn is sensitive to the parameters. Unsuitable parameters will lead to deficient- segmentation or over-segmentation. A neighborhood inspiring PCNN is proposed. In the proposed model, if a neuron is captured or not depends on its intensity and neibourhood, which consists two aspects: the intensity of its neibourhood neurons and the distribution of the neurons whose intensity is higher than the threshold. The neibouthood of the neuron is modeled to control the internal activity and determine if it pulses or not. The experimental results shows that the performance of new model is less sensitive to the selection of parameters.
     (3) Medical color image segmentation
     A fast segmentation method is presented based on the analysis of the color Doplor ultrasound image to deal with the images with large background. The pending area is reduced by setting region of interest (ROI), consequently, the processing is accelerated markedly. The proposed algorithm relies on an introducedε-neighbor coherence segmentation criterion which is easy to interpret and implement. The pixels are divided into several equivalence classes according their neighbourhoods measured by difference of the color, then the equivalence classes grow into homogeneity classes by merging the outer-neighboring pixels which areε-similar. Each homogeneity class is processed as a region. The segmentation is completed by color clustering. Moreover, the method has a computational complexity nearly linear in the number of image pixels in ROI, and is wieldy for realtime application.
引文
1田捷,包尚联,周明全.医学影像处理与分析.北京电子工业出版社. 2003
    2朱翠玲.现代医学影像学工程与临床.山东科学技术出版社. 2000
    3王新房.超声医学发展前景评述.中国超声医学杂志. 2001, 10(1): 5-7
    4王新房.新世纪新年新动向超声医学发展前景述评.中华超声影像学杂志. 2001(01):25-29
    5 K. Z. Abd-elmoniem, A. B. Youssef, Y. M. Kadah. Real-time speckle reduction and coherence enhancement in ultrasoundimaging via nonlinear anisotropic diffusion. IEEE Transactions on Biomedical Engineering. 2002, 49(9): 997-1014
    6 D. Boukerroui, J. A. Noble, M. C. Robini, et al. Enhancement of contrast regions in suboptimal ultrasound images with application to echocardiography. Ultrasound in Medicine & Biology. 2001, 27(12): 1583-1594
    7 X. G, B. J. M, N. J. A, Z. Y. Contrast enhancement and segmentation of ultrasound images: a statistical method. SPIE Medical Imaging Image Processing. 2000: 1116-1125
    8李华美,汪天富,林江莉,等.基于精确直方图规格化的医学超声图像增强.中国医学影像技术. 2008, 24(2): 278-281
    9刘清团,汪天富,林江莉,等.基于亮度不变的医学超声图像对比度增强方法.中国医学影像技术. 2006, 22(3): 461-463
    10陈燕,耿国华.一种直接图像增强方法在医学影像分类中的应用.计算机应用与软件. 2007, 24(6): 26-27
    11温学兵,栾孟杰.一种加权融合的乳腺图像增强方法.北华大学学报(自然科学版). 2007, 8(2): 185-189
    12刘轩,刘佳宾.基于对比度受限自适应直方图均衡的乳腺图像增强.计算机工程与应用. 2008, 44(10): 173-175
    13 S. Y. Won, S. Y.Won, S. S. Upda. A new morphological approach for reducing speckle noise in ultrasonic images. 1996
    14 Y. Y. Chen, S. C. Tai. Enhancing ultrasound images by morphology filter and eliminating ringing effect. European Journal of Radiology. 2005, 53(2): 293-305
    15陈文山,汪天富,林江莉,等.基于相似度测量的医学超声图像对比度增强.中国医学影像技术. 2006, 22(9): 1432-1434
    16郭敏,马远良,朱霆.基于小波变换的医学超声图像去噪及增强方法.中国医学影像技术. 2006, 22(9): 1435-1437
    17 S. C. Zhu, A. Yuille. Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996, 18(9): 884-900
    18 K. Drukker, M. L. Giger, C. J. Vyborny, E. B. Mendelson. Computerized detection and classification of cancer on breast ultrasound. Academic Radiology. 2004, 11(5): 526-535
    19杨加,吴祈耀,田捷,等.几种图像分割算法在CT图像分割上的实现和比较.北京理工大学学报. 2002,20(6):720-724
    20 S. Y. Wan, W. E. Higgins. Symmetric Region Growing. Proc of the International IEEE conference on Image Processing.Vancouver Canada,2000,96-99
    21屈彬,王景熙,郑昌琼,等.一种基于区域生长规则的快速边缘跟踪算法.四川大学学报(工程科学版).2002,34(2):100-103
    22赵锋,赵荣椿.分裂-合并方法在图象分割、目标提取中的应用.西北工业大学学报. 2000,18(1):116-120
    23 K. Drukker, M. L. Giger, C. J. Vyborny, et al. Computerized detection and classification of cancer on breast ultrasound. Academic Radiology. 2004, 11(5): 526-535
    24 X. Hao, C. Bruce, C. Pislaru, et al. A novel region growing method for segmenting ultrasound images. Ultrasonics Symposium. 2000, 2(2): 1717-1720
    25 C. M. Chen, L. H. Horng, Y. L. Chen. A discrete region competition approach incorporating weak edge enhancement for ultrasound image segmentation. Pattern Recognition Letters. 2003, 24(4-5): 693-704
    26 A. Madabhushi, D. Metaxas. Automatic boundary extraction of ultrasonic breast lesions. 2002
    27 A. Madabhushi, D. N. Metaxas. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Transactions on Medical Imaging. 2003,22(2): 155-169
    28刘海华,陈心浩,高智勇,等.基于形态学操作和模糊聚类技术的超声图像分割.电子学报. 2007, 35(7): 1306-1312
    29刘自德,冯成德,黄秀娟.基于区域生长法的超声图像分割.影像技术. 2007, 35(3): 59-61
    30张建,汪天富,李德玉,等.基于对称区域生长算法的超声医学图像分割方法.生物医学工程学杂志. 2007, 24(3): 500-503
    31 R. C. Gonzales, R. E. Woods. Digital Image Processing Second Edition. Prentice Hall. 2002
    32 R. N. Czerwinski, D. L. Jones. Detection of lines and boundaries in speckle images-application to medical ultrasound. IEEE Transactions on Medical Imaging. 1999, 18(2): 126-136
    33郭圣文,罗立民.超声图象的自适应线边界检测方法. 2003, 8A(1): 51-57
    34 R. F. Chang, K. C. Chang, H. J. Chen, et al. Whole breast computer-aided screening using free-hand ultrasound. International Congress Series. 2005, 1281: 1075-1080
    35 R. J. Collaris, A. P. Hoeks. Automatic detection of closed tumor contours in medical ultrasound images on the basis of level-dependent spatial summation. 1996
    36 Qixiang Ye, Wen Gao,Wei Zeng. Color Image Segmetation Using Density Based Clusting. 2003 IEEE lnlemational Conference on Acoustics, Speech, & Signal Processing. Hong Kong, 2003:401-404
    37 S. Joo, Y. S. Yang, W. K. Moon, et al. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Transactions on Medical Imaging. 2004,23(10): 1292-1300
    38 K. Horsch, M. L. Giger, L. A. Venta, et al. Computerized diagnosis of breast lesions on ultrasound. Medical Physics. 2002, 29: 157-159
    39 K. Horsch, M. L. Giger, L. A. Venta, et al. Automatic segmentation of breast lesions on ultrasound. Medical Physics. 2001, 28: 1652-1656
    40林其忠,余建国,王怡.超声乳腺肿瘤图像的边缘提取.中国医学影像技术. 2007, 23(10): 1572-1574
    41沈嘉琳,汪源源,王涌,等.一种超声乳腺图像中提取肿瘤边缘的方法.仪器仪表学报. 2005, 26(z2): 364-367
    42 T. Kohonen. Self-organization and associative memory. Springer-Verlag New York, Inc. New York, NY, USA, 1989
    43 D. I. Choi, S. H. Park. Self-creating and organizing neural networks. IEEE Transactions on Neural Networks. 1994, 5(4): 561-575
    44汪天富,李德玉.用自生和自组织神经网络对超声医学图像进行自动分割.电子科学学刊. 1999, 21(1): 124-127
    45陈志彬,张启辉,邱天爽,等.医学超声图像分割的一种新方法.中国生物医学工程学报. 2006, 25(6): 650-655
    46田炜,周明全,耿国华.基于自组织特征映射神经网络的医学图像分割技术.计算机应用与软件. 2008(1): 28-29
    47 Y. L. Huang, D. R. Chen. Watershed segmentation for breast tumor in 2-D sonography. Ultrasound in Medicine & Biology. 2004, 30(5): 625-632
    48 R. Ekkhorn, H. J. Reithoeck, H.I.Arndt, et al. Feature Linking via Synchronization among Distributed Assemblies: Simulations of Result from Cat Visual Cortex, Neural computation, 1990, 12: 293-307
    49 John L. Johnson, Pulse-Coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images. App.l.Opt. 1994, 33(26): 6239-6253
    50马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法.通信学报. 2002, 23(1): 46-51
    51于江波,陈后金. PCNN模型的改进及其在医学图像处理中的应用.电子与信息学报. 2007, 29(10): 2316-2319
    52聂仁灿,周冬明,赵东风.基于Unit-Linking PCNN和图像熵的图像分割新方法.系统仿真学报. 2008, 20(1): 222-227
    53 R. Malladi,J. sethian. A vemuri. Shape modeling with front propagation: A levelset approach. IEEE Trans actionson Pattem Analysis Machine Intelligence. 1995,17(2):158-175
    54 T. Chan, Vese L. An efficient variational multiphase motion for the Munofrd-Shah Segmentation model. Proeeeding of Asilomar Conference Signals,Systems and Computers. 2002:490-494
    55 S. Gao,D .Tien. Imgae Segmentation and Seletive Smoothing by Using Mumofrd-Shah Model. IEEE Trans Image Process. 2005,4(10):1537-1549
    56 S.Kim , H. Lim. A Hybrid Level Set Segmentation for Medical Image. Proceedings of IEEE Nuelear Science Symposium&Medical Imaging Conference. 2005:1790-1794
    57 T. Mcinerney, D. Terzopoulos. Deformable models in medical image analysis: a survey. Medical Image Analysis. 1996, 1(2): 91-108
    58 C. Xu, J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing. 1998, 7(3): 359-369
    59严加勇,庄天戈.序列超声图像边缘检测与跟踪的改进Snake模型.上海交通大学学报. 2003, 37(z1): 106-108
    60赵暖,陈亚青,余建国,等.超声图像处理中Snake模型研究.上海生物医学工程. 2004, 25(4): 3-9
    61赵暖,陈亚青,余建国,等. Snake模型在乳腺肿瘤超声图像处理中的运用.上海医学影像. 2005, 14(1): 10-12
    62陆剑锋,林海,潘志庚,等.自适应区域生长算法在医学图像分割中的应用.计算机辅助设计与图形学学报. 2005, 17(10) :2168- 2173
    63 J. K. Udupa , S. Samarasekera. Fuzzy connectedness and object definition: Theory, Algorithms and application in image segmentation. Graph. Med. Im. Proc. 1996, 58(3) : 246- 261
    64 D. R. Chen, R. F. Chang, W. J. Wu, et al. 3-D breast ultrasound segmentation using active contour model. Ultrasound Med Biol. 2003, 29(7): 1017-1026
    65 R. F. Chang, W. J. Wu, C. C. Tseng, et al. 3-D snake for US in margin evaluation for malignant breast tumor excision using mammotome. IEEE Transactions on Information Technology in Biomedicine. 2003, 7(3): 197-201
    66 A. Sarti, C. Corsi, E. Mazzini, et al. Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,. 2005, 52(6): 947-960
    67 C. Chesnaud, P. Refregier, V. Boulet. Statistical region snake-based segmentation adapted to different physical noise models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(11): 1145-1157
    68 P. Martin, P. Refregier, F. Goudail, et al. Influence of the noise model on level set active contour segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004, 26(6): 799-803
    69 G. Slabaugh, G. Unal, T. Fang, et al. Ultrasound-Specific Segmentation via Decorrelation and Statistical Region-Based Active Contours. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006,1: 45-53
    70谢勤彬,罗代升.基于改进活动轮廓模型的超声图像分割.科学技术与工程. 2007, 7(8): 1638-1641
    71殷杰,陈新.一种新的医学超声图像分割方法.中国高新技术企业. 2008, 21(1): 92-95
    72曹彪,刘奇.结合数学形态学和Level Set超声图像的分割方法.中国测试技术. 2007, 33(5): 114-117
    73 J. A. Noble, D. Boukerroui. Ultrasound image segmentation: a survey.IEEE Transactions on Medical Imaging. 2006, 25(8): 987-1010
    74 Oleg V. Michailovich and Allen Tannenbaum. Despeckling of Medical Ultrasound Images. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2006,53(1):64-77
    75芦碧波.图像处理中的若干非线性扩散模型及其数值计算.博士论文,吉林大学,2008
    76 M. Lysaker, A. Lundervold, X. C.Tai. Noise removal using fourth-order partial differential equqtion with applications to medical magnetic resonance image in space and time.IEEE Trans.Image Process. 2003,2(12):1579-1590
    77 V. Kovunen. A robust nonlinear filter for image restoration. IEEE Trans. Image Processing. 1995, 4(5):569-578
    78 A. Restrepo, A. C. Bovik. Adaptive trimmed mean filters for image restoration. IEEE Trans on Acoust. Speech. Signal Processing. 1988, 36(8):1326-1337
    79赵春燕,郑永果,王向葵.基于直方图的图像模糊增强算法.计算机工程. 2005,31(12):185-220
    80李弼程,郭志刚,文超.图像的多层次模糊增强与边缘提取.模糊系统与数学. 2000,14(4):77-83
    81 P. K. Sahoo, S. Soltani, A. K. Wong, et al. A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing. 1988, 41(2): 233-260
    82 A. Falc?o, J. Stolfi, and R. Lotufo. The image foresting transform: Theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2004,26(1):19–29
    83 J.D. Ding, R. Ma. S. Chen. A Scale-Based Connected Coherence Tree Algorithm for Image Segmentation. IEEE Trans. Image Processing. 2008, 17(2): 100-104
    84 R. M. Rangayyan, H. N. Nguyen. Pixel-independent image processing techniques for enhancement of features in mammograms. Proceedings of the Eighth IEEE Engineering in Medicine and Biology Conference. 1986: 1113-1117
    85 A. P. Dhawan, G. Buelloni, R. Gordon. Enhancement of mammographic features by optimal adaptive neighborhood image processing. IEEE TRANS. MED. IMAG. 1986, 5(1): 8-15
    86 W. M. Morrow, R. B. Paranjape, R. M. Rangayyan, et al. Region-based contrast enhancement of mammograms. IEEE Transactions on Medical Imaging. 1992, 11(3): 392-406
    87 J.L. Johnson, M.L. Padgett. PCNN models and applications. IEEE Trans. on Neural Networks . 1999, 10 (3) :480–498
    88 G. Kuntimad, H. S. Ranganath. Perfect Image Segmentation Using Pulse Coupled Neural Networks. IEEE Trans. on Neural Networks .1999 ,10 (3) : 591-598
    89 Zhang Junying, Lu Zhijun, Shi Lin, Dong Jiyang. Filtering images contaminated with pep and salt type noise with pulse-coupled neural networks.Science in China Ser. Information Sciences. 2005, 48(3): 322-334
    90 D. Yamaoka, Y. Ogawa, K. Ishimura. Motion Segmentation Using Pulse-Coupled Neural Network. SICE kmual Conference in Fukui, 2003: 2778-2783
    91 R. P. Broussard, S. K. Rogers, M. E.Oxley, et al. Physiologically motivated image fusion for object detection using a pulse coupled neural network. IEEE Trans. Neural Networks, 1999, 10(3): 554-563
    92 H. J. Caufield, J. M. Kinser. Finding the shortest path in the shortest time using PCNN's. IEEE Trans. Neural Networks. 1999, 10(3): 604-606
    93毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法.电子学报. 2005, 33(4): 647-650
    94赵峙江,张田文,张志宏.一种新的基于PCNN的图像自动分割算法研究.电子学报. 2005,33(7):1342-1344
    95张煜东,吴乐南.基于二维Tsallis熵的改进PCNN图像分割.东南大学学报(自然科学版). 2008, 38(4): 579-584
    96 G. Szekely, T. Lindblad, E. Stella, et al. A Distante Parameter adaptation in a simplified Pulse-Coupled Neural Network. Ninth Workshop on Virtual Intelligence/Dynamic Neural Networks, 1999, 37(28): 278-285
    97 Cheng Dansong, Cheng Heng-Da, Tang Xianglong. Bone Image Enhancement Based on Fuzzy Techniques. 8th Joint Conference on Information Sciences, 2005
    98 J. K. Udupa, V. R. LeBlanc, H. Schmidt, et al. A methodology for evaluating image segmentation algorithms. Proc SPIE. 2002, 2: 266-270
    99谢勤彬,罗代升.基于改进活动轮廓模型的超声图像分割.科学技术与工程. 2007, 7(8): 1638-1641
    100殷杰,陈新.一种新的医学超声图像分割方法.中国高新技术企业. 2008, 21(1): 92-95
    101 B. Barbaro, V. Valentini, C. Coco, et al. Tumor vascularity evaluated by transrectal color Doppler US in predicting therapy outcome for low-lying rectal cancer. International Journal of Radiation Oncology Biology Physics. 2005, 63(5):1304-1308
    102 W. H. Yuan, H. J. Chiou, Y. H. Chou, et al. Gray-scale and color Doppler ultrasonographic manifestations ofpapillary thyroid carcinoma: analysis of 51 cases. Clinical Imaging.2006, 30(6): 394-401
    103 C.F. Weismann. Role of colour Doppler ultrasound in breast imaging. European Journal of Cancer Supplements. 2006,4(2):41-42
    104 H. J. Chiou, Y. H. Chou, S.Y.Chiou, et al. Superficial soft-tissue lymphoma: Sonographic appearance and early survival. Ultrasound in Medicine & Biology. 2006,32(9):1287-1297
    105 M. Neudorfer, I. Leibovitch, C. Stolovitch, et al. Intraorbital and periorbital tumors in children value of ultrasound and color Doppler imaging in the differential diagnosis. American Journal of Ophthalmology. 2004,137(6): 1065-1072
    106 A. Tempe, S. Singh, L. Wadhwa,et al. Conventional and color Doppler sonography in preoperative assessment of ovarian tumors.International Journal of Gynecology & Obstetrics.2006, 92(1):64-68
    107贾启禹,黄珊,殷鸿图.彩色多普勒血流显像对甲状腺肿瘤的诊断价值.中国临床医学影像杂志. 2004,15 (3):137-139
    108 S. C. Shah, Andrew Kusiak and Michael A. O’Donnell, Patient-recognition data-mining model for BCG-plus interferon immunotherapy bladder cancer treatment. Computers in Biology and Medicine . 2006, 36(6): 634-655
    109赵燕伟,王万良.基于聚类分析的色彩量化新算法及其应用.计算机辅助设计与图形学学报.2000,12(5):340-343
    110 Jundi Ding, Runing Ma and Songcan Chen. A Scale-Based Connected Coherence Tree Algorithm for Image Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING, 17(2) : 204-216
    111 P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. Int. J. Comput. Vis.2006, 59(2) :167–181
    112 Y. Haxhimusa and W. Kropatsch. Segmentation graph hierarchies. in Proc. Structural, Syntactic, and Statistical Pattern Recognition. 2004, 3138:343–351
    113王兴伟,沈兰荪,卫保国.基于改进的k-均值聚类和数学形态学的彩色眼科图像病灶分割.生物医学工程学报.2002,21(5):443-448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700