多场耦合作用下双层复合壳的损伤模型与可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双层复合壳是指内外层接触介面连接达到冶金结合程度的复合壳体,内外层材料可根据工艺需求和接触介质特性而选定,其材料结构与复合层合板一样,同属于复合材料的范畴。双层复合壳具有许多单层壳无法比拟的优点,在航空、核电和石化等领域具有广泛的应用。由于这些行业工艺、原材料及产品的特殊性,双层复合壳结构一旦发生损伤失效,极有可能造成重大伤亡事故,故对此类结构的损伤模型以及可靠性设计和评估方法进行研究显得十分必要。
     双层复合壳被广泛地应用在高温和腐蚀环境中,其损伤因素较为复杂,包括流-固耦合和热弹性振动等因素,致使对于该类型壳体的可靠性设计和评估尤其困难。通过文献资料检索,迄今国内外针对高温构件的结构完整性研究较多,而对于多场耦合作用下高温构件的可靠性研究则很少,针对多场耦合作用下双层复合壳高温构件的可靠性研究则更少。本文以多场耦合作用下双层复合壳的损伤模型与可靠性研究为选题,主要开展以下方面的研究:
     (1)双层复合壳的损伤模型研究通过分析壳体的复合形式和选材原则,明确研究对象性能特点;基于双层复合壳损伤表现形式及内部应力分析,建立双层复合壳热应力损伤模型及温度动态响应函数;推导多场耦合作用下双层复合壳的随机振动疲劳损伤模型。
     (2)双层复合壳材质损伤特征参量试验研究复杂耦合环境下,双层复合壳的损伤具有明显的局部特征,通过微观的金相、X射线以及宏观的强度、韧度等试验,进行宏观力学性能退化分析和细微观损伤与断裂特性分析,研究壳体材质损伤特征,推断壳体材质损伤的主要原因;选取双层复合壳结构,从壳体不同部位取样进行测试,试验数据作为可靠性分析模型的随机参量,分析壳体的可靠性。
     (3)热-流-固耦合作用下双层复合壳的动态响应理论研究建立多场耦合作用下复合圆柱壳的动态响应数学模型,模型中的多场耦合偏微分方程包含热载荷和流体冲击载荷,通过求取包含拉普拉斯双算子的多场耦合偏微方程的解,获得壳体动态响应特性随着流体速度、壳体半径和长度以及弹性模量等参量变化的规律及挠度函数。
     (4)热-流-固耦合作用下双层复合壳的动态响应有限元分析针对典型多场耦合作用下的双层复合壳结构,建立不对称双层复合壳的有限元模型,对双层复合壳在多场耦合作用下的动态响应进行模态、谐响应和多场耦合振动分析,深入研究材料和结构参数改变对结构响应的影响,以及双层复合壳具有的动态响应特性。
     (5)双层复合壳的可靠性评估方法建立统计三维实体单元节点Von Mises应力的可靠性计算方法,利用ANSYS和MATLAB进行二次开发,实现三维建模、多种载荷作用下的随机有限元求解以及单元节点Von Mises应力的数值统计,应用于实际工程中旋风分离器的动态可靠性评估;在Rice J积分理论的基础上,给出求解双层高温构件JC积分方法,并应用有限元数值算例和工程实例说明JC积分方法的实施效果。JC积分可以作为评估含缺陷双层高温构件可靠性的断裂参量,为传统应力-强度干涉模型提供有益扩充。
     (6)双层复合壳的可靠性灵敏度分析可靠性灵敏度反映了基本变量分布参数对失效概率的重要性排序,它是结构稳健可靠性优化设计的必要步骤。针对工程应用中存在的随机变量为非正态分布,同时存在相关性的情况,研究相关非正态模型参量可靠性灵敏度分析方法,包括基于正交变换法(OT)、乔列斯基因子分解法(CF)和JC法三种可靠性灵敏度分析方法,分析它们各自的应用优势;应用Visual Basic与MATLAB混合编程技术,编写可靠性灵敏度分析软件系统,并通过数值算例验证所提方法的精度以及可应用计算机解决相关非正态模型参量问题,可作为可靠性灵敏度分析方法的有益扩充。
     上述研究工作能够为双层复合壳构件的可靠性设计和评估提供理论基础,为保障安全生产和设备维护提供科学依据。
Double-layer composite shell is a kind of shell that the bonding interface between inner and outer layer is with metallurgical bond, whose material needs to be selected according to technical requirements. Its material structure is the same as the composite board, which belongs to composite materials. The double-layer composite shell has many incomparable advantages that the single-layer shell does not possess, which has been widely applied in aviation, nuclear power and petrochemical fields etc. Due to the specialty of industries process, raw materials and products, once the damage failure occurs, it is easy to cause significant casualties. Therefore, it is necessary to analyze the damage model as well as the reliability design and evaluation of such equipment.
     Double-layer composite shell is widely used in high temperature and corrosive environment, so its coupled environment is very complex, including the fluid - solid coupling with thermal elastic vibration and other factors, which makes the reliability design and evaluation extremely difficult. Through the literatures, so far there have been many studies on the structural integrity of high temperature components at home and abroad, but the studies on the reliability evaluation of high temperature components subjected to multi-field coupling are rare, moreover, the studies on the reliability evaluation of double-layer composite shell under high temperature is less. In this paper, the studies on the damage model and reliability of double-layer composite shell subjected to multi-field coupling will be conducted as follows:
     (1) Damage model of double-layer composite shell
     Through analyzing the composite form and selection principles of shell, the performance characteristics of study object is clear. On the basis of analyzing the damage forms and internal stress of double-layer composite shell, the thermal stress damage model of double composite shell was established and the dynamic response was analyzed. Moreover, the fatigue damage model of double-layer composite shell subjected to multi-field coupling was established.
     (2) Material damage characteristics parametric test of double-layer composite shell
     Under complex coupling environment, the double-layer composite shell has clear local damage features. The degradation of macro and micro damage characterization were studied through micro-optical, X-ray and macroscopic strength, toughness and so on, which can infer the main damage causes. In addition, through statistical analysis of the experimental data from different parts of the double-layer composite shell structure, random parameters of reliability analysis model was obtained, thus the reliability of the shell can be evaluated.
     (3) Theory analysis of dynamic response of double-layer composite shell subjected to thermal - liquid - solid multi-field coupling
     The mathematical model of dynamic response of composite cylindrical shell subjected to multi-field coupling was established, in which the multi-field coupling partial differential equation contains fluid impact load and thermal load. The solution of partial differential equation, including the double Laplace operator and the dynamic response with the changes of velocity, shell radius and length, and elastic modulus as well as the deflection function were obtained.
     (4) Finite element analysis of the dynamic response of double-layer composite shell subjected to thermal - liquid - solid coupling
     According to a typical double-layer composite shell structure, the finite element model of asymmetric double-layer composite shell was established, and then a comprehensive analysis on the dynamic response double-layer composite shell subjected to multi-field coupling was conducted, which includes modal, harmonic response and vibration analysis. The impact of material and structural parameters on structural response, as well as the dynamic response of double-layer composite shell was discussed. (5) Reliability assessment method of double-layer composite shell The reliability calculation method with statistical Von Mises stresses of 3D solid element nodes was proposed, and the secondary development technology of ANSYS and MATLAB was used to achieve 3D modeling, solving stochastic finite element and Von Mises stresses statistics. The proposed method was applied to the dynamic reliability assessment of cyclone. Moreover, based on Rice J integral theory, the J C integral approach was applied to solve the reliability of double high temperature components. The numerical and engineering examples were presented to verify the implementation effect of the J Cintegration approach. The J C integral can be used as the fracture parameters to evaluate the reliability of high temperature components with defects, which provides a useful expansion for the traditional stress - strength interference model.
     (6) Reliability sensitivity analysis of double-layer composite shell
     Reliability sensitivity analysis reflects the importance order of the basic variables with the failure probability, which is the necessary step of robust optimization design of structure reliability. The correlated non-normal distribution random variables do exist in engineering, so the reliability sensitivity analysis model of correlated non-normal was studied. The three reliability sensitivity analysis methods, named orthogonal transformation method (OT), decomposition method (CF) and JC method respectively, were given, and their application advantages were analyzed. In addition, the mixed programming technology of Visual Basic and MATLAB was employed to develop the reliability sensitivity analysis system. The proposed methods were verified by numerical example and the correlated non-normal problem can be solved with computer, which can be used as a useful extension for the reliability sensitivity analysis methods.
     The study provides a theoretical basis for reliability design and evaluation of double-layer composite shell as well as the scientific basis for the work safety and equipment maintenance.
引文
[1]顾建忠.国外双层金属复合钢管的用途及生产方法[J].上海金属. 2000, 22(4): 16-24.
    [2]王戈,郭伟,刘波.舰用新型钛铜双金属复合管[C].北京:化学工业出版社, 2007.
    [3]邓云山.催化裂化装置再生器旋风分离器失效原因分析及改进措施[J].石油化工设备技术. 1999, 20(04): 61-63.
    [4]徐善东.高温构件完整性原理[M].北京:科学出版社, 2003.
    [5] Shang D G, Sun G Q, Deng J, et al. Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach[J]. International Journal of Fatigue. 2007, 29(12): 2200-2207.
    [6]涂善东,轩福贞,王国珍.高温条件下材料与结构力学行为的研究进展[J].固体力学学报. 2010, 31(6): 679-695.
    [7]国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社, 2010.
    [8]王震鸣.复合材料及其结构的力学进展(第一册)[M].广州:华南理工大学出版社, 1991.
    [9]冯培锋,王殿富,杜善义等.复合材料层板基于剩余刚度比的剩余强度模型[J].应用力学学报. 2001, 18(1): 40-44.
    [10]姚战军,黄坚,杜月和等.复合材料细观损伤研究[J].兵器材料科学与工程. 2010, 33(1): 105-108.
    [11] Ju J W, Sun L Z. Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal pnhomogeneities.PartI: micromechanics-based[J]. International Journal of Solids and Structures. 2001, 38(2): 183-201.
    [12]王放.金属基复合材料循环响应和疲劳破坏的理论和模拟[D].上海:上海大学, 2007.
    [13]程小全,杨棍,胡仁伟等.缝合复合材料层合板拉伸疲劳损伤及其机理[J].力学学报. 2010, 42(1): 132-137.
    [14] Ganguly P, Poole W J. Rearrangement of local stress and strain fields due to damage initiation in a model composite system[J]. Computational Materials Science. 2005, 34(2): 107-122.
    [15] Wong F C. On the prediction of mechanical behavior of particulate composites using an improved modulus degradation model[J]. Journal of Composite Materials. 1997, 31(2): 104-127.
    [16] Kishimoto K. Critical evaluation of the stiffening effect of carbon nanotubes in composites[J]. Key Engineering Materials. 2004, 261-263(4): 1487-1492.
    [17] Liu H T. Monte carlo simulation of particle-cracking damage evolution in metal matrix composites[J]. Journal of Engineering Materials and Technology. 2005, 127(3): 318-325.
    [18] Meijer G, Ellyin F, Xia Z. Aspects of residual thermal stress/strain in particle reinforced metal matrix composites[J]. Composites Part B: Engineering. 2000, 31(1): 29-37.
    [19]苏晓风,陈浩然,王利民.金属基复合材料细观损伤机制与宏观性质关系的研究[J].复合材料学报. 1999, 16(2): 88-92.
    [20]闫伟,燕瑛,苏玲.湿-热-力耦合环境下复合材料结构损伤分析与性能研究[J].复合材料学报. 2010, 27(2): 113-116.
    [21]孙志刚.复合材料高精度宏-细观统一本构模型及其应用研究[D].南京:南京航空航天大学, 2005.
    [22] Hansen A C, Garnich M R. A multicontinuum theory for structural analysis of composite material systems[J]. Composites Engineering. 1995, 5(9): 1091-1103.
    [23]傅志平,曹志远.复合材料构件性能的细观元分析[J].复合材料学报. 1998, 15(1): 108-111.
    [24]刘波,雷友锋,宋迎东.纤维增强复合材料宏观与细观统一的细观力学模型[J].航空发动机. 2007, 33(3): 45-49.
    [25] Felippa C A, Park K C, Farhat C. Partitioned analysis of coupled mechanical systems[J]. Computer Methods in Applied Mechanics and Engineering. 2001, 190(24-25): 3247-3270.
    [26]宋少云.多场耦合问题的分类及其应用研究[J].武汉工业学院学报. 2008, 27(3): 46-49.
    [27]宋少云.多场耦合问题的建模与耦合关系的研究[J].武汉工业学院学报. 2005, 24(4): 21-23.
    [28]宋少云.多场耦合问题的协同求解方法研究与应用[D].武汉:华中科技大学, 2007.
    [29]安效民,徐敏,陈士橹.多场耦合求解非线性气动弹性的研究综述[J].力学进展. 2009, 39(3): 284-298.
    [30]王征,吴虎,贾海军.流固耦合力学的数值研究方法的发展及软件应用概述[J].机床与液压. 2008, 36(4): 192-195.
    [31]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展. 1997, 27(01): 19-38.
    [32] Abbas J F, Ibrahim R A, Gibson R F. Flutter analysis of stiffened laminated composite plates and shells in supersonic flow[J]. AIAA journal. 1993, 31(8): 1478-1488.
    [33] Peeters B, Roeck G D. Stochastic system identification for operational modal analysis: A review[J]. Journal of Dynamic Systems Measurement and Control. 2001, 123(1): 1-9.
    [34]夏巍,杨智春.热环境下复合材料壁板的振动特性分析[J].应用力学学报. 2005, 22(3): 359-363.
    [35]杨和振, Park H,李华军.温度变化下复合材料层合板的试验模态分析[J].复合材料学报. 2008, 22(2): 149-155.
    [36]董锦坤,刘斌,张延年等.高层建筑三维结构横风向弯曲耦合振动的稳定性[J].吉林大学学报(工学版). 2005, 35(5): 562-566.
    [37]韩强.非线性大挠度圆柱壳的混沌运动[J].华南理工大学学报(自然科学版). 2000, 28(8): 1-5.
    [38]罗烈雷,吴晓,钟斌.复合材料圆柱壳非线性热弹耦合振动[J]. 2001, 20(3): 76-78.
    [39]杨超.非恒定流充液管系统耦合振动特性及振动抑制[D].武汉:华中科技大学, 2007.
    [40]王宏伟,赵德有.弹性-粘弹性复合板模态密度研究[J].大连理工大学学报. 2001, 41(1): 81-84.
    [41]王保林,杜善义,韩杰才.非均匀复合材料的动态热弹性断裂力学分析[J].力学学报. 1999, 31(5): 550-561.
    [42] Nemat Alla M, Noda N. Study of an edge crack problem in a semi-infinite functionally graded medium with two dimensionally nonhomogeneous coefficients of thermal expansion under thermal load[J]. Journal of Thermal Stresses. 1996, 19(9): 863-888.
    [43] Vimonsatit V, Tan K H, Ting S K. Nonlinear Elastoplastic Analysis of Semirigid Steel Frames at Elevated Temperature: MP Approach[J]. J. Struct. Engrg. 2003, 129(5): 661-671.
    [44]魏德敏,江雪玲.钢结构非线性温度响应分析[J].华南理工大学学报(自然科学版). 2007, 35(10): 84-90.
    [45]范绪箕,陈国光.关于热弹性力学的耦合理论[J].力学进展. 1984(4): 339-345.
    [46]张光辉,翟鹏程,张清杰.非均质材料在热冲击下的耦合热弹性理论[J].武汉理工大学学报. 1997, 19(2): 99-101.
    [47] Park K H, Banerjee P K. Two and three-dimensional transient thermoelastic analysis by BEM via particular integrals[J]. International Journal of Solids and Structures. 2002, 39(10): 2871-2892.
    [48]王林翔, R·v·n·梅尔姆克.热弹性动力学耦合问题的微分代数方法[J].应用数学和力学. 2006, 27(9): 1036-1046.
    [49]王洪纲.热弹性力学概论[M].北京:清华大学出版社, 1989: 1-9.
    [50] Saravanan C, Ganesan N, Ramamurti V. Semianalytical finite element analysis of active constrained layer damping in cylindrical shells of revolution[J]. Computers & Structures. 2001, 79(11): 1131-1145.
    [51]王淼,孟光,方之楚等夹层圆柱壳振动的谱有限元分析[J].应用力学学报. 2009, 26(4): 715-720.
    [52]吴庆鸣,陈永强.基于约束函数法的热力耦合有限元分析[J].计算力学学报. 2008, 25(2): 183-187.
    [53] Demirdi I, Muzaf S. Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology[J]. Computer Methods in Applied Mechanics and Engineering. 1995, 125(1-4): 235-255.
    [54] Sigmund O. Design of multiphysics actuators using topology optimization– Part I: One-material structures[J]. Computer Methods in Applied Mechanics and Engineering. 2001, 190(49-50): 6577-6604.
    [55] Sigmund O. Design of multiphysics actuators using topology optimization– Part II: Two-material structures[J]. Computer methods in applied mechanics and engineering. 2001, 190(49-50): 6605-6627.
    [56]刘晓旭.三场耦合的数学模型研究及有限元解法[D].西南石油学院, 2005.
    [57]冯国泰,黄家骅,李海滨等.涡轮发动机三维多场耦合数值仿真的数学模型[J].上海理工大学学报. 2001, 23(3): 189-192.
    [58]郭兆元,王强,冯国泰.涡轮气热弹耦合计算模型与算例[J].航空学报. 2009, 30(2): 213-219.
    [59]郭盛杰.金属材料超高周疲劳寿命分布和元件高可靠性研究[D].南京航空航天大学;, 2006.
    [60]顾怡,吕海波.结构元件疲劳可靠性分析的累积损伤模型[J].机械强度. 2000, 22(03): 228-230.
    [61]赵维涛,安伟光,吴香国.基于累积损伤的结构系统时变刚度可靠性分析[J].哈尔滨工程大学学报. 2006, 27(06): 812-815.
    [62]孙广先,冯元生.一种基于剩余强度衰减的疲劳寿命可靠性分析模型[J].机械强度. 2000(02): 129-133.
    [63]胡明敏,魏平,唐静静.由剩余强度全域测试建立的疲劳可靠性估算模型[J].机械强度. 2003, 25(01): 102-104.
    [64]郭盛杰,姚卫星.结构元件疲劳可靠性估算的剩余寿命模型[J].南京航空航天大学学报. 2003, 35(01): 25-29.
    [65] Kandarpa S, Jr B F S, Kirkner D J. Reliability analysis of structural components utilizing the strain-life method[J]. Engineering Fracture Mechanics. 1996, 53(5): 761-744.
    [66]赵永翔.应变疲劳可靠性分析的现状及展望[J].机械工程学报. 2001, 37(11): 1-6.
    [67]赵永翔,杨冰,张卫华.应变疲劳可靠性理论与方法的新进展[J].机械强度. 2005, 27(05): 604-611.
    [68]郭书祥.疲劳裂纹扩展随机模型和动态可靠性[J].机械强度. 1998, 20(02): 120-125.
    [69] Efren A U, Torgeir M. Fatigue reliability-based assessment of welded joints applying consistent fracture mechanics formulations[J]. International Journal of Fatigue. 2007, 29(3): 444-456.
    [70]申振荣,龚俊,郎福元等.疲劳裂纹扩展可靠性分析的N-J模型方法[J].甘肃工业大学学报. 2002, 28(04): 133-136.
    [71]罗毅,黄培彦.裂纹扩展寿命安全可靠性分析模型研究[J].北京航空航天大学学报. 2002, 28(01): 113-115.
    [72]李良巧.机械可靠性设计与分析[M].北京:国防工业出版社, 1998.
    [73]葛锐.复合材料层合结构的可靠性设计方法及优化算法研究[D].武汉:华中科技大学, 2008.
    [74]袁涛.机械结构参数相关性与串并联体系可靠性灵敏度设计与应用[D].吉林省:吉林大学, 2007.
    [75] Rackwitz R. Reliability analysis - a review and some perspectives[J]. Structural Safety. 2001, 23(4): 365-395.
    [76] Bjerager P, Krenk S. Parametric sensitivity in first order reliability theory[J]. Journal of Engineering Mechanics. 1989, 115(7): 1577-1582.
    [77]张伟,崔维成,徐秉汉等.结构可靠性分析中灵敏度因子研究的新方法[J].上海交通大学学报. 1998, 32(11): 26-29.
    [78] Melchers R E, Ahammed M. A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability[J]. Computers & Structures. 2004, 82(1): 55-61.
    [79]袁修开,吕震宙.可靠性敏度分析方法及其在非线性蠕变疲劳失效模型中的应用[J].计算力学学报. 2007, 24(01): 69-73.
    [80]张义民.任意分布参数的机械零件的可靠性灵敏度设计[J].机械工程学报. 2004, 40(08): 100-105.
    [81] Ahammed M, Melchers R E. Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis[J]. Reliability engineering & System safety. 2006, 91(5): 594-601.
    [82] Melchers R E, Ahammed M. Gradient estimation for applied Monte Carlo analyses[J]. Reliability engineering & System safety. 2002, 78(3): 283-288.
    [83]史妍妍,孙志礼,闫明.响应面方法在可靠性灵敏度计算中的应用[J].东北大学学报(自然科学版). 2009, 30(2): 270-273.
    [84]袁涛,张义民,薛玉春等.任意分布参数随机变量间相关系数的可靠性灵敏度[J].机械强度. 2008, 30(3): 386-390.
    [85]陈磊,吕震宙.相关变量模糊可靠性灵敏度分析的线抽样方法[J].航空学报. 2008, 29(5): 1186-1195.
    [86] Mao H Y, Mahadevan S. Reliability analysis of creep-fatigue failure[J]. International Journal of Fatigue. 2000, 22(9): 789-797.
    [87]邓兆祥,颜长征.基于蒙特卡罗法的摩托车车架灵敏度分析[J].重庆大学学报. 2008, 31(10): 1113-1122.
    [88] Yang I H. Uncertainty and sensitivity analysis of time-dependent effects in concrete structures[J]. Engineering Structures. 2007, 29(7): 1366-1374.
    [89]吕震宙,宋述芳,李洪双等.结构机构可靠性及可靠性灵敏度分析[M].北京:科学出版社, 2009.
    [90]俞载道.结构动力学基础[M].上海:同济大学出版社, 1987.
    [91] D. E.纽兰.随机振动与谱分析概论[M].北京:机械工业出版社, 1978.
    [92]金奕山,李琳.随机振动结构Von Mises应力过程峰值概率密度函数的研究[J].应用力学学报. 2006, 23(4): 645-648.
    [93]郑兆昌.机械振动(中册)[M].北京:机械工业出版社, 1986.
    [94] Segalman D, Reese G, Richard Field J. Estimating the Probability Distribution of von Mises Stress for Structures Undergoing Random Excitation[J]. Journal of Vibration and Acoustics. 2000, 122(1): 42-48.
    [95]沙云东,郭小鹏,张军.基于应力概率密度和功率谱密度法的随机声疲劳寿命预估方法研究[J].振动与冲击. 2010, 29(1): 162-165.
    [96]孙志礼,陈良玉.实用机械可靠性设计理论与方法[M].北京:科学出版社, 2003.
    [97]黄益民,刘永寿,刘伟等.基于疲劳累积损伤准则的随机结构动力可靠性灵敏度分析[J].飞机设计. 2010, 30(2): 5-9.
    [98] ASTM E8-04. Standard Test Methods for Tension Testing of Metallic Materials[S]. United States: ASTM, 2004.
    [99] ASTM E1820-08. Standard Method for Measurement of Fracture Toughness[S]. United States: ASTM, 2008.
    [100]ASTM E10-07a. Standard Test Method for Brinell Hardness of Metallic Materials[S]. United States: ASTM, 2007.
    [101]郑运荣.高温合金与钢的彩色金相研究[M].北京:国防工业出版社, 1999.
    [102]丁文镜.自激振动[M].北京:清华大学出版社, 2009.
    [103]Paidoussis M P, Li G X. Pipes Conveying Fluid: A Model Dynamical Problem[J]. Journal of Fluids and Structures. 1993, 7(2): 137-204.
    [104]初飞雪.两端简支输液管道流固耦合振动分析[J].中国机械工程. 2006, 17(3): 248-251.
    [105]王永岗,戴诗亮.受热双层金属圆板的非线性振动[J].清华大学学报(自然科学版).2003, 43(2): 218-221.
    [106] Gómez X, Echeberria J. Microstructure and mechanical properties of carbon steel A210 superalloy Sanicro 28 bimetallic tubes[J]. Materials Science and Engineering. 2003, 348(1-2): 180-191.
    [107]曹志远.板壳振动理论[M].北京:中国铁道出版社, 1989.
    [108]张阿舟.振动控制工程[M].北京:航空工业出版社, 1989.
    [109]Liu R H. Non-linear thermal stability of bimetallic shallow shells of revolution[J]. International Journal of Non-Linear Mechanics. 1983, 18(5): 409-429.
    [110]何福保.板壳理论[M].西安:西安交通大学出版社, 1993.
    [111]傅志方,华宏星著.模态分析理论与应用[M].上海:上海交通大学出版社, 2000.
    [112]孙宝强,王璐.基于ANSYS的热锯机锯片有限元模态分析[J].机械制造. 2009, 47(538): 5-7.
    [113]廖日东,左正兴,邹文胜等.增压器涡轮叶片模态特性研究[J].内燃机学报. 1998, 16(4): 421-429.
    [114]黄文.基于ANSYS的多自由度系统的谐波响应分析[J].机电产品开发与创新. 2003, 23(4): 58-60.
    [115]甘幼琛,谢世浩编著.随机振动的基本理论与应用[M].长沙:湖南科学技术出版社, 1982.
    [116]中国科学技术情报研究所重庆分所编辑.随机理论(力学参考资料)[M].重庆:科学技术情报研究所重庆分社, 1976.
    [117]Zhou C Y, Tu S D. A stochastic computation model for the creep damage of furnace tube[J]. International Journal of Pressure Vessels and Piping. 2001, 78(9): 617-625.
    [118]Toribio J, Kharin V. The reliability of the fracture mechanics approach to environmentally assisted cracking: 2. Engineering safe design[J]. Materials & Design. 1997, 18(2): 95-101.
    [119]Broberg K B. Critical review of some methods in nonlinear fracture mechanics[J]. Engineering Fracture Mechanics. 1995, 50(2): 157-164.
    [120]Soderholm K. Review of the fracture toughness approach[J]. Dental Materials. 2010, 26(2): 63-77.
    [121]Enrique de la Fuente. Von Mises stresses in random vibration of linear structures[J].Computers and Structures. 2009, 87(21-22): 1253-1262.
    [122]Quaranta G, Mantegazza P. Randomly excited structures reliability by means of the Von Mises stress response[J]. XVI Congresso Nazionale AIDAA,Palermo. 2001(24-28): 1-9.
    [123]Anders M, Hori M. Three-dimensional stochastic finite element method for elasto-plastic bodies[J]. International Journal for Numerical Methods in Engineering. 2001, 51(4): 449-478.
    [124]Yamazaki F, Shinozuka M, Dasgupta A G. Neumann Expansion for Stochastic Finite-Element Analysis[J]. J. Engrg. Mech. 1988, 14(8): 1335-1354.
    [125]Au S K, Beck J L. Important sampling in high dimensions[J]. Structural Safety. 2003, 25(2): 139-163.
    [126]Rice J R. A path independent integral and the approximate analysis of concentration by notches and cracks[J]. Journal of applied mechanics. 1968, 35(6): 379-386.
    [127]Blackburn W S. Path independent integrals to predict onset of crack instability in an elastic plastic material[J]. International Journal of Fracture. 1972(8): 343-346.
    [128]Hellen T K, Blackburn W S. Post-yield fracture mechanics analysis of the combined thermal and mechanical loading of a centre-cracked plate[J]. International Journal of Fracture. 1986, 32(3): 185-199.
    [129]Elishakoff I, Hasofer A M. Exact versus approximate determination of structural reliability[J]. Applied Scientific Research. 1987, 44(3): 303-312.
    [130]Mircea Grigoriu M. Extremes of Correlated Non-Gaussian Series[J]. Journal of Struct Engrg , ASCE. 1984, 110(7): 1485-1494.
    [131]殳伟群.非高斯型互相关随机数的发生技术[J].同济大学学报(自然科学版). 2007, 35(6): 834-838.
    [132]Chang X, Paige C C. Sensitivity analyses for factorizations of sparse or structured matrices[J]. Linear Algebra and its Applications. 1998, 284(3): 53-71.
    [133]方再根.计算机模拟和蒙特卡洛方法[M].北京:北京工业学院出版社, 1988: 309-311.
    [134]Lin Y C, Xie Y J. Expert system for integrity assessment of piping containing defects[J]. Expert Systems with Applications. 2006, 30(2): 149-155.
    [135]Zhang Y T, Tang J, Zhang M Q, et al. Research on reliability simulation process modelbased on Monte Carlo method[J]. Systems Engineering and Electronics. 2008, 30(7): 1374-1385.
    [136]傅旭东.相关变量下失效概率的计算机模拟[J].西南交通大学学报(自然科学版). 1997, 32(3): 319-323.
    [137]Liao S H. Expert system methodologies and applications-a decade review from 1995 to 2004[J]. Expert Systems with Applications. 2005(28): 93-103.
    [138]Wang H C, Wang H S. A hybrid expert system for equipment failure analysis[J]. Expert Systems with Applications. 2005, 28(4): 615-622.
    [139]Michalski R S, Kaufman K A. Intelligent evolutionary design: A new approach to optimizing complex engineering systems and its application to designing heat exchangers[J]. International Journal of Inteligent Systems. 2006, 21(12): 1217-1248.
    [140]周焕廷.高温下钢绞线材料力学性能的试验研究[J].四川大学学报. 2008, 40(5): 106-110.
    [141]Zhou H T, Li G Q, Jiang S C. Experimental Studies on the Properties of Steel Strand at Elevated Temperatures[J]. Journal of Sichuan University(Engineering Science Edition). 2008, 40(5): 106-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700