THz回旋管电子光学系统与渐变谐振腔注波互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹科学与技术在医疗、安检、信息技术和基础研究等领域独具优势,是当今科技领域的研究热点。太赫兹回旋管能产生高功率毫米波、亚毫米波电磁辐射,是最有前途的太赫兹波源之一。结合课题组项目,本论文通过研究回旋管的自洽非线性理论和设计太赫兹回旋管所面临的困难,针对发展太赫兹回旋管过程中的几个关键问题:有效抑制非工作模式,使其在高次谐波时实现高功率、高效率、单模太赫兹波辐射;双注双频回旋管中回旋双电子注在共磁场分布、共电极结构的条件下是否可实现严格同步;电子注参数零散对注波互作用的影响;电子光学系统优化设计;高频结构与竞争模式间的关系等进行了深入细致的研究,取得了一些创新性成果和有价值的结论。
     基于回旋管自洽非线性理论,优化设计出了一种能有效抑制寄生模式的光滑缓变谐振腔,使工作模式纯度提高约27dB;结合当前应用领域对某些热点频段高功率太赫兹电磁波的需求现状,将这种缓变结构的谐振腔应用于太赫兹回旋管设计;在电子注电压60kV,电流9A条件下,基于自洽非线性理论模拟计算可知,这种结构可以使0.4THz二次谐波回旋管的互作用效率接近30%,输出功率大于150kW。采用相同的设计方法和工作模式,在0.6THz频段,得到效率约21%,大于100kW的功率输出。此外,本论文在回旋管注波互作用理论、电子光学系统优化设计和相关模拟程序开发等方面也做了大量的研究工作。主要工作和贡献如下:
     1.基于耦合波理论,研究了渐变、柱形谐振腔的广义传输线方程;考虑当前用于回旋管谐振腔的结构特点,采用了一阶传输线方程组研究回旋管高频结构及注波互作用,使广义传输线理论在处理回旋管问题上更完美。
     2.依据多模自洽的非线性理论,提出了抑制耦合寄生模式的理论基础与实现方法。由于尺寸效应,太赫兹回旋管采用高阶TE模作为工作模式,这必然会带来强烈的模式竞争;抑制竞争模式就成为太赫兹回旋管的重点研究方向之一。本论文通过对耦合系数和一阶传输线方程组的分析研究,优化设计出了有效抑制竞争模式的光滑缓变回旋管谐振腔。
     3.对一阶传输线方程组数值处理后,编制了冷腔设计程序、多模自洽的非线性互作用模拟程序和基于PIC软件开发的电子光学系统设计代码。毫米波、亚毫米波回旋管的理论研究工作主要集中在相关理论模型的建立和借助计算机对其进行高效数值求解上;本论文编写了通用的基于无源传输线方程组的冷腔优化设计程序、基于自洽非线性理论和矩阵运算的高效注波互作用模拟程序和基于PIC软件开发的电子光学系统优化设计代码。
     4.建立电子注速度零散和引导中心零散模型,将其纳入编写的多模自洽互作用模拟程序,研究了两种零散对太赫兹回旋管注波互作用效率的影响。影响回旋管性能的因素很多,除提供互作用场所的高频结构外,电子注的质量也会对回旋管的性能造成较大影响。为了更接近于物理实际,本论文建立了电子注速度零散和引导中心零散模型,讨论了速度零散和引导中心零散对注波互作用的影响。
     5.为了确保理论推导的正确性和编写程序的可靠性,对设计编写的回旋管模拟程序进行了大量必要的验证工作。在编制好冷腔设计、热腔互作用模拟程序后,除了利用可靠性很高的专业仿真软件对其进行验证外,还通过查阅权威期刊文献中详实报道的冷腔参数和注波互作用参数,建立仿真模型,用自编程序与其进行模拟对比;并且在条件允许的前提下,直接通过优化设计和测试的实验方式验证编写程序的可靠性。
     6.根据课题组项目的需要,通过研究磁控注入式电子枪的相关理论,论证了回旋双电子注在同一磁场分布、同一电子光学结构下的同步问题;优化设计出了一支符合要求的w波段单阳极电子枪。
     7.借助编制的相关模拟程序,详尽研究了94GHz、0.4THz和0.6THz回旋振荡管的模式选择、高频结构、模式竞争和非线性互作用。
Terahertz science and technology are topics of great contention today for thesuperiorities in fields of medical care, safety inspection, information technology andbasic research. Terahertz Gyrotron oscillators are one of promising sources of highpower of millimeter wave and sub-millimeter wave electromagnetic radiation. In orderto combine with the projection of our team, in this dissertation, several key issues, suchas no-operating mode suppression, high-order harmonic terahertz gyrotron withhigh-power, high-efficiency from single mode, the problem of two cyclotron beamswith equal velocity in the same magnetic field distribution and electron optical structure,the influence of beam velocity spread, the electron optical system optimal design, andthe connection between the high frequency structure and competition mode, are furtherresearched by studying on the relative theories of gyrotrons and the difficulties indeveloping the terahertz gyrotrons. Some innovative achievements are made.
     Based on the self-consistent nonlinear theory for gyrotron, a kind of graduallytapered cavity with the ability to effectively suppress the parasitic modes is designed,which can improve the purity of the operating mode up to27dB. On account of the stateof the need of the terahertz wave at present, the gradually tapered cavity is adopted toset up a0.4THz second harmonic gyrotron, the results, which is of numerical simulationbased on the self-consistent nonlinear theory, show that the output power could be over150kW with the efficiency of about30%at an electron beam current of9A and avoltage of60kV. A0.6THz second harmonic gyrotron with the same type of structureand operating mode is also designed, whose interaction efficiency and output power areabout21%and over100kW, respectively. Moreover, there are some researches in thetheory of beam-wave interaction of gyrotrons, the electron optical system and theprogram development in the paper. The main work and contributions are shown asfollows:
     1. Based on the coupled-wave theory, a set of generalized telegrapher’s equationsin the first-order differential form for studying the high frequency structure andbeam-wave interaction of gyrotrons is built after the generalized telegraphist’s equationsfor the cylindrical cavity with gradual tapers are studied. Considering the character ofthe gyrotron cavity, the first-order differential equations are adopted to study the high frequency structure and beam-wave interaction of gyrotrons, which will make the theorymore perfectly.
     2. Based on the muti-mode self-consistent nonlinear theory, the theory and methodare advanced to explain the parasitic modes suppression. The high-order TE modeshould be used as the operating mode of a terahertz gyrotron for size effect, which leadsto strong mode competition. Competition modes suppression becomes the point. A kindof gradually tapered cavity with the ability to effectively suppress the parasitic modes isdesigned by analyzing the coupling coefficient and studying the first-order differentialtelegraphist’s equations.
     3. After dealing with the telegraphist’s equations with numerical method, theprograms are designed for cold cavity and muti-mode, self-consistent nonlinearinteraction simulation, and electron optical system optimal design. The main works ofstudying the millimeter wave and sub-millimeter wave gyrotrons are focus on the modelbuilding and efficiently solving by computer. Based on the differential equations forcold cavity, the muti-mode self-consistent nonlinear theory and vector programming forsteady-state self-consistent nonlinear interaction simulation, and PIC for electron opticalsystem optimal design, the corresponding programs are designed.
     4. The models of velocity spread and guiding centre spread of the electron beamare set up. And they are written into the muti-mode self-consistent nonlinear interactionprogram to study the influences to the interaction efficiency. There are lots of factorsaffecting the characters of gyrotrons, besides the high frequency. Beam quality willmake great diffenence to gyrotrons’ action. To make the simulation close to practice, themodels of velocity spread and guiding centre spread of the electron beam are set up.And the effects of the spreads have been discussed.
     5. In order to ensure the validity of the theoretical derivation and the reliability ofthe programs, a great deal of verification activities have been carried out. After theprograms for cold and hot cavity are designed, design and experiments of gyrotrons aredone to prove the correction of the codes besides seting up the calculating models fromthe authority papers and contrasting with professional software.
     6. By studying the theory of Magnetron Injection Gun, the fact of two cyclotronbeams designed with equal velocity in the same magnetic field distribution and electronoptical structure is proved. And a W-band, single-anode Magnetron Injection Gun isdesigned, which is entirely consistent with the demand for engineering.
     7. By the programs, the studies of mode selection, high-frequency structure, modecompetition and nonlinear interaction of the gyrotrons operating at the frequency of94GHz,0.4THz and0.6THz have been respectively carried out in detail.
引文
[1]刘盛纲.太赫兹科学技术的新发展[J].中国基础科学,2006,1:7-12
    [2]王宏飞.改变未来世界的十大技术之一[J].全球科技经济瞭望,2005,4:60-64
    [3] V. Bratman, M. Glyavin. Terahertz gyrotrons: Development and applications[R]. Kharkiv,Ukraine:the Institute of Radiophysics and Electronics of National Academy of Science ofUkraine(IRENASU), Nov.,2011
    [4]张振伟,牧凯军,张存林.太赫兹科学技术的军事应用[J].新时代国防,2009,8:11-16
    [5] S. J. Oh,Y. M. Huh, S. H. Kim, et al. Terahertz pulse imaging of fresh brain tumor[C].36thinternational confererce on Infrared,Millimeter and Terahertz Wave,Houston,TX,USA,Oct.2011,1-2
    [6] G. Chattopadhyay, K. B. Cooper, R. Dengler, et al. A600GHz imaging radar forContraband[C].19th International Symposium on Space Terahertz Technology Detection,Groningen,Holland, April,2008,300-303
    [7] J. E. Bjarnason, T. L. J. han, A. W. M. Lee, et al. Millimeter-wave, terahertz, and mid-infraredtransmission through common clothing[J]. Appl. Phys. Lett.,2004,85(4):519-521
    [8] R. Appleby and H. B. Wallace. Standoff detection of weapons and contraband in the100GHzto1THz region[J].IEEE Trans. on Ant. and Prop.,2007,55(11):2944-2956
    [9] T. Saito, N. Yamada, S. Ikeuti, et al. Generation of high power sub-terahertz radiation from agyrotron with second harmonic oscillation[J]. Physics of plasmas,2012,19(6):063106
    [10] D. Sheen, D. McMakin, and T. E. Hall. Three-dimensional millimeterwave imaging forconcealed weapon detection[J]. IEEE Trans. MTT,2001,49(9):1581–1592.
    [11] C. J. Gibbins. Improved algorithms for the determination of specific attenuation at sea levelby dry air and water vapor, in the frequency range1–350GHz[J]. Radio Sci.,1986,21(6):949–954
    [12] K. B. Cooper, R. J. Dengler, G. Chattopadhyay, et. al. A high-resolution imaging radar at580GHz[J]. IEEE Microwave and Wireless Comp. Lett.,2008,18(1):64-66
    [13]袁学松.双电子注太赫兹辐射源的研究[D].成都:电子科技大学,2008,1-8
    [14]傅文杰.太赫兹电子回旋脉塞器件研究[D].成都:电子科技大学,2010,42-44
    [15]何明霞,陈涛.太赫兹科学技术在生物医学中的应用研究[J].电子测量与仪器学报,2012,26(6):471-483
    [16] E. T. Schlecht, J. J. Gill, R. H. Lin, et al. A520-590GHz crossbar balanced fundamentalschottky mixer[J]. IEEE Microwave and Wireless Components Letters,2010,20(7):387-389
    [17]王成,刘杰,吴尚昀,等.0.14THz10Gbps无线通信系统[J].信息与电子工程,2011,9(3):265-269
    [18] Y. C. Shen, L. Gan, M. Stringer, et al. Terahertz pulsed spectroscopic imaging using optimizedbinary masks[J]. Applied Physics Letters,2009,95(23):231112
    [19] A. W. M. Lee, B. S. Williams, S. Kumar, et al. Real-time imaging using a4.3-THz quantumcascade laser and a320×240microbolometer focal-plane array[J]. IEEE PhotonicsTechnology Letters,2006,18(13):1415-1417
    [20] R. Kohler, A. Tredicucci, F. Beltram, et al. Terahertz semi-conductor heterostructure laser[J].Nature,2002,417:156-159
    [21] M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov. Generation of1.5kW,1-THzcoherent radiation from a gyrotron with a pulsed magnetic field[J]. Physical ReviewLetters,2008,100(1):015101
    [22] T. P. Goodman, F. Felici, and V. S. Udintsev. Polarization issues with high power injection&low power emission in fusion experiments[C]. Radio Frequency Power in Plasmas:Proceedings of the18th Topical Conference, AIP Conference Proceedings, Gent, Belgium,June,2009,1187:551-554
    [23] T. S. Chu, M. Blank, P. Borchard, et al. Development of high power gyrotrons at110GHz and140GHz[C].4th IEEE International conference on Vacumm Electronic,Seoul,South Korea,May,2003,32-33
    [24] M. Thumm. Fre-electron maser vs. gyrotrons: prospects for high-power sources at millimeterand submillimeter wavelengths[J]. Nuclear Instruments and Methords in Physics Research A,2002,483:186-194
    [25] M. K. Thumm. Progress on gyrotrons for ITER and future fusion reactors[J]. IEEE Trans. onPlasma Scinece,2011,39(4):971-979
    [26] S. Sabchevski and T. Idehara. Development of sub-terahertz gyrotrons for novel applications[C]. Infrared Millimeter and Terahertz Waves(IRMMW-THz),36th International Conference,Hostton,TX,USA, Oct.2011,3-4
    [27] T. Idehara, S. Mitsudo, and I. Ogawa. Development of high frequency, highly stable gyrotronsas millimeter to submillimeter wave radiation sources[J]. IEEE Trans. on Plasma Scinece,2004,32(3):910-916
    [28] G. Dammertz, S. Alberti, A. Arnold, et al. Development of multi-megawatt gyrotrons forfusion plasma heating and current drive[J]. IEEE Trans. on Electron devices,2005,52(5):808-817
    [29] B. Levush, and T. M. Antonsen, J. Mode competition and control in high-power gyrotronoscillatoes[J]. IEEE Trans.on Plasma Scinece,1990,18(3):260-272
    [30] M. Thumm. State-of-the-art of high power gyro-devices and free electron masers[M].Karlsruhe:KIT Scientific Press,2012,4-11
    [31] R. Q. Twiss, J. A. Roberts. Electromagnetic radiation from electrons rotating in an ionizedmedium under the action of a uniform magnetic field[J]. Australian Journal of Physics,1958,11(1):424-432
    [32] R. Q. Twiss. Radiation transfer and the possibility of negative absorption in radioastronomy[J]. Australian Journal of Physics,1958,11(1):567-579
    [33] J. Schneider. Stimulated emission of radiation by relativistic electrons in a magnetic field[J].Phys. Rev. Lett.,1959,2(12):504-508
    [34] A. V. Gaponov. Interaction between electron fluxes and electromagnetic waves inwaveguide[J]. Izv Vyssh Uchebn Zaved Radiofiz,1959,2(1):450
    [35] J. L. Hirshfield, J. M. Wachtell. Electron cyclotron maser[J]. Phys. Rev. Lett.,1964,12(19):533-536
    [36] A. V. Gaponov, M. I. Petelin, V. K. Yulpatov. The induced radiation of excited classicaloscillators and its use in high-frequency electronics[J]. Radiophysics Quantum Electronics,1967,10(9):794-813
    [37] J. L. Hirshfield, V. L. Granatstein. The electron cyclotron maser--an historical survey[J]. IEEETrans. Microwave Theory Tech.,1977,25(6):522-527
    [38]刘盛纲.相对论电子学[M].北京:科学出版社,1987,187-351
    [39] K. R. Chu. Theory of electron cyclotron maser interaction in a cavity at the harmomicfrequencies[J]. Phys.Fluids,1978,21(12):2354-2362
    [40] J. L. Seftor, V. L. Granatstein, K. R. Chu, et al. The electron cyclotron maser as a high-powertraveling wave amplifier of millimeter wave[J]. IEEE Journal of Quantum Electronics,1979,QE-15(9):848-853
    [41] R. S. Symons, H. R. Jorry. Cyclotron resonance devices[J]. Advances in electronics andelectron physics,1981,55(1):1-75
    [42] W. Lawson, W. W. Destler, and C. D. Striffler. High power microwave generation from a largeorbit gyrotron[J].1985,NS-32(5):2960-2962
    [43] S. H. Gold and G. S. Nusinovich. Review of high-power microwave source research[J].Review of Scientific Instruments,1997,68(11):3945-3974
    [44] M. Blank, B. G. Danly, and B. Levush. Experimental demonstration of a W-band(94GHz)gyrotwystron amplifier[J]. IEEE Trans. Plasma Sci.1999,27(2):405-411
    [45] C. S. Kou, S. H. Chen, L. R. Barnett, et al. Experimental study of an injection-locked gyrotronbackward-wave oscillator[J]. Phys.Rew.Lett.,1993,70(7):924-927
    [46] R. K. Parker, R. H. Abrams Jr., B. G. Danly, et al. Vacuum electronics[J]. IEEE Trans. MTT.,2002,50(3):835-845
    [47] E. V. Zasypkin, M. A. Moiseev, I. I. Antakov et al. Study of high-power Ka-band second-harmonic gyroklytron amplifier[J]. IEEE Trans. Plasma Sci.,1996,24(3):666-670
    [48] G. P. Saraph, W. Lawson, M. Castle, et al.100-150MW designs of two-and three-cavitygyroklytron amplifiers operating at the fundamental and second harmonics in X-andKu-band[J].IEEE Trans. Plasma Sci.,1996,24(3):671-677
    [49] R. S. Symons, H. R. Jory, S. J. Hegji. An experimental gyro-TWT[C].International ElectronDevices Meeting,PaLo Alto,California,USA,1979,25:676
    [50] Q. S. Wang, D. B. Mcdermott, N. C. Luhmann, et al. Operation of a stable200-kW second-harmonic gyrotron gyro-TWT amplifier[J].IEEE Trans. Plasma Sci.,1996,24(3)700-706
    [51] K. C. Leou, D. B. Mcdermott, N. C. Jr. Luhmann. Large-signal characteristics of a wide-banddielectric-loaded gyro-TWT amplifier[J]. IEEE Trans. Plasma Sci.,1996,24(3):718-726
    [52] M. J. Arman. Plasma-filled gyro-BWO[J].IEEE Trans. Plasma Sci.,1998,26(3):693-697
    [53] Y. Y. Lau, K. R. Chu, L. R. Barnett, et al. Gyrotron travelling wave amplifier:I. Analysis ofoscillations[J]. Int. J. Infrared Millimeter Waves,1981,2(3):373-393
    [54] K. R. Chu, H. Y. Chen, C. L. Gung, et al. Theory and experiment of ultrahigh-gain gyrotrontraveling wave amplifier[J]. IEEE Trans. Plasma Sci.,1999,27(2):391-404
    [55] Advan R., Hogge J.P., Kreischer,K.E., et al. Experimental investigation of a140-GHz coaxialgyrotron oscillator[J].IEEE Trans. Plasma Sci.,2001,39(6):943-950
    [56] M. K. Hornstein, R. G. Griffin, J. Machuzak, et al. A460GHz gyrotron oscillator for use inDNP/NMR spectroscopy[C].IEEE conference on Pulsed power plasma science,LasVegas,NV,USA,Jun,2001,516
    [57] M. K. Hornstein, V. S. Bajaj, R. G. Griffin, et al. Efficient low-voltage operation of a CWgyrotron oscillator at233GHz[J].IEEE Trans. Plasma Sci.,2007,35(1):27-30
    [58] A. H. Mccurdy, C. M. Armstrong. Oscillator prining and preoscillation noise in a gyrotron[J].IEEE Trans. MTT,1998,36(5):891-901
    [59] M. K. Hornstein, V. S. Bajaj, R. G. Griffin, et al. Continuous-wave operation of a460-GHzsecond harmonic gyrotron oscillator[J].IEEE Trans. Plasma Sci.,2006,34(3):524:533
    [60] H. Z. Guo, D. J. Hoppe, J. Rodgers, et al. Phase-locking of a second-harmonic gyrotronoscillator using a quasi-optical circulator to separate injection and output signals[J].IEEE Trans.Plasma Sci.,1995,23(5):822-832
    [61] A. H. Mccurdy, J. S. Plewa. Mode interaction through amplitudes and phases in a two-modegyrotron oscillator[J].IEEE Trans. Plasma Sci.,1992,20(3):139-148
    [62] M. K. Hornstein, V. S. Bajaj, R. G. Griffin, et al. Second harmonic operation at460GHz andbroadband continuous frequency tuning of a gyrotron oscillator[J].IEEE Trans. ElectronDevices,2005,52(5):798-807
    [63] M. Blank, K. Felch, P. Borchard, et al. Demonstration of a high-power Long-pulse140GHzgyrotron oscillator[J].IEEE Trans. Plasma Sci.,2004,32(3):867-876
    [64] V. Alikaev, G. Bobrovskii, M. Ofitserov, et al. Electron-cyclotron heating in the Tokamak Tm-3installation[J].JETP Lett.1972,15(1):27-32
    [65] R. Gilgenbach, M. Read, K. Hackett, et al. Heating at the electron cyclotron frequency in theISX-B Tokamak[J].Phys.Rev.Lett,1980,44(10):647-650
    [66] M. Thumm. Development of output windows for high-power long-pulse gyrotrons and ECwave application[J].International Journal of Infrared and Millimeter Waves,1998,19(1):3-14
    [67] M. Thumm. Progress in gyrotron development[J].Fusion Engineering and Design,2003,36-68:69-90
    [68] K. Sakamoto. Progress of high-power-gyrotron development for fusion research[J]. FusionScience and Technology,2007,52(2):145-153
    [69] M. Thumm, G. Dammertz, G. Gantenbein, et al.10MW,0.14THz,CW Gyrotron and OpticalTransmission System for Millimeter Wave Heating of Plasmas in the Stellarator W7-X[J].Terahertz Science and Technology,2008,1(2):73-99
    [70] V. Erckmann, H. J. Hartfun, M. Kick. The W7-X project: scientific basis and technicalrealization[C].Proc.in17th IEEE/NPSS Symposium on Fusion Engineering,1997,San Diego,USA,1:40-48.
    [71] H. P. Laqua, V. Erckmann, H. J. Hartfu, et al. Resonant and nonresonant electron cyclotronheating at densities above the plasma cutoff by O-X-B mode conversion at the W7-ASstellarator[J].Phys.Rev.Lett.,1997,78(18):34673470
    [72] M. Thumm, X. Yang, A. Arnold, et al. A high-efficiency quasi-optical mode converter for a140-GHz1-MW CW gyrotron[J]. IEEE Trans. on Electron Devices,2005,52(5):818-824.
    [73] M. Thumm, A. Arnold, E. Borie, et al. Frequency step-tunable(114-170GHz) megawattgyrotrons for physics application[J].Fusion Engineering and Design,2001,53(1-4):407-421
    [74] M. Thumm, P. Brand, H. Braune, et al. Progress in the10-MW140GHz ECH system forstellarator W7-X[J].IEEE Trans. on Plasm. Sci,2008,36(2part1):341-355
    [75] V. Erckmann, P. Brand, H. Braune, et al. Electron cyclotron heating for W7-X: physics andtechnology[J].Fusion Sci. Technol.2007,52(2):291-312
    [76] K. Felch, M. Blank, P. Borchard, et al. Recent advances in increasing output power and pulseduration in gyrotron oscillators[C].30th Int. Conf. on Infrared and Millimeter Waves and13thInt. Conf. on Terahertz Electronics, Williamsburg,VA,USA,2005,237-238
    [77] K. Felch, M. Blank, P. Borchard, et al. Recent ITER-relevant gyrotron tests[J].Journal ofPhysics: Conference Series,200525:13-23
    [78] G. Dammertz, S. Alberti, A. Arnold, et al. Development of multimegawatt gyrotrons forfusion plasma heating and current drive[J].IEEE Trans. on Electron Devices,2005,52(2):808-817
    [79] R. Prater. Heating and current driving by electron cyclotron waves[J].Physics of Plasmas,2004,11(5):2349-2376
    [80] R. Harvey, W. Nevins, G. Smith, et al. Electron cyclotron heating and current drive inITER[J].Nuclear Fusion,1997,37(1):69-81
    [81] B. Posczyk, A. Arnold, H. Budig, et al. Towards a2MW, CW170GHz coaxial cavitygyrotron for ITER[J].Fusion Engineering and Design,2003,66(3):481-485
    [82] G. Dammertz, S. Alberti, A. Arnold, et al. High-power gyrotron development atForschungszentrum Karlsruhe for fusion applications[J].IEEE Trans. on Plasm. Sci,2006,34(2):173-186
    [83] M. Thumm, S. Alberti, A. Arnold, et al. EU Megawatt-Class140-GHz CW Gyrotron[J].IEEE Trans. on Plasm. Sci,2007,32(5):143-153
    [84] M. K. Thumm. Progress on Gyrotrons for ITER and Future Fusion Reactors[J].RadioFrequency Power in Plasmas. AIP Conference Proceedings,2009,1187:21-28
    [85] T. Idehara, M. Kamada, H. Tsuchiya, et al. Development of an Ultra High FrequencyGyrotron with a pulsed magnet[C].7th Workshop on High Energy Density and High Power RF.AIP Conference Proceedings, Kalamata, Greece, January,2006,807(1):197-204
    [86] M. Y.. Glyavin, A. G. Luchinin, G. S. Nusinovich, et al. A670GHz gyrotron with recordpower and efficiency[J].Appl. Phys. Lett.2012,101(15):153503,.
    [87]刘迎辉.回旋速调放大器理论与模拟研究[D].成都:电子科技大学,2009,2-65
    [88] C. A. Torrezan, M. A. Shapiro, J. R. Sirigiri, et al. Operation of a continuously frequency-tunable second harmonic CW330GHz gyrotron for dynamic nuclear polarization[J].IEEETrans. on Electron devices,2011,58(8):2777-2783
    [89] T. Saito, N. Yamada, S. Ikeuti, et al. Generation of high power sub-terahertz radiation from agyrotron with second harmonic oscillation[J].Physics of plasmas,2012,19(6):063106
    [90] G. P. Saraph, T. M. Antonsen, Jr., G. S. Nusinovich, et al. A study of parametric instability in aharmonic gyrotron:Designs of third harmonic gyrotrons at94GHz and210GHz[J]. Physics ofplasmas,1995,2(7):2839-2846
    [91] Y. Huang, H. F. Li, S. W. Yang, et al. Study of a35-GHz Third-Harmonic Low-VoltageComplex Cavity Gyrotron[J].IEEE Trans.Plasma Science,1999,27(2):368-373
    [92] H. F. Li, Z. L. Xie, W. X. Wang, et al. A35-GHz low-voltage third-harmonic gyrotron with apermanent magnet system[J].IEEE Transactions. on Plasma Science,2003,31(2):264-271
    [93] T. Idehara, S. Mitsudo, and I. Ogawa. Development of High-Frequency, Highly StableGyrotrons as Millimeter to Submillimeter Wave Radiation Sources[J].IEEE Trans. on PlasmaScience,2004,32(3):910-915
    [94] M. Hornstein, V. S. Bajaj, R. G. Griffin, et al. Second Harmonic Operation at460GHz andBroadband Continuous Frequency Tuning of a Gyrotron Oscillator[J].IEEE Transactions onElectron Devices,2005,52(5):798-807
    [95] K. D. Hong, G. F. Brand, and T. Idehara. A150-600GHz step-tunable gyrotron[J].Journal ofAppl. Phys.1993,74(8):5250-5258
    [96] T. Idehara, S. Mitsudo, R. Pavlichenko, et al. Development of Frequency Tunable,Submillimeter Wave Gyrotron FU Series for Plasma Diagnostics[J].AIP ConferenceProceedings,2003,669:68-70
    [97] M. Thumm. State of the art of high power gyro-devices and free electron maser[M].Karlsruher:KIT Scientific Publishing,2010,16-44
    [98] S. H. Kao, C. C. Chiu, and K. R. Chu. A study of sub-terahertz and terahertz gyrotronoscillators[J].Phys. of Plasmas,2012,19(2):023112
    [99] T. Idehara, I. Ogawa, H. Mori, et al. A THz gyrotron FU CW III with a20T superconductingmagnet[C].33rd International Conference on Infrared, millimeter and TherahertzWaves,IRMMW-2008,Pasadena,CA,Sept.,2008,1-2
    [100] T. Notake, T. Saito, Y. Tatematsu, et al. Development of a novel high power sub-THz secondharmonic gyrotron[J].Physical Review Letters,2009,103(22):225002
    [101] M. Thumm. State of the art of high power gyro-devices and free electron maser[M].Karlsruher:KIT Scientific Publishing,2011,28-30
    [102] T. L. Grimm, Kreischer, K.E. Guss, et al. Experimental study of a megawatt200-300GHzgyrotron oscillator[J].Physical Fluids,1993, B5,4135-4143
    [103] S. Alberti, J. P. Ansermet, K. A. Avramides, et al. Experimental study from linear to chaoticregimes on a terahertz-frequency gyrotron oscillator[J].Phys. of Plasmas,2012,19(12):123102
    [104] A. V. Savilov. Electron cyclotron maser based on the combination two-wave resonance[J],Journal of Applied Phys,2012,112(9):094509
    [105] V. L. Bratman, A. A. Bogdashov, G. G. Denisov, et al. Gyrotron Development for HighPower THz Technologies at IAP RAS[J].J. Infrared Milli. Terahz Waves,2012,33(4):715-723
    [106] O. Dumbrajs and G. S. Nusinovich. On optimization of sub-THz gyrotron parameters[J].Phys. of Plasmas.2012,19(10):103112
    [107] G. S. Nusinovich, P. Sprangle, V. E. Semenov, et al. On the sensitivity of terahertz gyrotronbased systems for remote detection of concealed radioactive materials[J].Journal of Phys.2012,111(12):124912
    [108] B. Piosczyk, F. Albajar, S. Alberti, et al. Status of the2MW,170GHz Coaxial CavityGyrotron for ITER[R].Vienna, Austria,4th IAEA Meeting on ECRH Physics and Technologyfor ITER,June,2007
    [109] M. Y.. Glyavin, N. S. Ginzburg, A. L. Golden, et al. THz Gyrotrons: Status and PossibleOptimizations[J].Terahertz Science and Technology,2012,5(2):67-77
    [110] M. Y.. Glyavin, A. G. Luchinin and Y. V. Rodin. Generation of5kW/1THz coherentradiation from pulsed magnetic field gyrotron[C].35th International Conference on Infrared,millimeter and Therahertz Waves, IRMMW-2010, Rome, Italy, Sept.,2010,1-3
    [111] M. Thumm. History, Presence and Future of Gyrotrons[C].Vacuum Electronics Conference2009IVEC'09:Rome, Italy, April,2009,37-40
    [112] A. A. Tolkachev, B. A. Levitan, G. K. Solovjev, et al. Megawatt power millimeter-wavephase-array radar[J]. IEEE Aerospace and Electronic Systems Magazine,2000,15(7):25-32
    [113] I. I. Antakov, E. V. Zasypkin, E. V. Sokolov, et al.35GHz radar gyroklystrons[C]. Digest18th international conference on Infrared and Millimeter Waves, Colchester, England,September,1993,2104:338-339
    [114] M. Blank, K. Felch, B. G. James, et al. Development and demonstration of high-averagepower W-band gyro-amplifiers for radar applications[J].IEEE Transactions. on PlasmaScience,2002,30(31):865-875
    [115] R. L. Ives, J. M. Neilson, M. Read, et al.10MW,91GHz gyroklystron for high frequencyaccelerator research[C].Proceedings of the2003Particle Accelerator Conference, Portland,May,2003,2:1119-1121
    [116] J. L. eftor, V. L. Granatstein and K. R. Chu. The electron cyclotron maser as a high powertravelling-wave amplifier of millimeter waves[J].IEEE J. Quantum Electron,1979,15(2):848-853
    [117] K. R. Chu, A. T. Drobot. Theory and simulation of the gyrotron travelling wave amplifieroperating at cyclotron harmonics[J].IEEE Trans. MTT.,1980,28(2):313-317
    [118] L. R. Barnett, J. M. Baird, Y. Y. Lau, et al. A high gain single stage gyrotron travelling waveamplifier[J].IEDM Tech. Dig.,1980,1(2):314-317
    [119] Y. Y. Lau and K. R. Chu. Gyrotron travelling wave amplifier-A proposed wideband fastwave amplifier[J].Int. J. Infrared Millimeter Waves,1981,2(1):415-425
    [120] R. S. Symons, H. R. Jory and S. J. Hegji. An experimental gyro-TWT[J].IEEE Trans. MTT.,1981,29(2)181-184
    [121] L. R. Barnett, L. H. Chang, H. Y. Chen, et al. Absolute instability competition andsuppression in a millimeter-wave gyrotron traveling-wave tube[J].Phys. Rew. Lett.,1989,63(1):1062-1065
    [122] K. R. Chu, L. R. Barnett, W. Lau, et al. A wide-band millimeter-wave gyrotron travelling-wave amplifier experiment[J].IEEE trans. on Electron Devices,1990,37(6):1557-1560
    [123] Q. S. Wang, C. S. Kou, D. B. McDermott, et al. High-Power harmonic gyro-TWT's—Part II:Nonlinear theory and design[J].IEEE Transactions. on Plasma Science,1992,20(3):163-169
    [124] K. R. Chu, H. Y. Chen, C. L. Hung et al. Ultra high gain gyrotron travelling-waveamplifier[J]. Phys. Rew.Lett.,1998,81(1):4760-4763
    [125] K. R. Chu, L. R. Barnett, H. Y. Chen et al. Stabilizing of absolute instabilities in gyrotrontravelling-wave amplifier[J].Phys. Rew.Lett.,1995,74(1):1103-1106
    [126] K. R. Chu. Overview of research on gytotron travelling-wave amplifier[J].IEEE Trans.Plams. Sci.,2002,3(3):903-908
    [127] K. R. Chu, H. Y. Chen, C. L. Hung et al. Theory and experiment of ultrahigh gain gyrotrontravelling-wave amplifier[J].IEEE Trans. Plams. Sci.,1999,27(2):391-404
    [128] D. B. Mcdermott, H. H. Song, Y. Hirata et al. Design of a W-band TE01gyro-TWT with highpower and broadband capabilities[C].IEEE International Conference on PlasmasScience,Banff, Canada,May,2002,184
    [129] D. B. Mcdermott, H. H. Song, Y. Hirata et al. Design of a W-band TE01mode gyrotrontravelling-wave amplifier with high power and broadband capabilities[J].IEEE Trans. Plams.Sci.,2002,30(3):894-902
    [130] Y., Huang, H. F. Li, P. Z Du., et al. Third-harmonic complex cavity gyrotron self-consistentnonlinearanalysis[J].IEEE Trans. Plams. Sci.,1997,25(6):1406-1411
    [131]李宏福,杜品忠,杨仕文,等.突变复合腔回旋管自洽场理论与模拟[J].物理学报,2000,49(2):312-317
    [132]郭建华.回旋放大器注波互作用的数值模拟研究[D].成都:电子科技大学,2012,5-10
    [133] P. K. Liu, S. C. Zhang, S. X. Xu et al. Experimental studies of a Ka-band second harmonicgyroklystron amplifier[C].The35th Conference on Infrared, Millimeter and TerahertzWaves,Rome,Italy,Sept.,2010,5
    [134] H. Z. Guo, D. S. Wu, G. Liu, et al. Special complex open-cavity and low-magnetic-fieldhigh-power gyrotron[J].IEEE Trans. Plams. Sci.,1990,18(3):326-333
    [135] M. V. Kartikeyan, E. Borie, M. K. A. Thumm. Gyrotrons:High Power Microwave andmillimeter wave technology[M].New York: Springer press,2004,67-95
    [136] M. Yeddulla, G. S. Nusinovich, and T. M. Antonsen. Start current analysis of a140GHz CPIgyrotron[C].Workshop on High-Energy Density and High Power RF(RF2003),6th, BerkeleySprings, West Virginia,AIP Conference Proceedings,June,2003,691(1):417-424
    [137] M. Yeddulla, G. S. Nusinovich and T. M. Antonsen, Jr.. Start currents in an overmodedgyrotron[J].Physics of plasmas,2003,10(11):4513-4520
    [138] A. V. Savilov, G. S. Nusinovich. On the theory of frequency-quadrupling gyroklystrons[J].Physics of plasmas,2007,14(5):053113
    [139] A. W. Fliflet, M. E. Read, K. R. Chu, et al. A self-consistent field for gyrotron oscillators:application to a low Q gyromonotron[J].International Journal of Electronics,1982,53(6):505-521
    [140] A. K. Gangulyand and S. Ahn. Self-consistent large signal theory of the gyrotron travellingwave amplifier[J].Int. J. Electronics,1982,53:641-658
    [141] G. S. Nusinovich, M. Yeddulla, T. M. Antonsen Jr, et al. Start-Up scenario in Gyrotrons witha Nonatationary Microwave-Field structure[J].Physical Review Letters,2006,96(12):125101
    [142] B. Levush, and T. M. Antonsen, Jr.. Mode competition and control in high-power gyrotronoscillatoes[J].IEEE Trans. Plasma Scinece,1990,18(3):260-272
    [143] D. G. Kashyn, G. S. Nusinovich, O. V. Sinitsyn, et al. Single-Mode excitation inHigh-Power Gyrotrons by Controlling Gun Perveance[J].IEEE Trans. Plasma Scinece,2010,38(6):1160-1167
    [144] G. S. Nusinovich, R. F. Pu, O. V. Ainitsyn, et al. Self-excitation of a tapered gyrotronoscillator[J].IEEE Trans. Plasma Scinece,2010,38(6):1200-1207
    [145] G. S. Nusinovich, O. V. Sinitsyn, L. Velikovich, et al. Startup scenarios in high-powergyrotrons[J].IEEE Trans. Plasma Scinece,2004,32(3):841-852
    [146] O. V. Sinitsyn, G. S. Nusinovich, and T. M. Antonsen, Jr. Stability of gyrotron operation invery high-order modes[J].Physics of plasma,2012,19(6):063114
    [147]王华军.回旋管电子枪CAD[D].成都:电子科技大学,2001,40-57
    [148] K. E. Kreischer, R. J.Temkin. Linear theory of an electron cyclotron maser operating at thefundamental[J].Int. J. Infrared Milli. Waves,1980,1(2):195-223
    [149] P. Vitello and C. Menyuk. Theory of high-harmonic gyrotron oscillators with slotted crosssection structure[J].IEEE Trans. Plasma Scinece,1988,16(2):105-115
    [150] B. G. Danly and R. J. Temkin. Generalized nonlinear harmonic gyrotron theory[J]. Physicsof Fluids,1986,29(2):561-567
    [151] N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, et al. Nonlinear Dynamics of Planar Gyrotronswith Transverse Diffraction Coupling of Radiation[J].Technical physics,2012,57(8):1135-1142
    [152] A. W. FliAet, R. C. Lee, S. H. Gold, et al. Time-dependent multimode simulation ofgyrotron oscillators[J].Phys. Review A,1991,43(11):6166-6176
    [153] C. N. L. Davies. A unified theory of gyrotron and peniotron interaction[J].Physics of Fluids,1992,B4(4):1047-1057
    [154] M. V. Oleinik and D. I. Trubetskov. A Small Signal Theory of Gyro-Devices Using theConcept of Space-Charge Waves[J].IEEE Trans. Plasma Scinece,1996,24(3):707-717
    [155] A. V. Gaponv. Interaction between irretilinear electron beams and electromagnetic waves intransmission lines[J].Izv,Vuzov. Radoifiz.,1959,2:836-837
    [156] A. Grudiev, J. Jelonnek, and K. Schunemann. Time-domain analysis of reflections influenceon gyrotron operation[J].Physics of plasmas,2011,8(6):2963-2973
    [157] A. N. Vlasov, and T. M. Antonsen, Jr.. Numercial solution of field in lossy structures usingMAGY[J].IEEE Trans. Electron devices,2001,48(1):45-55
    [158] M. Botton, T. M. Antonsen, Jr., B. Levush, et al. MAGY:A time-dependent code forsimulation of slow and fast microwave sources[J].IEEE Trans. Plasma Scinece,26(3):882-892
    [159] B. Ashutosh, R. Chandra, and P. K. Jain. Multimode behavior of a42GHz,200kW Gyrotron[J].Progr. in Electr. Research B,2012,42:75-91
    [160]黄宏嘉.微波原理(卷I)[M].北京:科学出版社,1963,1-306
    [161] H. F. Li and M. Thumm. Mode coupling in corrugated waveguides with varying wallimpedance and diameter change[J].Int. J. of Electr.,1991,71(5):827-844
    [162]黄勇.35GHz三次谐波复合腔回旋管理论及模拟研究[D].成都:电子科技大学,2001,29-42
    [163]喻胜.腔体回旋脉塞的研究[D].成都:电子科技大学,2002,11-33
    [164] T. Song and T. Mulcahy. A large orbit electron gun design for a terahertz harmonic gyrotron[J].Int. J. of Electromagn. Waves and Sppl.,2011,25:1437-1447
    [165] C. R. Donaldson, W. L. He, A. W. Cross. Design and Numerical Optimization of aCusp-Gun-Based Electron Beam for Millimeter-Wave Gyro-Devices[J].IEEE Trans. PlasmaScinece,2009,37(11):2153-2157
    [166] G. P. Scheitrum, R. S. Symons, and R. B. True. Low velocity spread axis encircling electronbeam forming system[C].IEDM Tech. Dig.Washington D.C,USA,1989,743-746
    [167] S. G. Jeon, C. W. Baik, D. H. Kim, et al. Study on velocity spread for axis-encirclingelectron beams generated by single magnetic cusp[J].Appl. Phys. Lett.,2002,80(20):3703–3705
    [168] J. X. Wang, Y. Luo, and N. Luhmann,Jr.. The Simulation of a High-PowerLow-Velocity-Spread Space-Charge-Limited (SCL) Cusp Gun[J].IEEE Trans. PlasmaScinece,2010,38(12):3356-3362
    [169] E. Borie. Review of gyrotron theory[M]. Karlsruher:KIT Scientific Publishing,1991,7-17
    [170]雷朝军,喻胜,李宏福,等.缓变回旋管谐振腔研究[J].物理学报,2012,61(18):180202
    [171] C. J. Lei, S. Yu, H. F. Li, et al. Development of high-power gyrotrons with gradually taperedcavity [J].Physics of Plasmas,2012,19(12):122116
    [172] E. M. Choi, M. A. Shapiro, J. R. Sirigiri, et al. Experimental observation of the effect ofaftercavity interaction in a depressed collector gyrotron oscillator[J]. Physics of plasmas,2007,14(9):093302
    [173] M. Thumm. Gyro-Devices and their Applications[C]. Vacuum Electronics Conference(IVEC),2011IEEE,Bangalore,India, Feb.2011,521-524
    [174] C. J. Lei, S. Yu, H. F. Li, et al. Numerical study on a0.4THz second harmonic gyrotron withhigh power[J]. Physics of Plasmas,2013,20(7):072108
    [175] C. J. Edgcombe. Gyrotron Oscillators:Their Principles and Practice[M]. London: Taylor&Francis Group,1993,123-254
    [176] M. V. Kartikeyan, E. Bore, M. K. A. Thumm. Gyrotrons High Power microwave andmillimeter Wave Technology[M].New York: Springer press,2004,91-98
    [177] J. J. Barroso, R. A. Correa, and P. J. D. Castro. Gyrotron coaxial cylindrical resonators withcorrugated inner conductor: theory and experiment[J].IEEE Trans. on Microwave andTechniques,1998,46(9):1221-1230
    [178] A. V. Savilov, G. S. Nusinovich. On the theory of frequency-quadrupling gyroklystrons[J].Physics of plasmas,2007,14(5):053113
    [179] N. Kumar, A. Kumar, U. Singh, et al. Thermal and structural analysis of interaction cavityand its effect on the operating mode excitation for a120GHz,1MW gyrotron[J].Int. J.Thermophys,2011,32(5):1038-1046
    [180] M. I. Airila and O. Dumbrajs. Generalized gyrotron theory with inclusion of adiabaticelectron trapping in the presence of a depressed collector[J].Physics of plasmas,2001,8(4):1385-1362
    [181] O. Dumbrajs and J. P. T. Koponen. Generalized gyrotron theory with inclusion of electronvelocity and energy spreads[J].Physics of plasmas,1999,6(6):2618-2621
    [182] R. F. Pu, G. S. Nusinovich, O. V. Sinitsyn, et al. Numerical study of efficienncy for a670GHz gyrotron[J].Physics of plasmas,2011,18(2):023107
    [183] N. A. Zavolsky, V. E. Zapevalov, and M. A. Moiseev. Influence of the energy and velocityspread in the electron beam on the starting conditions and efficiency of a gyrotron[J].Radiophysics and Quantum electronics,2006,49(2):108-119
    [184]杜秉初,汪健如.电子光学[M].北京:清华大学出版社,2002,58-65
    [185] C. B. Liu, Thomas M. Antonsen, Jr. et al. Simulation of the velocity spread in magnetroninjection guns[J]. IEEE Trans. Plasma Scinece,1996,26(3):982-991
    [186] W. Lawson. Magnetron Injection Gun Scaling[J].IEEE Trans. Plasma Scinece,1988,16(2):290-294
    [187]李声沛.回旋管电子枪设计的简化模型方法[J].电子科学学刊,1983,5(2):108-114
    [188]王文祥.微波工程技术[M].北京:国防工业出版社,2009,385-390
    [189] C. J. Lei, S. Yu, X. J. Niu, et al. Design and simulation of94GHz Magnetron InjectionGun[C].13th IEEE International conference on Vacuum Electronics, Monterey, CA, April,2012, pp.513-514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700