碳纤维加固钢筋混凝土连续梁结构的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多钢筋混凝土连续梁由于长期受到自然因素以及超载的作用发生了严重地破坏。目前采用碳纤维加固钢筋混凝土连续梁并未在实际工程中被应用,主要由于碳纤维加固钢筋混凝土连续梁的变形特点与力学机理尚未弄清。如果能在连续梁加固中采用此种加固法,将会是一个新的尝试。本文根据此项加固技术的特点,开展了以下一系列卓有成效地工作:
     1、基于碳纤维加固钢筋混凝土连续梁的结构组成和力学特点,建立碳纤维加固钢筋混凝土连续层合梁的非线性理论模型,模型计算结果与试验结果吻合较好,精度高。用经典层合理论解释了碳纤维加固后的连续梁结构在刚度、挠度、裂缝、正负弯矩重新分布的规律以及梁内塑性区域发展情况。
     2、通过在负弯矩区域合理地粘贴碳纤维,将4米长的简支梁转换为两跨1.8米的连续梁,并对碳纤维加固的钢筋混凝土连续梁进行了试验研究,观察了加固后的连续梁的变形过程、受力特点和破坏现象,分析了碳纤维与混凝土界面粘结剪应力的分布规律与剥离破坏引起的原因。
     3、对界面粘结胶层进行了温度可靠性研究,通过试验考察了温度变化后粘结区域内碳纤维表面应变的分布规律。并基于弹性理论建立了界面温度理论模型,研究了温度变化后界面温度剪应力及碳纤维表面应变分布规律,计算结果与试验结果吻合较好。
     4、对碳纤维加固的混凝土界面试件分别进行了-45oC至50oC的温度冻融疲劳荷载试验,揭示出胶层粘结性能受温度冻融影响的变化情况,为寒冷地区的加固工程提供依据。
In recent years, carbon fiber reinforced concrete bridge technology has been widely used in a number of simply supported bridge strengthening works, which has been made fine reinforcing effect. However, carbon fiber reinforced concrete continuous beam bridge technology has not been studied in further. As a result of the mechanical characteristics of reinforced concrete continuous beam are very different from reinforced concrete simply supported beam, the reinforcement of hyperstatic structure, mechanism of the structure, mechanical model are more complicated and not clear. If we use such of reinforcement methods in continuous beam reinforcement, that will be a new attempt.
     In this paper, all the works is in-depth study. It relies on the project of Ministry of Communications -- <> (2003353322100). A series of research about reinforced carbon fiber reinforced concrete continuous beam structure is carried out, such as theoretical research, experimental study and other effective works. As follows:
     First, the carbon fiber reinforced concrete continuous beam was researched based on laminated theory, reinforced concrete continuous beam after carbon fiber reinforced is a complex mechanical system, the author used composite structure theory studied it in this paper, and introducted the classical laminated theory, and established the calculation model of reinforced concrete continuous beam structure by carbon fiber reinforced. The model was verified the accuracy by ANSYS. The model shows that the theory has a higher accuracy. This model accurately reveals that the mechanical behavior of carbon fiber reinforcement for the reinforced concrete continuous beam structure and the status of the deformation. We investigated that changing parameters such as strength of concrete, structure changes in the size affect extent to the structure after reinforcement. The model based on the laminated theory was set by non-linear theory. If we use carbon fiber to reinforce the higher statically indeterminate concrete continuous beam structure, it has a great significance. The author prepared the non-linear program, the program can be used in the beam bending calculation and improve the calculation speed. It has a certain practical significance. So far, appling the theory of laminated carbon fiber reinforced concrete continuous beam structure has not been reported in all the carbon fiber reinforced concrete continuous beam theory study. This developed a new theoretical study ideas for the reinforced carbon fiber reinforced concrete continuous beam.
     Second, the carbon fiber reinforced concrete continuous beam bending properties of the structure was researched. We pasted carbon fiber in the negative moment region reasonably, successful turned a 4m simply supported beam into a 1.8m long two-span continuous beam. Which lacked of reinforced bars in the negative moment region. The structural conversion of the mechanical system of " simply supported to continuous " is effectively.
     And researched the bending performance, anti-bend capacity analysis of converted structure system by test, investigated affecting extent of reinforcement of the paste pattern and some mechanical properties after reinforcement.
     Test results show that pasting carbon fiber in the negative moment region can effective improve the mechanical properties of the original structure with weak negative bending moment, improve load-bearing capacity of the structure. The pasting of carbon fiber on the reinforced concrete continuous beam caused re-distribution of the internal bending moment, and improved outstanding. Continuous beam structure of reinforced concrete is the moment of regional paste carbon fiber structure of the internal bending moment of the re-distribution of improved. The cracking load, yield load, ultimate load, stiffness and flexural capacity of structure could be enhanced. In the elastic stage, every indicator of carbon fiber reinforced concrete continuous beam didn’t improve great, the level of limit load enhanced larger than yield load. It illustrated that carbon fiber has played a greater role in the latter stage.
     Subsequently, the author researched temperature reliability of bonding layer on theory and experiment, demonstrated that the interfacial shear specimen can instead of interfacial bending specimen in theory. The interfacial shear specimen can be used to study the temperature shear stress generated by temperature change in the bonding layer. And it is equivalent and reliable on this problem. Based on elasticity theory, the author set up an analytical model of temperature shear stress on the interface between carbon fiber and concrete.
     1) The author nalysis the interface shear stress and carbon fiber surface temperature strain distribution discipline under different temperature conditions. And determined quantitative effect of bonded interface shear stress when we changed the parameters such as the thickness of bonding layer, the thickness of carbon fiber pasted on the interface about this model. It included difference at different temperatures and the same temperature difference.
     2) According to theoretical results, an appropriate increase in the thickness of bonding layer can reduce the interface temperature shear stress of the end, and increasing the thickness of carbon fiber will cause the end of the interface temperature shear stress increase. In the project, we should pay attention to the shear stress of bonding layer which generated by the changes of temperature, if necessary, taking appropriate anchor.
     3) We made repeated high-low temperature cycling test with reinforced interfacial shear specimen, studied fatigue strength of the bonding layer between the carbon fiber and the concrete interface. The test result shows that temperature fatigue property of the bonding layer is fine. Under repeated freeze-thaw cycles, the bond strength of interface changed unsignificantly. The research work for carbon fiber reinforced concrete structure design and safety assessment is important.
引文
[1]蒙云.桥梁加固与改造[M].重庆:重庆大学出版社,1989.
    [2]张澎曾,殷宁骏,杨梦蛟.混凝土旧桥的评估与加固[J].铁道建筑,1994 (11):9-13.
    [3]谌润水,胡钊芳,帅长斌.公路旧桥加固技术与实例[M].北京:人民交通出版社,2002.
    [4]郭永深,叶见曙.桥梁技术改造[M].北京:人民交通出版社,1991.
    [5]杨庆国,李祖伟等.粘贴钢板加固钢筋混凝土结构的几个问题[C].中国公路学会.2001年全国公路桥梁维修与加固技术研讨会论文集.昆明.2001:145-148.
    [6]杨文源,徐彝.桥梁维修与加固[M].北京:人民交通出版社,1994.
    [7]曹双寅,孙永新,朱海峰等.粘贴钢板加固梁粘结锚固性能的试验研究[J].工业建筑.2000,30(2):4-7.
    [8] Nikolaos Plevris,Thanasis C.Triantafillou,and Danielle Veneziano. Reliability of RC members strengthened with CFRP laminates[J], Journal of Structural Engineering,1995(6),Vol.121,No.7:1037-1044.
    [9] Hamid Saadatmanesh,Mohammad R.Ehsani. RC beams strengthened with GFRP plates,I: Experimental study[J].Journal of Structural Engineering, 1991(9),Vol.117,No.ll:3417-3433.
    [10] Japanese Society of Civil Engineers. Recommendations for Upgrading of Concrete Structures with Use of Continuous Fiber Sheets[C]. Japanese Society of Civil Engineers, 2001
    [11] Design guidance for strengthening concrete structures using fiber composite materials[C]. Concrete Society Committee Technical Report No. 55.Century House, Telford Avenue,Crowthorne,Berkshire RG45 6YS,UK. 2000.40-42.
    [12] Takeda,Koji,Mitsui,Yoshiyuki,Murakami,Kiyoshi.Flexural behav- iour of reinforced concrete beams strengthened with carbon fibre sheets[J]. Source:Composites-Part A:Applied Science and Manufa- cturing,1996,Vo1.27, No.l0:981-987.
    [13] Ng,S.C. Lee,S. A study of flexural behavior of reinforced concrete beam strengthened with carbon fiber-reinforced plastic (CFRP)[J]. Source:Journal of Reinforced Plastics and Composites,2002,VOL.21,NO.10:919-938.
    [14] Kim, Sang Hun Aboutaha, Riyad S. Ductility of carbon fiber reinforced polymer(CFRP) strengthened reinforced concrete beams: Experimental investigation [J].Source:Steel and Composite Structures, 2004(10),VOL.4,NO.5:333-353.
    [15] C.Allen Ross,David M.Jerome,JosephW Tedesco,and Mary L.Hughes, Strengthening of reinforced concrete beams with externally bonded composite laminates[J],ACI Structural Journal,1999(3-8),Vol.96, No.2:212-220.
    [16] Philip A.Ritchie. Beams strengthened with FRP plates[J].Journal of Structural Engineering,1991(11).
    [17] Nikolaos Plevris, Thanasis C.Triantafillou,Time-dependent behav- ior of RC members strengthened with FRP laminates[J], Journal of Structural Engineering,1994(3),Vol.120,No.3:1016-1041.
    [18] Thanasis C. Triantafillou,Nikola Deskovic,Innovative prestress- ing with with FRP sheets:Mechanics of short-term behaveior, Journal of Engineering Mechanics,1991(6),Vol.117,No.7:1652-1671.
    [19] Deng,Y.(PBS and J),Toutanji,H. Fatigue performance of RC beams strengthened with inorganic carbon composites[J].Source: International SAMPE Technical Conference.SAMPLE.2004:2855-2869.
    [20] Ei-Hacha,Raafat Wight,R.Gordon,Green,Mark F. Prestressed carbon fiber reinforced polymer sheets for strengthening concrete beams at room and low temperatures[J]. Source: Journal of Composites for Construction, 2004(1-2),VOL.8,NO.1:3-13.
    [21]曹国辉,邓洁.FRP片材加固钢筋混凝土梁变形性能研究[J].工程设计与建设.VOL.37,NO.1,2005(2).P:18-21.
    [22]王荣国,代成琴,刘文博,张晓晶.CFRP加固混凝土梁抗弯极限承载力计算分析[J],哈尔滨工业大学学报.第34卷第3期2002年6月,P:312-319.
    [23]叶列平等.碳纤维布加固钢筋混凝土板二次受力性能的试验研究.中国纤维增强塑料混凝土结构学术交流会,2000,P:83-91.
    [24]周仕刚,高永飞.CFRP加固初始受载钢筋砼梁弯曲性能的试验研究[J].玻璃钢/复合材料. 2003年第1期.3-6.
    [25]谢剑,赵彤,杨建江.应用碳纤维布增强钢筋混凝土梁受弯承载力新技术[J].水利水电技术.2001,VOL.32,NO.8,P:12-17.
    [26]谢剑,赵彤,王亨.碳纤维布加固钢筋混凝土梁受弯承载力设计方法的研究[J].建筑技术.2002,VOL.33.NO.6,P:411-413.
    [27]吴刚,吕志涛.外贴碳纤维布加固混凝土梁的抗剪设计方法[J].工业建筑,2000, VOL.30,NO.10.P:35-39.
    [28]张国栋,朱暾.丁红瑞.碳纤维加固二次受力梁斜截面抗剪的试验研究[J]. 2001(2),VOL.23,NO.1,P:24-27.
    [29]李松辉,赵国藩,王松根.CFRP加固混凝土梁各受力阶段的剥离机理[J].工程力学.2005(12),Vol.22.No.1,P:153-158.
    [30]陆新征,叶列平,庄江波.外贴FRP抗剪加固剥离破坏设计公式综述[J]。工业建筑.20004,增刊,P:30-36.
    [31]李果,王文炜,王国成.FRP加固的钢筋混凝土梁剥离破坏研究综述[J].2003,NO.8混凝土P:37-42.
    [32]杨勇新,岳清瑞,叶列平,胡云昌.碳纤维布加固混凝土梁的剥离破坏[J].工程力学.2004(10),VOL.21,NO.5,P:150-156.
    [33]王立军,周占学,徐敬军,冯海瑛.碳纤维布增强柱受剪承载力的试验研究[J].河北建筑科技学院学报.2005(6),VOL.22.NO.2. P:42-44.
    [34]李锁全,张岩俊,孟丽军.碳纤维布加固钢筋混凝土柱正截面承载力分析[J].山西建筑. 2005(6),VOL.31NO.12,P: 43-44.
    [35]谢剑,刘明学,赵彤.碳纤维布提高高强混凝土柱抗震能力评估方法[J].天津大学学报.VOL.38,NO.2.2005(2),P: 109-113.
    [36]冼巧玲,易伟建,丁洪涛.粘贴碳纤维布(CFRP)钢筋混凝土偏压柱试验研究[J] 2004,11期.P:78-81.
    [37]陆洲导,洪涛,谢莉萍.碳纤维加固震损混凝土框架节点抗震性能的初步研究[J].工业建筑.2003,VOL,33,NO.2.P:9-12.
    [38]欧日强,赵新铭,吴瑾.预应力碳纤维布加固RC梁抗弯性能研究[J].隧道建设.2006.26(2):12-15.
    [39]岳清瑞,李庆伟,杨勇新.预应力碳纤维布放张时受力性能分析[J].工业建筑.2006,36(4):1-4.
    [40]梅力彪,张俊平.预应力碳纤维板加固混凝土梁的粘结锚固性能试验研究[J].工业建筑.2006.36(4):15-18.
    [41]袁旭斌,贺拴海,宋一凡.粘贴纤维布加固RC梁的受弯裂缝计算方法[J].中国公路学报.2006,19(3):54-58.
    [42]邓宗才.碳纤维布增强钢筋混凝土梁抗弯力学性能研究[J].中国公路学报,2001, 14(2):45-51.
    [43]吴文清,徐学东编译.外贴纤维增强塑料板的混凝土结构加固新技术[J].国外公路,1999:53-56. [44 ]杨玉凤,许宏元.碳纤维预应力混凝土梁[M].国外桥梁,2001.1.
    [45]陈开利.CFRP材料在桥梁加固工程中的应用[J].桥梁建设,2001:44-45.
    [45]姜辉,周履.碳纤维加劲塑料在桥梁工程中的应用[M].桥梁建设,1999.3.
    [47]王牧,张立宁.碳纤维加固桥梁新技术[J].森林工程.2002.18(4):48-49.
    [48]岳清瑞.我国碳纤维(CFRP)加固修复技术研究应用现状与展望[J].工业建筑.2000.30(10):23-26.
    [49]肖菲菲,周朝阳.粘贴预应力纤维片材加固混凝土梁截面非线性分析[J].铁道科学与工程学报.2005.2(5):41-44.
    [50]混凝土结构设计规范(GB50010—2002)[M].2002.
    [51]碳纤维片材加固混凝土结构技术规程(CECS146:2003)[M]. 2003.
    [52]曹国辉,方志,吴继峰.FRP片材加固混凝土连续梁试验研究[J].建筑结构.2005,35 (10):63-66.
    [53]陆洲导,绳钦柱,何海。碳纤维加固连续梁的试验研究和设计方法[J].工业建筑. 2004(10):117-122.
    [54]方恩权,李进舜,张雷顺.CFRP-混凝土界面粘结行为解析分析[J].工业建筑.2007, 37(7):66-69.
    [55]唐义军.碳纤维布加固高温作用后的连续梁试验研究和可靠度分析[J].实验力学. 2006,21(3):265-270.
    [56]何海,陆洲导,姜安庆.CFRP加固对钢筋混凝土连续梁受力影响的初探[J].四川建筑科学研究.2004,30(1):57-58.
    [57]周光辉,马卫群.CFRP片材加固钢筋混凝土连续梁试验研究[J].湖南城市学院学报(自然科学版).2004,13(3):4-6.
    [58]张继文,郑建春. CFRP加固混凝土连续板的试验研究[J].工业建筑.2004, 34(z1):373-377.
    [59]陆洲导,谢群,何海.碳纤维布加固钢筋混凝土连续梁受弯性能试验研究[J].建筑结构.2005,35(3):33-35.
    [60]刘沐宇,刘其卓,骆志红,张学明, CFRP加固不同损伤度钢筋砼梁的抗弯试验[J].华中科技大学学报(自然科学版).2005,33(3):13-15.
    [61]张涛涛.粘贴CFRP加固混凝土连续梁的试验研究与理论分析[D].东南大学硕士学位论文.2005,3.
    [62]靳欣华,姚启明,张澎涛.简支变连续梁法加固多跨T梁桥效应分析[J].重庆交通学院学报. 2006,25(2):4-7.
    [63]郑文忠,谭军,曾凡峰. CFRP布加固无粘结预应力连续梁受力性能试验研究[J].湖南大学学报(自然科学版) 2008,35(6):11-17.
    [64] A.F.Ashour,S.A.El-Refaie,S.W.Garrity. Flexural strengthening of RC continuous beams using CFRP laminates[J].Cement & Concrete Composites. 2004,269(7):765-775.
    [65] Ahmed Khalifa, Gustavo Tumialan, Antonio Nanni, and Abdeldjelil Belarbi.SHEAR STRENGTHENING OF CONTINUOUS RC BEAMS USING EXTERNALLY BONDED CFRP SHEETS[C].4th International Symposium on FRP for Reinforcement of Concrete Structures (FRPRCS4),1999:995-1008.
    [66] EL-REFAIE S.A.,ASHOUR A.F.,GARRITY S.W.CFRP strengthened continuous concrete beams[J].2003,156(4):395-404.
    [67] El-Refaie,S.A,Ashour,A.F,Garrity,S.W.Sagging and hogging strengthening of continuous reinforced concrete beams using carbon fiber-reinforced polymer sheets[J].ACI Structural Journal.2003,100(4):446-453.
    [68] J.W.Zhang,S.T.Smith,T.T.Zhang,Z.T.lv Behaviour of continuous RC beamsstrengthened with CFRP composites[C] FRP Composites in Civil Engineering CICE 2004.
    [69] Wight,R.G.1;El-Hacha,R.;Erki,M.A.Prestressed and non-prestressed CFRP sheet strengthening: damaged continuous reinforced concrete beams[J].International Journal of Materials and Product Technology. 2003,19(1-2):96-107.
    [70] J.W.Zhang,S.T.Smith,T.T.Zhang,Z.T.lv. Behaviour of continuous RC beams strengthened with CFRP composites[C] FRP Composites in Civil Engineering-CICE 2004.
    [71] Aiello,M.A.;Valente,L.;Rizzo,A. Moment redistribution in continuous reinforced concrete beams strengthened with carbon-fiber-reinforced polymer laminates[J]. Mechanics of Composite Materials.2007,43(5): 453-466.
    [72] Deric John Oehlers DJ,Moran JP.Premature failure of externally plated reinforced concrete beams[J].ACI materials Jounal 1990,116(4):978-995.
    [73] Deric John Oehlers, Reinforced concrete beams with plates glued to their sofits[J], Journal of Structural Engineering, 1992(8), 118(8):2023-2039.
    [74] Jansze W. Strengthening of RC member in bending by externally bonded steel plates [D]. Ph.D Thesis, Delft University of Technology, 1997.
    [75] Ahmed O,Van Gemert D.Effect of longitudinal carbon fiber reinforced plastic laminates on shear capacity or reinforced concrete beams[C]. In:dolan CW,Rizkalla SH,Nanni A,editor.Proceeding of the Fourth International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structure.Maryland,USA:1999.
    [76] Roberts TM. Approximate analysis of shear and normal stress conc- entrations in the adhesive layer of plated RC beams[J].Composite Struc- teng.1989,67(12/20):229-233.
    [77] M.Maalej,Y.BianInterfacial shear stress concentration in FRP strengthened beams[J].Composite Structures .2001.VOL.54: 417-426.
    [78] Christopher K.Y.Leung. Delamination Failurein Concrete Beams Retrofitted with A Bonded Plate[J].Journal of Materials in Civil Engineering.2001, 3(4):106-133.
    [79] M.Raoof and M.A.H. Hassanen, Peeling failure of reinforced concrete beams with fiber-reinforced plastic or steel plates glued to their soffits [J].Engineering Structures and Buildings,2000(8),8:291-305.
    [80] Y.Piyong, P.F.Silva; Flexural strengthening of concrete slabs by a three-stage prestressing FRP system enhanced with the presence of GFRP anchor spikes [M].Journal of composites for construction. November,1995.
    [81]李春良,程永春.碳纤维布加固钢筋混凝土梁的预应力控制过程[J].吉林大学学报(工学版).2008,38(2):393-398.
    [82]姚允武,李春良,程永春.碳纤维布加固混凝土结构疲劳特性试验研究[J].工程力学.2008,25(8):200-204.
    [83]程永春,李春良,刘寒冰,王波.碳纤维与混凝土界面粘结应力计算方法[J].交通运输工程学报.2007,(7)2:46-54.
    [84]袁旭斌,贺拴海,宋一凡.粘贴纤维布加固RC梁的受弯裂缝计算方法[J].中国公路学报,2006,19(3):54-58.
    [85]盛光祖.碳纤维加固混凝土连续梁抗弯性能的试验研究[D].武汉理工大学.
    [86]祁皑,翁春光.FRP筋混凝土连续梁力学性能试验研究[J].土木工程学报.2008, 41(5):1-7.
    [87]张百宁,王美强,梁金宏.简支变连续梁加固方法效应分析[J].辽宁交通科技. 2005,7:62-64.
    [88]吕恩林.复合材料力学[M].重庆大学出版社,1992.
    [89] Hoff,N,J.Sandwich Construction. John Weley and Sons,New York,1966.
    [90] Relssner,E.On the theory of transverse bending of elastic plates[J].Int.J.Solids Struct, 1976(13):545-554.
    [91]中国科学院.力学所夹层板的弯曲、稳定和振动[M].科学出版社.1997.
    [92]范家让.强厚度叠层板壳的精确理论[M].科学出版社.1996.
    [93]江见鲸,陆新征.钢筋混凝土有限元模型[M].清华大学土木工程系,2004.
    [94]赵启林,张志,胡业平.碳纤维增强混凝土结构温度应力的弹性解[J].解放军理工大学学报(自然科学版).2003,4(5):56-59.
    [95]国家工业建筑诊断与改造工程技术研究中心.碳纤维片材加固修复混凝土结构技术规程(CECS146-2003)[M].2003.
    [96]何君毅,林祥都.工程结构非线性问题的数值解法[M].北京:国防工业出版社,1994.
    [97]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨:哈尔并工业大学出版社.2006.
    [98]江见鲸.高等混凝土结构理论[M].北京:中国建筑工业出版社.2007.
    [99]王树森,刘寒冰,李春良,程永春.碳纤维加固混凝土梁抗弯性能的非线性有限元分析[J].公路交通科技.2005,22(4):61-64.
    [100]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术[M].天津:天津大学出版社, 2001.
    [101]唐纳特JB,班萨尔RC.碳纤维[M].李仍元,过梅丽译.北京:科学出版社, 1989:1952197.
    [102]胡成,曹三鹏,王景权,李延和,夏伟.FRP片材加固混凝土梁温度应力的计算与分析[J].合肥工业大学学报.2004,27(10):1207-1209.
    [103]黄金,姚立宁,何军拥.编织纤维格栅增强混凝土热膨胀系数预测分析[C]//第二届全国土木工程用纤维增强复合材料( FRP)应用技术学术交流会论文集.北京:清华大学出版社,2002:268-270.
    [104]冯鹏,叶列平.FRP结构和FRP组合结构在结构工程中的应用与发展[C]//第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集.北京:清华大学出版社,2002:51-63.
    [105]丁南宏,钱永久,林丽霞.CFRP加固混凝土墩柱温度自应力及参数研究[J].铁道学报2007,29(1):127-131.
    [106]于天来,王润建,丛欣建.碳纤维加固混凝土构件温度应力的计算机仿真分析[J].辽宁交通科技.2004(6):54-55.
    [107]于天来,逯彦秋,王润建.碳纤维加固混凝土构件温度应力的研究[J].公路.2004,3:97-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700