磁流变自抑振智能镗杆的理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对精密孔加工中常见的颤振问题,本论文结合国家自然科学基金“基于磁流变液自抑振的智能镗杆构件理论和方法研究”(项目编号:50405036)和浙江省自然科学基金“磁流变液自抑振智能镗杆构件理论和方法研究”(项目编号:Y104462),通过理论分析、数值仿真及实验验证,对应用磁流变技术抑制镗削过程中的切削颤振问题进行了深入系统的研究。
     第1章,阐述了本学位论文的研究背景与意义,详细介绍了国内外对切削颤振控制技术的研究现状,明确了机床切削颤振控制技术的发展方向,提出了论文的主要研究内容。
     第2章,建立了镗削加工系统的颤振动力学模型,研究了颤振发生的根本原因,同时对主轴变速切削方法的颤振抑制机理进行了研究,得到了其颤振抑制的本质原因。在此基础上,对结构刚度和阻尼变化对系统稳定性的影响进行了深入研究,提出了变结构刚度的颤振抑制方法,并从理论上证实了它与变速切削法具有异曲同工之效。
     第3章,基于磁流变液材料的特点,提出了支撑刚度可控型的磁流变自抑振智能镗杆设计方案,并对关键结构磁流变液抑振单元进行了参数优化。应用有限元ANSYS仿真分析了优化后的结构参数,结果表明主要性能指标均达到了设计要求。
     第4章,首先通过静态加载法对智能镗杆的刚度和阻尼特性进行测试,发现在施加磁场后镗杆静柔度和阻尼特性变化明显;其次采用瞬态激振法和稳态激振法分别对智能镗杆进行了动态特性测试分析,研究了智能镗杆的刚度与阻尼关于磁场强度大小的变化规律及其动态特性与激振频率、幅值和磁场强度之间的关系;最后对智能镗杆的响应时间进行了测试。研究得到的磁流变自抑振智能镗杆的静动态特性变化规律和模型,将为有效制定其控制策略提供了科学依据。
     第5章,提出了一种基于Kelvin模型和Maxwell模型的磁流变液材料本构模型,建立了基于Euler-Bernoulli梁模型的磁流变自抑振智能镗杆动力学模型,并借助含耗散函数的拉格朗日方程对智能镗杆的动态特性进行了理论分析与数值仿真。为了满足实时控制的要求,又引入了Bouc-Wen模型,建立了基于此模型的智能镗杆动力学模型,并用非线性最小二乘法理论对相关参数进行了识别,最后进行了数值仿真研究,结果表明它能准确地描述智能镗杆的动力学特性,为后续制定实时控制策略打下基础。
     第6章,根据镗削过程中颤振产生、发展和成熟各个阶段的特点,把整个镗削过程分成两种情况,并在此基础上分别提出了非线性随机最优半主动控制策略和变刚度半主动控制策略。针对非线性随机最优半主动控制策略,对其控制律进行了推导,同时提出了相应的性能准则,并进行了控制仿真分析。针对变刚度半主动控制策略,对其控制参数优选进行了理论分析,并做了相关数值仿真研究。
     第7章,为了验证前面提出的理论和方法的正确性,在车床CA6140上建立了磁流变自抑振智能镗杆的切削颤振控制实验平台,进行了相关实验研究。首先对非线性随机最优半主动控制策略进行了切削颤振控制实验,考察了其实际的减振效果,并验证了理论分析结果的正确性。其次对变刚度半主动控制策略进行了切削颤振抑制实验,并通过实验方法验证了控制参数优化结果的合理性。
     第8章,总结了论文的主要研究工作和创新点,并展望了未来的研究工作。
The chatter always occurs in precision hole boring process, which is one of the main abnormal cutting conditions that influences the quality of workpicece. To solve this problem, the cutting chatter suppression in boring process was studied systematically in this dissertation . The research work is supported by the National Natural Science Foundation of China (Grant No. 50405036), "Research on the Theory and Method for Intelligent Boring Bar with Self-Chatter-Suppression Based on Magnetorheological Fluid ", and the Natural Science Foundation of Zhejiang Province (Grant No. Y104462), "Research on the Theory and Method for MR Intelligent Boring Bar with Self-Chatter-Suppression". And the rearsearch work was carried out by combining theoretical analysis, numerical simulation with experimental verification.
     In Chapter 1, the background and significance of the research were introduced, the development trend and current research situations of the technology of cutting chatter suppression were expatiated, then the research contents of this dissertation were proposed.
     In Chapter 2, the dynamic model of regenerative chatter is established, which is the main type chatter in boring process. Then, the chatter suppression mechanisms of variable speed cutting method was analyzed. Lastly, the variable structural stiffness method of chatter suppression was proposed. By comparing, it was found that the chatter suppression mechanism of variable speed cutting method is similar to variable structural stiffness method.
     In Chapter 3, a MR intelligent boring bar with self-chatter-suppression was proposed, whose stiffness and natural frequency are controllable. The structural parameters of MR chatter suppression unit was optimized, which is the key part of the MR intelligent boring bar. Lastly, the optimized results was validated by finite element analysis, and the simulation results show that the main performance of MR intelligent boring bar meet the design requirments.
     In Chapter 4, firstly, the stiffness and damping of MR intelligent boring bar were tested by static loading method, and the results show that the static stiffness and damping will increase obviously when the magnetic intensity increased. Secondly, the variable laws of the system stiffness and damping were investigated by transient exciting method by applying different magnetic intensity, and the results show that when the magnetic intensity increased, the stiffness of MR intelligent boring bar will increase monotonously, while the damping will firstly increased and then decreased. Thirdly, the intelligent boring bar was tested by steady state exciting method, and the results show that the system dynamic characteristics are influenced by vibration amplitude, frequency and magnetic intensity. Lastly, the dynamic response time of MR intelligent boring bar was tested.
     In Chapter 5, the constitutive model of MR fluid was established on the basis of Kelvin model and Maxwell model, and the results of numerical analysis show that the model can describe the MR fluid's dynamic characteristics accurately. Then, the dynamic model of MR intelligent boring bar was established based on the constitutive model of MR fluid, and its characteristics was analyzed by Lagrange equation. To meet the requirement of real-time control, a dynamic model of MR intelligent boring bar based on Bouc-Wen model was proposed. Then, the parameters of model was identified by nonlinear least square method. Lastly, the numerical simulation of the model was carried out, and the results show that it can discribe the dynamic characteristics of MR intelligent boring bar accurately.
     In Chapter 6, according to the characteristics of chatter development process, the boring process can be divided into two cases. On this basis, the nonlinear stochastic optimal semi-active control strategy and the varying stiffness semi-active control strategy were proposed respectively. Then, the control law of nonlinear stochastic optimal semi-active control strategy was derived, and the numerical simulation analysis was carried out. Lastly, the control parameters of varying stiffness semi-active control strategy was optimized by way of the theory analysis, and in addition, the numerical simulation was carried out.
     In Chapter 7, to verify the theory and method mentioned above, the experimental setup of MR intelligent boring bar was built on the CA6140 type lathe. A series of experiments were carried out, and the results show that the method can suppress chatter efficiently and surface quality of workpiece can be improved significantly.
     In Chapter 8, the chief work and innovations of this dissertation were summarized, and the further research subjects were proposed.
引文
[1]王峻.现代深孔加工技术.黑龙江:哈尔滨工业大学出版社,2005.
    [2]白素平,车英,周建民.火炮内膛表面粗糙度检测技术.长春光学精密机械学院学报,2000,24(1):12-14,66.
    [3]Altintas Y.Manufacturing Automation:Metal Cutting Mechanics,Machine Tool Vibrations,and CNC Design.Cambridge University Press,Cambridge,UK,2000.
    [4]Tlusty J.Manufacturing Process and Equipment.Prentice Hall,Englewood Cliffs,NJ,2000.
    [5]于骏一.机械加工振动的诊断、识别与控制.北京:清华大学出版社,1994.
    [6]Taylor F W.On the Art of Cutting Metals.A.S.M.E.,1907.
    [7]Arnold R N.The Mechanism of Tool Vibration in the Cutting of Steel.Proe.Inter.Mech.E.,1946,Vol.154:261-276.
    [8]Hahn R S.On the Theory of Regenerative Chatter in Precision-Grinding Operation.Trans.A.S.M.E.,1954,Vol.76:593-597.
    [9]Akazawa K,Shamoto E.Study on regenerative chatter vibration in ball end milling of flexible workpieces.International Symposium on Micro-NanoMechatronics and Human Science,Nagoya,Japan,6-9 November 2008.
    [10]Ganguli A,Deraemaeker A,Preumont A.Regenerative chatter reduction by active damping control.Journal of Sound and Vibration,2007,300(3):847-862.
    [11]Chen C K,Tsao Y M.A stability analysis of regenerative chatter in turning process without using tailstock.International Journal of Advanced Manufacturing Technology,2006,29(7):248-254.
    [12]Mei C,Cherng J G,Wang Y.Active control of regenerative chatter during metal cutting process.Journal of Manufacturing Science and Engineering,2006,128(1):346-349.
    [13]Tlusty J,Spacek L.Self-excited Vibration in Machine Tools.Czech.Nakladateistvi CSAV Prague,1954.
    [14]土井静雄,加藤仁.旋转主轴颤振发生的原因.日本机械学会论文,1954,20(90):61-65.
    [15]星铁太郎.机械加工颤振的分析与对策.上海:学技术出版社,1977.
    [16]汤爱君,马海龙.机床再生颤振系统研究现状的综述.机床与液压,2007,35(8):223-225.
    [17]韩兴瑞.机床切削振动的结构动力学模型的探讨.机床与液压,2003,(4):161-163.
    [18]Yusuf Altintas(罗学科译).数控技术与制造自动化.北京:化学工业出版社,2002.
    [19]Altintas Y,Lee P.A General Mechanics and Dynamics Model for Helical End Mills.Annals of the CIRP,1996,45(1):59-64.
    [20]Altintas Y,Engin S.Generalized Modeling of Mechanics and Dynamics of Milling Cutters.Annals of the CIRP,2001,50(1):2195-2212.
    [21]吴雅.机床切削系统的颤振及其控制.北京:科学出版社,1993.
    [22]吴雅.机床切削系统的颤振、噪声及其控制—理论于实践[博士学位论文].华中理工大学,1991.
    [23]师汉民.关于机床自激振动的一个非线性理论模型(第一部分).应用力学学报,1984,1(1):1-14.
    [24]师汉民.关于机床自激振动的一个非线性理论模型(第二部分).应用力学学报,1984,2(2):75-88.
    [25]吴雅,师汉民,梅志坚,杨叔子.金属切削机床颤振理论与控制的新进展.中国科学基金,02:99-105.
    [26]师汉民.金属切削理论及其应用新探.武汉:华中科技大学出版社,2003.
    [27]Seto K,Tominari N.Effect of a variable stiffness type dynamic damper on machine tools with long overhung ram.Bulletin of the JSME,1976,19(137):1270-1277.
    [28]Den J P,Hartog.Mechanical vibrations.McGraw-Hill,New York,1956.
    [29]S.Ema,E.Marui,Suppression of chatter vibration of boring tools using impact dampers.International Journal of Machine Tools and Manufacture,2008,40(8):1141-1156.
    [30]Ema S,Marui E.Damping Characteristics of an impact damper and its application.Int.J.Math..Tools Manufact.,1996,36(3):293-300.
    [31]王民.基于电流变材料的切削颤振在线控制与预报[博士学位论文].北京工业大学,1999.
    [32]齐涤非.镗削加工中的冲击式减振器减振性能研究.湘潭矿业学院学报,1999,14(2):19-21.
    [33]赵永成,马飞,闫长罡等.精镗孔时液膜阻尼减振效果的研究.中国机械工程,2002,13(21):1827-1829,1855.
    [34]Eugene I,Rivin,Hongling Kang.Enhancement of dynamic stability of cantilever tooling structures.Int.J.Math.Tools Manufact,1992,32(4):539-561.
    [35]叶伟昌,侯卫.镗刀及其改进.工具技术,1996,34-38.
    [36]李启堂,胡荣生.动力吸振器在镗杆中的应用.工具技术,1997,31(17):19-21.
    [37]Nagano S,Takayuki K,Toru F et al.Delelopment of a composite boring bar.Composite Structures,1997,(38):531-539.
    [38]Lee D G,Hwang H Y,Kim J K.Design and manufacture of a carbon fiber epoxy rotating boring bar.Composite Structures,2003,(60):115-124.
    [39]吴能章,周利平.一种新型复合材料镗刀杆的建模与有限元分析.西北大学学报,2005,24(5):22-25.
    [40]何将三.层复合阻尼镗杆的动力学分析.中国有色金属学报,1995,5(3):144-148.
    [41]Cowley A.A theoretical investigation into the characteristics of a feedback controlled damping unit.Proc.9~(th),Int.MTDR Conf.,1968.
    [42]Comstock T R.Chatter suppression by controlled mechanical impedence.Dissertation submitted to University of Cinicinnati,1968.
    [43]Nachtigai C L,Cook N H.Active control of machine tool chatter.Trans ASME,1970,92(2):238-244.
    [44]王先上.车床振动的自动控制.机械工程学报,1986,22(2):38-47.
    [45]Budi W,Bruce L,Keith E.Active Vibration Control via Electromagnetic Dynamic Absorbers.Proceedings of the 4th IEEE International Conference on Control Applications,Sep.28-29,1995:868-874.
    [46]Pan G,Xu H,Kwan C M et al.Modeling and Intelligent Chatter Control Strategies for a Lathe Machine.Proceedings of the 1996 IEEE International Conference on Control Applications.Dearborn,MI,Sep.15-18,1996:235-239.
    [47]Pratt J R,Nayfeh A H,Chatter control and stability analysis of a cantilever boring bar under regenerative cutting conditions.Philosophical Transactions:Mathematical,Physical and Engineering Science,Nonlinear Dynamics in Metal Cutting,2001:359,759-792.
    [48]Wong B W,Walcott B L,Rouch K E,Active vibration control via electromagnetic dynamic absorbers.In:Proceedings of the 4th IEEE International Conference on Control Applications,Albany,NY,1995:868-874.
    [49]Michael A M,Bruce L W,Keith E R,et al.Hoo Vibration Control for Machining Using Active Dynamic Absorber Technology.Proceedings of the American Control Conference,Seattle,Washington,June 1995:739-743.
    [50]Sanjiv G,Tewani,Keith E,et al.A study of cutting process stability of a boring bar with active dynamic absorber.Int.J.Math.Tools Manufact,1995,35(1):91-108.
    [51]Chiu W M,Lam F W,Gao D.An overhung boring bar servo system for on-line correction of machining errors.Journal of Materials Processing Techology,2002,(122):286-292.
    [52]Sanjiv G,Tewani,Rouch et al.Finite element analysis of a boring bar using an active dynamic absorber for active vibration control.ASME,1991:179-188.
    [53]Tanaka H,Obata F,Fumio M,Tomio M,Hiroshi.Active chatter suppression of slender boring bar using piezoelectric actuators.JSME International Journal,1994:601-606.
    [54]Barney P,Redmond J,Smith D.Characteristics of self-sensing actuation for active control.Proceedings of the International Modal Analysis Conference,1997:739-744.
    [55]Shiraishi M,Yamanaka K,Fujita H.Optimal control of chatter in Turning.Int.J.Math.Tools Manufact.,1991,31(1):31-43.
    [56]Shinozuka M,Constantinou M C,Ghanem R.Passive and active fluid dampers in structural applications.Proc.U.S./China/Japan Workshop on Struct,1992:507-516.
    [57]Kareem A.The next generation of tuned liquid dampers.Proc.First World Conf.on Sturct Control,FP5,19-28.
    [58]Feng Q,Shinozuka M,Fujii S.Friction-controllable sliding isolated systems.J.Engrg.Mech.,ASCE,1993,119(9):1845-1864.
    [59]Masri S F.Active parameter control of nonlinear vibrating structures.J.Appl.Mech.,1989,56(Sept):658-666.
    [60]Slavicek J,Bollinger J G.Design and Application of a self optimizing damper for increasing machine tool perfomance.Proc.10~(th),MTDR,1969:71-80.
    [61]Inada S.ExPeriments on orthogonal cutting at varing rake angle continuously and periodically.J.of JSPE,1966,32:57-576.
    [62]Liu C R,Liu T M.Automated chatter suppression by tool geometry control.Trans.ofASME,J.of Engi.for Ind.,1985,107(5):95-98.
    [63]梅志坚.金属切削机床颤振的非线性理论及其计算机在线监控的研究[博士学位论文].华中理工大学,1989.
    [64]于骏一.变速切削过程中电机电流的变化特征.吉林工业大学学报,1993,23(2):15-22.
    [65]汤爱君,马海龙.切削颤振特性的影响因素.工具技术,2007,41(8):32-34.
    [66]Weck M,Verhaag E,Gather M.Adaptive control for face-milling operations with strategies for avoiding chatter vibrations and for automatic cut distributions,annals of the CIRP,1975,24(1):405-409.
    [67]Tarng Y S,Lee E C.A critical investigation of the phase shift between the inner and outer modulation for the control of machine tool chatter.Int.J.Math.Tools Manufact.,1997,37(12):1661-1672.
    [68]Lee A C,Liu C S,Chiang S T.Analysis of chatter vibration in a cutter-workpiece system.International Journal of Machine Tools and Manufacture,1991,31(2):221-234.
    [69]Soliman E,Ismail F.Control system for chatter avoidance by ramping the spindle speed.J.of Manufact.Sci.and Engi.,Transactions of the ASME,1998,120(4):674-683.
    [70]Li C J,Ulsoy A G,Endres W J.The effect of spindle speed variation on chatter suppression is rotating-tool machining.Materials Science Forum,2006:505-507,859-864.
    [71]Smith S,Tlusty J.Stabilizing chatter by automatic spindle speed regulation.Annals of the CIRP,1992,41(1):433-436.
    [72]Liao Y S,Young Y C.A new-online spindle speed regulation strategy for chatter control.International Journal of Machine Tools and Manufacture,1996,36(5):651-660.
    [73]Grab H,Stoferle T.Vermeiden von rattersehwingungen durch Periodisehe Drehzahlanderung.Werkstatt and Betrieb,1972,105:727-729.
    [74]Inamura T,Sata T.Stability analysis of chatter under varying spindle speed.Annals of the CIRP,1974,23(1):119-120.
    [75]Hoshi T.Study for practical application of fluctuating speed cutting for regenerative chatter control.Annals of the CIRP,1977,25(1):175-179.
    [76]Sexton J S,Stone B J.An investigation of the transient effects during variable speed cutting.J.of Mech.Engi.Sci.,1980,22:107-120.
    [77]Lin C,Devor R E.Optimal passive vibration control of cutting process Stability in face-Milling.Trans.of ASME,J.of Engi.For Ind.,1990,112(1):1-11.
    [78]Yu J Y.Study on mechanism of suppressing regenerative chatter by cutting with fluctuating speed.Proc.of 27~(th) Int.MTDR Conf.,England.
    [79]韩相吉,于骏一.砂轮变速磨削的试验研究.制造技术与机床,1998,(6):22-24,29.
    [80]李军.在机械加工中用变速切削抑制再生颤振.机械与电子,2008,(1):94-96.
    [81]Subramanian T L,Devries M F,Wu S M.An investigation of computer control of machining chatter.Trans.of ASME,J.of Engi.For Ind.,1976,98(4) 1209-1214.
    [82]Eman K,Wu S M.A feasibility study of on-line identification of chatter in turning operation.Transactions or the ASME J.Engng.for Ind.,1980,102(4):315-321.
    [83]Stone B J.The effect of time varying parameters on the build-up of chatter in turning.Annals of CIRP,1985,34(1):371-374.
    [84]Sexton J S,Stone B J.A method of reducing chatter in roll grinding.International Conference on Manufacturing Engineering,August,1982:155-159.
    [85]Gandhi M V,Thompson B S.Smart materials.Encyclopedia Britanncia Science and Future Year Book,1990:162-171.
    [86]杨万庆.大型磁流变液阻尼器的研究及其工程应用[博士学位论文].武汉理工大学,2008.
    [87]杨小卫.磁流变减振器磁路分析及磁流变半主动悬架控制策略研究[博士学位论文].江苏大学,2007.
    [88]丁立强,梅德庆,陈子辰,浦军.磁流变阻尼技术及其工程应用.机电工程,2003,20(5):109-112。
    [89]雷源忠.跨世纪先进制造技术基础研究.先进制造技术论文集(海锦涛等编).北京:机械工业出版社,1997:42-47.
    [90]Aoyama T,Inasaki I.Application of Electrorhelolgical fluid dampers to machine tool elements.Annals of the CIRP,1997,46(1):309-312.
    [91]周晓勤,张永亮,于骏一等.电流变效应对切削颤振的抑制的作用.重庆大学学报(自然科学版),1999,22(4):135-139.
    [92]王茂华,于骏一,张永亮.电流变技术在机床颤振控制中应用的研究.机械工程学报,2000,36(11):94-97.
    [93]于骏一,刘述芳.电流变效应在抑制车削振动中的应用.制造技术与机床,2000,6:8-10.
    [94]张永亮,于骏一,侯冬霞等.基于电流变效应的车削颤振预报控制技术的研究.机械工程学报,2005:41(4):206-211.
    [95]王民,费仁元.镗削颤振快速预报技术研究.机械科学与技术,2002,21(4):520-523.
    [96]杨道斌.电流变材料在车削颤振抑制的应用及理论研究[博士学位论文].北京工业大学,2003.
    [97]杨大智.智能材料与智能系统.天津:天津大学出版社,2000.
    [98]杨肃,唐恒龄,廖伯瑜.机床动力学.北京:机械工业出版社,1983.
    [99]胡寿涛.自动控制原理.北京:国防工业出版社,2000.
    [100]于骏一,杨辅伦,吴博达.变速切削的减振机理.机械工程学报,1995,3l(65):11-16.
    [101]Stepheson D A,Agapiou J S.Metal cutting theory and practice,second ed.CRC Press,Baca Raton,2006.
    [102]孔天荣,梅德庆,陈子辰.磁流变智能镗杆的切削颤振抑制机理研究.浙江大学学报(工学版), 2008,42(6):1005-1009.
    [103]张令弥.智能结构研究的进展与应用.振动、测试与诊断,1998,18(2):79-84.
    [104]廖昌荣.汽车悬架系统磁流变阻尼器研究[博士学位论文].重庆大学,2001.
    [105]Seung-Bok C,Yong-Kun P,Jeong-Du K.Vibration characteristics of hollow cantilevered beams contining an electrological fluid.Int.J.Mech.Sci.,1993,35(9):757-768.
    [106]杨仕清,张万里,龚捷等.磁流变液的流变学性质研究.功能材料,1998,29(5):550-552.
    [107]司鹄.磁流变体的力学机理研究[博士学位论文].重庆大学,2003.
    [108]祝长春.磁流变液剪切应力的理论研究[硕士学位论文].武汉理工大学,2004.
    [109]Yang G Q.Large-scale magnetorheological fluid damper for vibration mitigation:modeling testing and control,PH.D Dissertation of University of Notre Dame,2001.
    [110]Lou Z,Ervin R D,Filisko F E.A preliminary parametric study of electrorheological dampers.Trans.of ASME,J.of Fluids Engineering,1994,116:570-576.
    [111]关剑,费仁元,王民等.智能结构在镗削颤振抑制中的应用.北京工业大学,2000,26(3):16-19.
    [112]Wang M,Fei R Y.Improvement of machining stability using a tunable-stiffness boring bar containing an electrorheological fluid.Smart Material and Structure,1999,(8):511-514.
    [113]Gong H Q,Lim M K,Tan B C.Infulence of a locally applied electrorheological fluid layer on vibration of a simple cantilever beam.Journal of Intelligent Material Systems and Structures,1993,(4):379-384.
    [114]梅德庆,孔天荣,陈子辰.一种基于磁流变液的自抑振智能镗杆构件:中国,ZL200510062179.4[P].2006-06-21.
    [115]梅德庆,孔天荣,陈子辰.一种线圈镗杆整体型磁流变液自抑振智能镗杆系统:中国,ZL200620140283[P].2007-11-07.
    [116]王炅,王乾龙,黄文良.磁流变装置结构与磁路耦合有限元分析.弹道学报,2004,16(4):62-67,96.
    [117]张玉民,戚伯云.电磁学.北京:科学出版社,2000.
    [118]褚洪生,杜增吉,阎金华.MATLAB7.2优化设计实例指导教程.北京:机械工业出版社,2006.
    [119]Sun Q,Zhou J X,Zhang L.An adaptive beam model and dynamic characteristics of magnetorheological materials.Journal of Sound and Vibration,2003,261:465-481.
    [120]Gamota D R,Filisko F E.Dynamic mechanical electrorheological materials:moderate frequencies.Journal of Rheoiogy,1991,35(3):399-425.
    [121]Coulter J P,Duclos T G.Applocations of electrorheological materials in vibration control.Proceeding of 2~(nd) International Conference on ER Fluids,Raleigh,NC,1989:300-325.
    [122]Wang J,Feng N,Meng G.Vibration control of rotor by squeeze film damper with magnetorheological fluid.Journal of Intelligent Material Systems and Structures,2006,17(4):353-357.
    [123]Morishita S,Mitsui J C.Controllable squeeze film damper.ASME Journal of Vibration and Acoustics,1992,114(3):354-357.
    [124]Fernando D G,Jeong-Hoi K,Mehdi A.Experimental Approach for Finding the Response Time of MR Dampers for Vehicle Applications.DETC 2003 Biennial Conference on Mechanical Vibration and Noise,Chicago,USA,September 2003:2-6.
    [125]王宇飞,何琳,单树军.磁流变阻尼器响应时间的影响因素和优化途径研究.船海工程,2006,(6):103-106.
    [126]关新春,欧进萍.磁流变减振驱动器的响应时间试验与分析.地震工程与工程振动,2002,22(6):96-102.
    [127]Stanway R,Sposton J L,Stevens N G.Non-linear modeling of an electro-rheological vibration damper.Journal of Electrostratics,1987,20(2):167-184.
    [128]Shames I H,Cozzarelli F A.Elastic and inelastic stress analysis.Englewood Cliffs:Prentice Hall,1992.
    [129]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证.地震工程与工程振动,2002,22(4):144-150.
    [130]Spencer B F,Dyke S J,Sain M K.Phenomenological model for magnetorheologcial dampers.J.of Eng.Mech.,1997,123(3):230-238.
    [131]梅德庆,孔天荣,陈子辰.基于神经元S型传递函数的磁流变阻尼器力学模型研究.功能材料,2006,5(37):776-779.
    [132]Weiss K D,Carlson J D,Nixon D A.Viscoelastic properties of magneto-and electro-rheological fluids.Journal of Intelligent Material Systems and Structes,1994,5(6):772-775.
    [133]Li W H,Chen G,Yeo S H.Viscoelastic properties of MR fluids.Smart Materials and Structes,1999,8(4):460-468.
    [134]Li W H,Du H J,Chen G,et al.Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear.Rheologica Acta,42(3):280-286.
    [135]周云.粘弹性阻尼减震结构设计.武汉:武汉理工大学出版社,2006.
    [136]李东旭.高等结构动力学.长沙:国防科技大学出版社,1997.
    [137]刘延柱.振动力学.北京:高等教育出版社,1998.
    [138]王文亮,张文,罗惟德等.结构动力学.上海:复旦大学出版社,1991.
    [139]邬喆华,陈勇.磁流变阻尼器对斜拉索的振动控制.北京:科学出版社,2007.
    [140]周传勇.Bouc-Wen滞同模型的参数辨识及其在电梯振动建模中的应用[硕士学位论文].上海交通大学,2008.
    [141]Yar M,Hammond J K.Parameter estimation for hysteretic systems.Journal of Sound and Vibration,1987 117:161-172.
    [142]张向慧,迟滞非线性系统参数辨识方法的研究.噪声与振动控制,2001,3:13-16.
    [143]Lin J S,Zhang Y.Nonlinear structure identification using extended kalman filter.Computer and Structures,1994,52:754-764.
    [144]Ni Y Q,Ko J M,Wong C W.Identification of non-linear hysteretic isolators from periodic vibration tests.Journal of Sound and Vibration,1998,217(4):737-756.
    [145]孔繁森,于骏一,勾治践.颤振状态的模糊识别.振动工程学报,1998,11(3):328-332.
    [146]朱位秋.非线性随机动力学与控制—Hamilton理论体系框架.北京:科学出版社,2003.
    [147]赵新刚.颤振的混沌控制研究[硕士学位论文].吉林大学,2004.
    [148]Jansen L M,Dyke S J.Semiactive control strategies for MR dampers.Comparative Study,American Society of Civil Engineers Journal of Engineering Mechanics,2000,126:795-803.
    [149]朱位秋,随机振动.北京:科学技术出版社,1998.
    [150]董雷.非线性系统应用MR阻尼器的半主动随机最优控制[硕士学位论文].浙江大学,2004.
    [151]Roberts J B.Application of averaging methods to randomly excited hysteresis systems.Ziegler F and Schu-eller G I ed,Nonlinear Stochastic Dynamic Engineering Systems,Springer-Verlag,1988.
    [152]Zhu w Q,Ying Z G,Ni Y Q,Ko J M.Optimal nonlinear stochastic control of hysteretic systems.ASCE Journal of Engineering Mechanics,2000,126:1027-1032.
    [153]Lin Y K,Cai G Q.Probabilistic structural dynamics:advanced theory and application.McGraw-Hill,New York,1995.
    [154]Kushner J,Optimality conditions for the average cost per unit time problem with a diffusion model.SIAM Journal of Control and Optimization,1978,16:330-346.
    [155]程耀东.机械振动(线性系统).杭州:浙江大学出版社,1988.
    [156]洪莉,杨辅伦,于骏一.变速切削的减振机理.汽车工艺与材料,1995,(1):11-14.
    [157]Mei D Q,Kong T R,Shih A J,Chen Z C.Magnetorheological fluid-controlled boring bar for chatter suppression.Journal of Materials Processing Technology,2009,209(4):1861-1870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700