行波管幅相一致特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
行波管是一种高增益的宽带微波/毫米波功率放大器件,广泛用于数据通信、电子对抗、预警飞机、火控雷达、精密制导,在现代军事电子装备中显示出不可取代的重要作用。行波管的研制涉及到电子光学、磁学、阴极电子学、微波电子学、电磁场理论、材料学、机械与热分析诸多学科,工艺过程十分复杂。计算机技术的发展与应用,极大地促进了行波管技术的进步。同时,提高行波管的设计能力,缩短开发周期,减少整管硬件实验,改善行波管性能,固化已有经验,也愈来愈离不开电子计算机,CAD已经成为研制行波管的主要手段。
    现代电子战、超宽频带高功率相控阵雷达、强力干扰机、微波能武器等的快速发展对高功率微波源提出了更高的要求。宽频带高功率器件成为主要研究对象。由于宽频带和高功率不可克服的矛盾,采用大功率连续波宽带行波管作为阵列单元末级放大器,通过功率合成技术成为获得宽频带高功率微波源的主要手段。
    在功率合成技术中,幅相一致行波管是核心器件。由于非常高的技术指标要求,使幅相一致行波管的研制和生产都面临很多的困难。其中成品率低是国内幅相一致行波管研制中面临的最严峻问题。成品率低导致无法进行有效的批生产,从而进一步使行波管的一致性难以得到保证。
    经过广泛的论证,相关领域专家普遍认为CAD技术成为研制幅相一致行波管的主要手段。在实际制管之前,经过高强度的计算机模拟能有效提高设计能力。
    论文首先系统、全面地综述了微波管CAD技术的最新进展、存在的问题和今后的发展方向。讨论了微波管CAD技术中常用的数值计算方法、介绍了有代表性的大型电磁分析软件、微波管各部件CAD软件、微波管CAD集成环境,对美国的MMACE项目和我国的TWTCAD项目进行了详细的描述。综述了幅相一致行波管国内外发展状况,讨论了目前我国在幅相一致行波管研制和生产中遇到的技术难点及对策。这一章为整个课题的开展指明了方向,奠定了基础。
    第二章从行波管高频电路出发,详细分析了影响幅相一致行波管色散特性和耦合阻抗的主要因素;开发了可视化计算软件,分析了各重要因素(如夹持杆宽度、螺距、金属翼片高度、螺旋线平均半径、夹持杆介电常数等)对色散特性和耦合阻抗影响的大小;证实了夹持杆材料特性是最重要的影响因素。
    第三章系统地介绍了粒子模拟方法(PIC);发展了考虑谐波互作用的行波管全三维大信号非线性理论,该理论考虑了周期永磁聚焦和均匀聚焦系统,能有效地退化为基于等效线路模型的Rowe一维、二维、三维非线性理论。基于粒子模拟方法,对三维空间电荷力的计算采用全三维塑性宏粒子模型。对于工作电压考
    
    虑了电位下沉效应。
    第四章探讨了面向对象软件工程方法学在大型科学研究型软件开发中的应用;基于改进的行波管三维非线性理论模型,结合面向对象软件工程方法学、可视化科学计算方法,采用Microsoft Visual C++6.0开发了能动态实时显示行波管内部工作状态和动态显示各技术指标参数的可视化科学计算软件。
    第五章介绍了幅相一致行波管的一般应用领域;基于改进的行波管三维非线性理论,结合TCP/IP网络并行计算方法、面向对象软件工程方法学、可视化科学计算方法,采用Microsoft Visual C++6.0开发了一个用于分析行波管幅相一致特性的网络计算平台;该平台是一个开放式的框架,经过扩充将来还可以用于研究其他类型微波管(如速调管、耦合腔行波管等)的注波互作用、幅相一致特性分析。
Traveling wave tubes(TWTs) are broadband, high power, high gain microwave/millimeterwave amplifiers, which, taking an irreplaceable role in modern military electronic equipment, are widely used in communications, electronic warfare and radar systems. However, manufacture of TWTs is quite complicated involved in many disciplines, such as electronic optics, magnetics, cathode electronics, microwave electronics, electromagnetic fields theory, materials, mechanics and pyrology. The technologies on TWTs have been making great progress with developments and applications of computers, which, enhancing design abilities, reducing production periods, decreasing hardware experiments, improving performance, solidifying known experiences, all of these are deeply dependent on. CAD has become a key technology in producing TWTs.
    It is higher demand for high power microwave resource, when modern electronic warfare, broadband high power array radar system, high power jammer and microwave weapon are developed fast. Broadband high power devices are main research object. Power synthesize technique is main method gained broadband high power microwave resource, high power broadband TWTs as array unit end amplifier, because of the conflict between broadband and high power.
    Traveling wave tube gain and phase matched operation (TWTGPM) is key device in power synthesize technique. The design and manufacture of TWTGMP is very difficult, because of higher performance demand. The low of finished product ratio is serious difficult for domestic manufactory.
    Experts suggest that CAD is a key technology in designing and producing TWTGPM, after broad demonstration. High intensity simulation can advance design capability effectively, before manufacturing.
    Chapter I introduce the advance, problem and future of microwave tube CAD technology. Numerical methods for microwave tube CAD are described. Large electromagnetism (EM) analyzing software are enumerated. The CAD software of microwave tube component are character. MMACE project of America and TWTCAD project of China are presented. Advances of TWTGPM are present. It is fundament of this research work.
    Chapter II analyzed main factors of causing the dispersion and coupling impedance
    
    of TWTGPM variation based on the slow wave circuit. The visualization computing software is developed. The software is used to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, pitch width, height of the metal vane and helix average radius. The dispersion and impedance are compared for each set of variations. Based on this kind of information, manufacturers can conduct cost-benefit analyses of their manufacturing tolerances and optimize designs for a wide variety of devices before fabrication.
    Chapter III introduce the method of particle in cell(PIC). Three dimensional(3D) nonlinear theory of TWT is developed, include fundamental RF and harmonic interaction, period permanence magnetic filed and uniformity magnetic field. It can be degenerated to 1-D, 2-D and 3-D Rowe theory based on equivalent circuit model. Super particle model is used to compute the 3-D space charge forces based on PIC. Effect of electric field sinking is considered.
    Chapter IV explored the application of Object-Oriented(OO) software engineering methodology in large scientific research software development. A TWT-CAD software architecture is given for 3-D beam-wave nonlinear interaction, coding by Microsoft Visual C++6.0, integrating OO software engineering methodology and ViSC (Visuali- zation in Scientific Computing).
    Chapter V present advance, difficult of design and manufacture, and counter- measure of TWTGPM. A network computing plat, analyzing gain and phase characteristic of TWTGPM, is built, integrating OO software engineering methodology, ViSC and network parallel computing, coding by Microsoft Visual C++6.0. It is a feasible framework, to be used to analyze gain and phas
引文
[1]. R.K.Paker et al. Vacuum Electronics. IEEE Trans Microwave Theory and Techniques, 2002, Vol. 50, No. 3:835-845
    [2]. R.H.Abrams et al Vacuum Electronics for the 21st Century. Sept. 2001, 61-72
    [3]. Thomas M.Antonsen et al. Advances in Modeling and Simulation of Vacuum Electronic Devices. Proc IEEE, 1999, Vol. 87, No. 5:804-839
    [4]. Liao F J, Li H F, Yang Z H et al. Technical Progress in Vacuum Microwave Electronics. 2002 3rd International Conference on Microwave and Millimeter Wave Technology. 11-16
    [5]. R. Kompfner. The Invention of the Traveling Wave Tube. IEEE Trans Electron Devices, 1976, Vol. 23, No. 7:730-738
    [6]. Robert T.Benton et al. First Pass TWT Design Success. IEEE Trans Electron Devices, 2001, Vol. 48, No. 1:176-178
    [7]. 盛剑霓等. 电磁场数值分析. 北京:科学出版社,1984年
    [8]. J.P.Webb. The Finite-Element Method for Finding Modes of Dielectric Loaded Cavities. IEEE Trans Microwave Theory Tech,1985,MTT-33:635-639
    [9]. A.J.Kobelansky and J.P.Webb. Eliminating Spurious Modes in Finite-Element Waveguides Problems by Using Divergence-Free Fields. Electron Lett,1986,22:569-570
    [10]. J.P.Webb. Efficient Generation of Divergence- Free Fields for the Finite Element Analysis of 3D Cavity Resonances. IEEE Trans Magn,1988, MAG-24:162-165
    [11]. R.M.Azizur et al. Reviews of Finite Element Methods for Microwave and Optical Waveguides. Proc IEEE,1991,79:1442-1448
    [12]. A.Taflove and M.E.Brodwin. Numerical solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations. IEEE Trans on Microwave Theory Trch,1975,MTT-23:623-630
    [13]. A.Taflove and K.R.Umashankar. Review of FDTD Numerical Modeling of Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations. Proc IEEE, 1989, 77: 682- 698
    [14]. D.H.Choi and W.J.R.Hoefer. The Finite- Difference Time-Domain Method and its Application to Eigenvalue Problems, IEEE Trans on Microwave Theory Tech. 1986, MTT-34: 1464-1470.
    [15]. T.Weiland. On the Numerical Solution of Maxwell's Equations and Applications in the Field of Accelerator Physics. Particle Accelerator,1984,15:245-292
    T.Weiland. On the Unique Numerical Solution of Maxwell's Eigenvalue Problems in Three
    
    [16]. Dimensions. Particle Accelerators, 1985,17:227- 242
    [17]. T.Weiland. Three Dimensional Resonator Mode Computation by Finite Difference Method. IEEE Trans on Magn,1985,Mag-21:2340-2345
    [18]. S.S.Zivanovic et al. A Subgridding Method of the Time-Domain Finite-Difference Method to Solve Maxwell's Equations. IEEE Trans on Microwave Theory Tech,1991,MTT-39:471-479
    [19]. J.G.Maloney and G..S.Smith. The Efficient Modeling of Thin Material Sheets in the Finite-Difference Time-Domain(FDTD)Method. IEEE Trans on Antennas Propagat,1992, AP-40:323-330
    [20]. T.G..Jurgens et al. Finite-Difference Time-Domain Modeling of Curved Surfaces, IEEE Trans Antennas Propagat.1992,AP-40:357-366
    [21]. J.M.Dawson. One-Dimensional Plasma Model. Phys. Fluids,1962,5:445-459
    [22]. J.M.Dawson. Particle Simulation of Plasma. Reviews of Modern Physics,Vol.55, No.2, April 1983
    [23]. C.K.Birdsall and A.B.Langdon. Plasma Physics via Computer Simulation. New York:McGraw -Hill,1985
    [24]. R.W.Hockney and J.W.Eastwood. Computer Simulation Using Particles. New York:McGraw- Hill,1981
    [25]. C.K.Birdsall. Particls-in-cell Charged-Particle Simulations, Plus Monte Crlo Collisions with Neutral Atoms. IEEE Trans on PLASMA SCIENCE, 1991,19: 65- 85
    [26]. http://www.mrcwdc.com
    [27]. F.Lrawczyk and T.Weiland. A New Static Field Solver with Open Boundary Conditions in the 3D-CAD-System Mafia. IEEE Trans on Magn,1988,MAG-24:55-58
    [28]. Clemens, M et al. Self-consistent simulations of transient heating effects in electrical devices using the finite integration technique. IEEE Trans on Magn,2001,37:3375-3379
    [29]. http://www.cts.de
    [30]. Carol, L. Kory. Three-Dimensional Simulation of PPM Focused Helical Traveling-Wave Tubes:[Doctor Dissertation]. Cleveland :Cleveland State University,2000
    [31]. Carol L.Kory et al. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits. IEEE Trans on ELECTRON DEVICES,1998, 45: 966-971
    [32]. Carol L.Kory et al. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics. IEEE Trans on ELECTRON DEVICES,1998,45:972-976
    [33]. Carol L.Kory. Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction. IEEE Trans on ELECTRON DEVICES, 2001,48: 1718-1726
    [34]. http://www.ansys.com
    赖宇晴,任俊杰,廖莉,杨中海. 螺旋线行波管慢波结构三维热分析. 2000 Ansys 中国用户
    
    [35]. 年会论文集,155-158
    [36]. 任俊杰,杨中海. 行波管热状态模拟. 四川省电子学会高能电子学专业委员会第二届学术交流会论文集,237-239
    [37]. N.J.Dionne et al. Three-Dimensional Simulation of Gridded TWT Guns, Tech.Dig.Int.Eletron Devices Meeting. Washinton,D.C.,1980,pp.479-482
    [38]. J.Petillo et al. 3-D Particle-in-cell Simulations for Multi-stage Depressed Collector Design, Proc 1988 Microwave Power Tube Conf.,Monterey,CA,1988,Paper 2C-5
    [39]. W.B.Hermannsfeldt. Electron Trajectory Program. Stanford Linear Accelerator Center, Stanford, CA, SLAC Rep.226.1979
    [40]. R.True. A General Purpose Relativistic Beam Dynamics Code. Computational Accelerator Physics, AIP Conf. Proc. 297, 1994,pp.493-499
    [41]. Salvatore Coco et al. COCA: A Novel 3-D FE Simulator for the Design of TWTs Multistage Collectors. IEEE Trans Electron Devices, 2001, Vol. 48, No. 1:24-31
    [42]. K.S.YEE. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Trans. Antennas Propagat,1966,Ap-14: 302-307
    [43]. J,-F.LEE. Analysis of Passive Microwave Device by Using Three-Dimensional Tangential Vector Finite Elements. Int.J. Numerical Modeling: Electron. New York, Devices,Fields,1990, 3:235-246
    [44]. G.L.G.Sleijpen and H.A.van der Vorst. A Jacbi-Davidson Iteration Method for Linear Eigenvalue Problems. SIAM J.Matrix Anal.Appl.1996,17:401-425
    [45]. Stefano D'Agostino et al. Accurate Analysis of Helix Slow-Wave Structures. IEEE Trans on ELECTRON DEVICES, 1998,45:1605- 1613
    [46]. Simon J.Cooke et al. CTLSS-An Advanced Electromagnetic Simulation Tool for Designing High-Power Microwave Sources. IEEE Trans on PLASMA SCIENCE,2000,28:841-866
    [47]. J.R.Pierce. Traveling Wave Tubes. New York: Van Nostrand,1950
    [48]. J.E.Rowe. Nonlinear Electron-Wave Interaction Phenomena. Academic Press, New York,1965
    [49]. 刘盛纲. 微波电子学导论. 北京:国防工业出版社,1985
    [50]. 刘盛纲. 相对论电子学. 北京:科学出版社,1987
    [51]. A.S.Gilmour. Principles of Traveling Wave Tubes. Norwood, MA: Artech House,1994
    [52]. L.A.Vainshtein. The Nonlinear Theory of Traveling Wave Tubes: Part Ⅲ ,Influence of the Space Charge Forces. Radio Eng.Eletron,1958,9:116-123
    [53]. H.K.Detweiler. Calculation of Space-Charge Force in the Analysis of Traveling Wave Tubes. JPL Quart. Tech. Rev. 1971,1:106-115
    D.M.MacGregor, Two-Dimensional Nonlinear Multisignal Helix Traveling Wave Tube Amplifer Computer Program, Vol 1:User Manual, Electrocon International, Inc., Ann Arbor,
    
    [54]. Michigan, April 1993
    [55]. H.P.Freund. Three-Dimensional Theory of Helix Traveling-Wave Tubes. IEEE Trans on PLASMA SCIENCE,2000,28: 748- 759
    [56]. Xu L,Yang Z H,Mo Y L .Improved three-dimensional model for the nonlinear analysis of helix travelling-wave tubes, International Journal of Electronics,2000, l87(3): 377-384
    [57]. Xu L,Yang Z H,Mo Y L . Three-dimensional numerical analysis for millimeter wave TWTs, INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES 1999,20:473- 481
    [58]. 莫元龙等. 考虑谐波互作用的行波管自洽非线性理论和重要结果. 电子科技大学学报, 1996, Vol. 25, No. 6:625-630
    [59]. 白安永,邹长明,莫元龙. 谐波互作用的行波管二维自洽非线性理论. 电子科技大学学报, 1996, Vol. 25(增一):43-47
    [60]. 李建清,莫元龙,张勇,周晓岚. 有限尺寸宏粒子空间电荷场研究. 强激光与粒子束, 2002, Vol. 14, No. 1:134-138
    [61]. 张忠民. 行波管的非线性理论与计算机模拟:[硕士学位论文]. 成都:电子科技大学高能所, 1996
    [62]. 白安永. 考虑谐波互作用的行波管二维非线性理论:[硕士学位论文]. 成都:电子科技大学高能所,1997
    [63]. 徐林. 行波管CAD网络计算环境及科学可视化研究:[博士学位论文]. 成都:电子科技大学高能所,1999
    [64]. T.M.Antonsen et al. CHRISTINE: A Multifrequency Parametric Simulation Code for Traveling Wave Tube Amplifiers,Naval Res. Lab,Washton,DC,NRL Memo Rep. NRL/FR/6840-97-9845, 1997
    [65]. David K.Abe et al. A Comparison of L-Band Helix TWT Experiments with CHRISTINE, a 1-D Multifrequency Helix TWT Code.IEEE Trans on PLASMA SCIENCE, 2000,28:576-587
    [66]. David Chernin et al. A three-Dimensional Multi-frequency Large Signal Model for Helix Traveling Wave Tubes. IEEE Trans on ELECTRON DEVICES,2001, 48:3-11
    [67]. Joseph D.Blahovec et al. 3-D ICEPIC Simulations of the Relativistic Klystron Oscillator, IEEE Trans on PLASMA SCIENCE,2000,28:821-829
    [68]. Venkatesh P.Gopinath and Timothy A.Grotjohn, Three-Dimensional Electromagnetic PIC Model of a Compact ERC Plasma Source, IEEE Trans on PLASMA SCIENCE,1995,23: 602- 608
    [69]. A.T.LIN,Z.H.YANG and K.R.CHU, Particle Simulation of a High-Power Gyrotron Oscillator, IEEE Trans on PLASMA SCIENCE,1988,16:129-134
    A.T.LIN,CHIH-CHIEN,Z.H.YANG,K.R.CHU et al, Simulation of Transient Behavior in a
    
    [70]. Pulse-Line-Driven Gyroreon Oscillator, IEEE Trans on PLASMA SCIENCE,1988,16:135-141
    [71]. 杨中海,谢文楷,虚阴极高功率微波发生器的粒子模拟,电子学报,Vol.20,No.2, P.53,1992
    [72]. Fu HongQing and Yang ZhongHai, The Pic Simulation of Coaxial Reditron, Int.Conf.on Microwave and Millimeter Wave Technology Proceedings August 18-20,P.535,1998.
    [73]. 幅相一致行波管专辑(内部资料). 总装备部电子信息基础部电子装备科技局, 2002
    [74]. 张英波. 宽带功率合成型发射机体制及器件的选择. 幅相一致行波管专辑:9-13
    [75]. 朱敏,赵士录,魏义学. 相位一致行波管研究现状及展望. 幅相一致行波管专辑:14-20
    [76]. 邹文禄,冯蕾. 影响宽带大功率行波管相位一致的因素. 幅相一致行波管专辑:21-28
    [77]. 张国兴,宋鑫宝. 行波管功率合成的效率分析. 幅相一致行波管专辑:41-48
    [78]. 张其劭,郭高凤. 行波管内传输系统中不连续性造成的幅频、相频特性起伏的网络分析. 幅相一致行波管专辑:49-55
    [79]. 赵士录,魏义学,宋正法,马玉连,付庆华,孟磊,任卫宏,任怡. 相位一致行波管研制过程中若干问题的讨论. 幅相一致行波管专辑:56-61
    [80]. 陈君乐,陈书. 相位一致行波管设计、研制中的一些问题. 幅相一致行波管专辑:62-67
    [81]. 赵柏甲,范莉. 螺旋线行波管主要尺寸偏差导致幅相特性偏差的估计. 幅相一致行波管专辑:71-88
    [82]. 魏义学,赵士录,宋正法,马玉连,付庆华,孟磊,任卫宏,任怡. 相位一致行波管关键技术. 幅相一致行波管专辑:89-91
    [83]. 张国兴. 行波管的幅相一致特性. 幅相一致行波管专辑:101-107
    [84]. 魏义学,付庆华,孟磊. 幅相一致性行波管均衡技术. 真空电子技术, 2000, N0.2:38-41
    [85]. 樊孝年,邬显平. 螺旋线慢波结构损耗特性研究. 真空电子技术, 2000, N0. 3:1-9
    [86]. Handy R A, Puri M P. Control of phase and gain deviations in an octave bandwidth EHF TWT. IEDM IEEE, 1986, 19(5):508-511
    [87]. 李斌,杨中海. 行波管相位一致性的理论研究与计算机模拟. 强激光与粒子束, 2001, Vol. 13, No. 4:479-484
    [88]. Bin Li Zhong hai Yang. Research of slow wave circuit CAD of gain and phase matched operation helical TWT's, 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 186-189.
    [89]. 李斌,杨中海,张勇,莫元龙. 幅相一致行波管高频电路研究. 强激光与粒子束, 2002, Vol. 14, No. 6:882-886
    [90]. 李斌,杨中海,莫元龙. 幅相一致行波管非线性理论与计算机模拟. 强激光与粒子束,已录用
    [91]. 杨中海等. 宽带大功率行波管CAD软件包研究技术报告。
    杨中海,莫元龙. 宽带大功率行波管CAD集成环境. 电子科学技术评论, 1999, Vol. 4, No.
    
    [92]. 39:5-16
    [93]. Hamming R.W. Numerical Methods for Scientists and Engineers. New York:McGrraw-Hill, 1962
    [94]. 李晓梅等. 科学计算可视化导论. 北京:国防科技大学出版社,1996
    [95]. 石教英,蔡立文. 科学计算可视化算法与系统. 科学出版社,1996
    [96]. Nelson G.M, et al. Visualization in Scientific Computing. ISBN 0-8186-8979-X, IEEE Computer Society Press, 1990
    [97]. Brodlie K.W, et al. Scientific Visualization-Techniques and Applications. Springer-Verlag, 1992
    [98]. Upson C, et al. The Application Visualization System: A Computational Environment for Scientifc Visualization. IEEE Computer Graphics and Applications, 1989, Vol. 9,No. 4:30-42
    [99]. 陈文宇,张松梅. C++语言教程. 成都:电子科技大学出版社,2000
    [100]. 宛延闿. C++语言和面向对象程序设计. 北京:清华大学出版社,1998
    [101]. Stanley B. Lippman. 深度探索C++对象模型(Inside The C++ Object Model)(候捷译). 武汉:华中科技大学出版社,2001
    [102]. Bjarne Stroustrup. The C++ Programming Language. Pearson Education Company,2002
    [103]. L. Xu, Z. H. Yang, Y. L. Mo. A Network Computing Environment for TWTs-CAD. The International Journal of Infrared & Millimeter Waves, 1999, Vol. 20, No. 5:929-936
    [104]. 李建清,莫元龙,张勇,周晓岚. 行波管多信号非线性注波互作用的网络并行计算. 强激光与粒子束,2002,Vol. 14,No. 4:583~586
    [105]. 孙家昶,张林波,迟学斌,汪道柳编著. 网络并行计算与分布式编程环境, 北京:科学出版社, 1997
    [106]. 张玉珩,陆鑫达. 网络并行计算在图像处理中的应用. 计算机工程, 1999, Vol. 26, No. 6:11- 13
    [107]. 刘勇,朱国强. 基于TCP/IP的网络并行计算的实现. 计算机工程, 2000, Vol. 26, No.8:187- 189
    [108]. 耿风华,陆鑫达.网络并行计算的一种新架构.计算机工程,2002,Vol. 28,No. 3:4-6
    [109]. 胡凯,胡建平,王强. 分布式并行计算网络体系结构研究. 小型微型计算机系统,2000,Vol. 21, No. 2:113-115
    [110]. 莫则尧,李晓梅. 工作站网络环境下的并行计算. 计算机学报,1997,Vol. 20,No. 6:510~517
    [111]. M.Flynn. Very High Speed Computing Systems. Proc. IEEE,1966,Vol. 54:1901-1909
    [112]. 周明天,汪文勇. TCP/IP网络原理与技术. 北京:清华大学出版社,1993
    [113]. 谢希仁. 计算机网络. 大连:大连理工大学出版社,2000
    [114]. Kris Jamsa and Ken Cope. Internet编程(刘素丽,李彤红等译). 北京:电子工业出版社,1996
    [115]. Andrew S. Tanenbaum. Computer Network(Third Edition). Prentice Hall Inc.,1996
    
    
    [116]. Douglas E. Comer. 用TCP/IP进行网际互联:第一卷:原理、协议与结构(第四版)(林瑶,蒋慧,杜蔚轩等译), 北京:电子工业出版社,2001
    [117]. Douglas E. Comer, David L. Stevens. 用TCP/IP进行网际互联:第三卷:客户机-服务器编程和应用(第二版)(赵刚,林瑶,蒋慧等译), 北京:电子工业出版社,1998
    [118]. Ian Sommerville. Software Engineering. Pearson Education Company, 2001
    [119]. 郑人杰等. 实用软件工程. 北京:清华大学出版社,1997
    [120]. 卡耐基梅隆大学软件工程研究所编著. 能力成熟度模型(CMM):软件过程改进指南(刘孟仁等,译者). 北京:电子工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700