平面不对称高层建筑结构利用速度型阻尼器减震控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以平面不对称高层建筑结构的被动耗能减震控制研究为核心,从耗能减震高层建筑结构地震响应计算、基于性能的耗能减震设计和阻尼器在不对称结构中的优化分布三方面进行一系列相关联的研究。主要内容包括:
     (1)阻尼器参数分析。分析阻尼器参数对单自由度体系振动响应的影响。通过参数分析,比较粘滞阻尼器和粘弹性阻尼器对单层不对称结构复模态参数的影响及减震效果。
     (2)基于改进Ritz法的非比例阻尼高层建筑结构的地震响应计算。改进Ritz法采用基于外荷载空间分布的Ritz向量和基于外荷载频率的Ritz向量。其中,基于外荷载空间分布的Ritz向量用Lanczos法形成;基于外荷载频率的Ritz向量则用外荷载主频的平方进行特征值平移后,再用Lanczos法形成。用改进Ritz法的Ritz向量对结构动力方程进行线性变换,之后采用拟力实模态法对线性变换后的耦联动力方程进行迭代求解。
     (3)基于性能的耗能减震设计。本文提出两种基于性能的抗震设计方法:①直接基于位移的耗能减震设计方法。性能目标用层间位移角表示。先将多自由度体系等效成单自由度体系,之后依据位移反应谱确定单自由度体系在已定水准地震动下满足目标位移要求所需的总阻尼比,该阻尼比可以近似认为是多自由度体系满足性能要求所需的总阻尼比,继而确定阻尼器的附加等效阻尼比和相应的阻尼系数。直接基于位移的耗能减震设计方法适用于对称结构;②基于多模态的耗能减震设计方法。基于多模态的设计方法将结构的性能指标用多阶模态表示,引入模态等效单自由度体系的最大位移之比,将结构的性能指标表示成关于第1阶模态等效单自由度体系的最大位移的函数,并由结构的性能目标值确定第1阶模态等效单自由度体系的允许最大位移,继而根据位移反应谱确定第1阶模态的阻尼比,确定附加阻尼比及阻尼系数。计算阻尼系数给各阶模态提供的等效阻尼比,依据阻尼比修正最大位移之比和模态的相关系数,进行迭代计算直到阻尼比满足精度要求。由迭代收敛时的阻尼比确定阻尼系数,该阻尼系数就是结构满足性能目标要求需要的阻尼系数。该方法考虑多阶模态的影响,不仅可以用于对称结构,还可以用于不对称的多高层建筑结构。
     (4)阻尼器的优化布置。以单层不对称结构作为平面不对称多高层建筑结构的简化模型,研究速度型阻尼器在平面的最优偏心位置。用随机振动理论将目标函数表示成关于阻尼器偏心的函数,继而用MATLAB优化工具箱求得目标函数取最小值时的阻尼器最优偏心位置。对阻尼器最优偏心位置进行参数分析,得出结论:影响阻尼器最优偏心的因素比较多,工程实践中难以精确求解最优偏心位置。因此,论文分析目标函数对阻尼器偏心的敏感性,并给出平面不对称结构中阻尼器的近似最优偏心取值的建议。用顺序搜索法优化阻尼系数在结构各层之间的分布,每层阻尼系数的平面分布满足阻尼器近似最优偏心的要求。对比该方法和遗传算法的优化计算结果,结果表明,该方法可以有效地在偏心结构中优化布置阻尼器。
     (5)将本文的理论分析方法应用于工程实例。
In this paper, a series of research is carried out on vibration control of plan-asymmetric high-rise buildings with passive energy dissipation dampers, which mainly includes seismic response analysis of tall buildings with dampers, performance-based design method for structures with dampers, and optimal distribution of dampers in asymmetric structures. The specific contents are as follows:
     (1) Parameter analysis of dampers. The influence of damper parameters on vibration of SDOF system is analyzed. Base on parameter analysis, comparison is made between viscous and viscoelastic dampers' influence on modal parameters of asymmetric one-storey structure and vibration reduction effect.
     (2) Improved Ritz method to analyze seismic response of tall building with non-classical damping. Improved Ritz Method adopts not only load dependent Ritz vectors but also frequency dependent Ritz vectors. Both vectors are generated by Lanczos Algorithm in which the frequency dependent Ritz vectors can be obtained after eigenvalue shift with square of the predominant excitation frequency. A linear transformation is made to the dynamic equation by using the Ritz vectors and then the pseudo-force method is employed to solve the coupled equation after transformation.
     (3) Performance-based design method for structures with energy dissipation devices. This paper advances two performance-based design methods:①Direct displacement-based seismic design method with performance target expressed by storey drift. MDOF structure is transferred to SDOF system. And the required total damping ratio of SDOF system to satisfy displacement demand for given earthquake wave is evaluated through displacement spectrum, which can be taken as the approximation of MDOF structure's damping ratio demanded to meet performance requirement. Then the supplemental equivalent damping ratio and the corresponding damping coefficients of dampers are determined. Direct displacement-based design method can only be applied to symmetric structures②Multimode-based design method for buildings with dissipation devices. The performance index of structures is expressed by multi-mode. By introducing maximum displacement ratio of modes' equivalent SDOF systems, the structure performance index can be represented as a function of maximum displacement of the first mode SDOF system. Then, the allowed maximum displacement of the first mode SDOF system can be calculated from the given performance target. The damping ratio demanded by the first mode can be identified from the displacement spectrum, and the supplemental damping ratio and the damping coefficients are determined. After that, the equivalent damping ratios supplied by the damping coefficients for other modes are calculated, and then the maximum displacement ratio and the correlation coefficients between modes are revised accordingly. Iteration calculation continues until the first mode damping ratio meets the precision requirement. The damping coefficients for the structure can be calculated from the convergent damping ratio. Multimode-based method can be applied not only to asymmetric structures but also to symmetric structures.
     (4) Optimal distribution of dampers. A single-storey asymmetric structure is employed as the simplified model of plan-asymmetric multi-storey structures to study the optimal plan distribution of viscous and viscoelastic dampers. Based on the random vibration theory, the objective function is expressed as a function of damper eccentricity. The optimum damper eccentricity is found by minimizing the target function with the optimization toolbox of MATLAB. Then, parametric analysis is carried out on the optimum damper eccentricity. It is concluded that there are too many factors influencing the optimal eccentricity of damper to calculate it precisely in practice. So the sensitivity of objective function to damper eccentricity is analyzed and the approximate optimal damper eccentricity is proposed. The Sequential Search Algorithm is employed to optimize the distribution of damper coefficients between different storeys, and the plan distribution of damper coefficients in every storey is in accordance with the approximately optimal eccentricity. The distribution of viscous dampers is optimized by the proposed method and GA algorithm respectively, and comparison of the seismic response reduction effect shows that the proposed method can get favorable result in relatively shorter time and is an effective method for the optimal distribution of dampers.
     (5) At last the theoretical methods are applied to an actual project.
引文
[1] 李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [2]彭承光,李运贵.场地地震效应工程勘察基础[M].北京:地震出版社,2004.
    [3]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [4]方鄂华,程懋堃.关于规程中对扭转不规则控制方法的讨论[J].建筑结构,2005,Vol.35(11):12-15.
    [5]魏琏,王森.扭转不规则建筑竖向构件考虑扭矩影响的抗震验算方法[J].建筑结构,2006,Vol.36(07):8-10.
    [6]Yao,J.T.P.Concept of Structural Control[J].Journal of the Structural Division,1972,98:1567-1574.
    [7]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
    [8]Kelly,J.M.,R.I.Skinner,A.J.Heine.Mechanisms of Energy Absorption in Special Devices For Use in Earthquake Resistant Structures[J].Bulletin of Environmental Contamination and toxicology,1972,Vol.5(3):63-73.
    [9]Chopra,A.K.Dynamics of Structures:Theory and Applications to Earthquake Engineering[M].Prentice Hall,1995.
    [10]Arima,F.,M.Miyazaki,H.Tanaka,et al.A Study On Buildings With Large Damping Using Viscous Damping Walls[J].Proceedings of The 9~(th)world Conference On Earthquake Engineering,1988:2-9.
    [11]谭在树,钱稼茹.钢筋混凝土框架用粘滞阻尼墙减震研究[J].建筑结构学报,1998,Vol.19(02):50-59.
    [12]欧谨,刘伟庆,章振涛.粘滞阻尼墙动力性能试验研究[J].工程抗震与加固改造,2005,Vol.27(6):55-59.
    [13]闫锋,吕西林.附加与不附加粘滞阻尼墙的RC框架对比振动台试验研究[J].建筑结构学报,2005,Vol.26(5):8-16.
    [14]Lu,X.,Y.Zhou,F.Yan.Shaking Table Test and Numerical analysis of Re Frames With Viscous Wall Dampers[J].Journal of Structural Engineering,2008,134(1):64-76.
    [15]陈建斌,丁洁民.消能支撑方钢管混凝土高层建筑抗震设计[J].同济大学学报,2006,Vol.34(11):1431-1435.
    [16]汪大绥,张坚.世茂国际广场主楼与裙房减振弱连接设计.第十九届全国高层建筑结构学术会议论文,长春,2006:31-36.
    [17]龚治国,吕西林,翁大根.超高层主楼与裙房黏滞阻尼器连接减振分析研究[J].土木工程学报,2007,Vol.40(9):8-15.
    [18]王亚勇,薛彦涛,欧进萍等.北京饭店等重要建筑的消能减振抗震加固设计方法[J].建 筑结构学报,2001,Vol.22(02):35-39.
    [19]Soong,T.T.,G.F.Dargush.Passive Energy Dissipation Systems in Structural Engineering[M].Wiley New York,1997.
    [20]Mahmoodi,P.Structural Dampers[J].Journal of Structural Devision,ASCE,1969,Vol.95(8):1661-72.
    [21]Caldwell,D.B.Viscoelastic Damping Devices Proving Effective in Tall Building[J].Journal Engineering,1986:148-150.
    [22]Mahmoodi,P.,L.E.Robertson,M.Yontar,et al.Performance of Viscoelastic Dampers in World Trade Center towers[J].Dynamics of Structures,1987:632-644.
    [23]Crosby,P.,J.Kelly,J.P.Singh.Utilizing viseo-elastic dampers in the seismic retrofit of an thirteen story steel framed building[C].1994.Atlanta,GA
    [24]程文瀼,隋杰英.宿迁市交通大厦采用粘弹性阻尼器的减震设计与研究[J].建筑结构学报,2000,Vol.21(03):30-35.
    [25]Skinner,R.I.,J.M.Kelly,A.J.Heine.Hysteretic Dampers For Earthquake-Resistant Structures[J].Earthquake Engineering & Structural Dynamics,1975,Vol.3(3):287-296.
    [26]Ozdemir.H.Nonlinear Transient Dynamic analysis of Yielding Structrues:[dissertation].University of Califomia,Berkeley,Ca,1976.
    [27]汪家铭,中岛正爱.屈曲约束支撑体系的应用与研究进展[J].建筑结构进展,2005,Vol.7(02):1-11.
    [28]叶列平,马千里,程光煜等.西部机电科技商务中心钢结构消能减震计算分析[J].工程抗震与加固改造,2005,Vol.27(3):20-25.
    [29]Pall,A.S.,C.Marsh.Response Of Friction Damped Braced Frames[J].J.Struct.Div.,ASCE,1982,108(6):1313-1323.
    [30]Aiken,I.D.,J.M.Kelly,Earthquake Simulator Testing and analytical Studies of Two Energy-Absorbing Systems for multistory structures[R].Report No.UCB/EERC-90/03,University of California,Berkeley,CA,1990.
    [31]李宏男.结构振动与控制[M].北京:中国建筑工业出版社,2005.
    [32]王肇民,邹祖军.嘉定电视塔结构振动控制试验研究[J].特种结构,1994,Vol.11(03):32-36.
    [33]王肇民.电视塔结构TMD风振控制研究与设计[J].建筑结构学报,1994,Vol.15(05):2-13.
    [34]张旭升,王肇民,钢结构电视塔的MTMD风振控制研究及设计[J].计算力学学报,1998,Vol.15(01):101-107.
    [35]瞿伟廉,宋波,陈妍桂。TLD对珠海金山大厦主楼风振控制的设计.建筑结构学报,1995,Vol.16(03):21-28.
    [36]Goel,R.K.Effects of Supplemental Viscous Damping On Seismic Response of Asymmetric-Plan Systems[J].Earthquake Engineering & Structural Dynamics,1998,Vol.27(2):125-141.
    [37]Goel,R.K.Seismic Behaviour of Asymmetric Buildings With Supplemental Damping[J].Earthquake Engineering and Structural Dynamics,2000,Vol.29(4):461-480.
    [38]Goel,R.K.,C.A.Brooker.Effects of Supplemental Viscous Damping On inelastic Seismicresponce of Asymmetric Systems[J].Earthquake Engineering and Structural Dynamics,2001,Vol.30(3):428-430.
    [39]Lin,W.H.,A.K.Chopra.Understanding and Predicting Effects of Supplemental Viscous Damping On Seismic Response of Asymmetric One-Storey Systems[J].Earthquake Engineering and Structural Dynamics,2001,Vol.30(10):1475-1494.
    [40]Kim,J.,S.Bang.Optimum Distribution of Added Viscoelastic Dampers For Mitigation of torsional Responses of Plan-Wise Asymmetric Structures[J].Engineering Structures,2002,Vol.24(10):1257-1269.
    [41]Lin,W.H.,A.K.Chopra.Asymmetric One-Storey Elastic Systems With Non-Linear Viscous and Viscoelastic Dampers:Simplified analysis and Supplemental Damping System Design[J].Earthquake Engineering and Structural Dynamics,2003,Vol.32(4):579-596.
    [42]Goel,R.K.Seismic Response of Linear and Non-Linear Asymmetric Systems With Non-Linear Fluid Viscous Dampers[J].Earthquake Engineering and Structural Dynamics,2005,Vol.34(7):825-846.
    [43]De La Llera,J.C.,J.L.Almazan,I.J.Vial.torsional Balance of Plan-Asymmetric Structures With Frictional Dampers:analytical Results[J].Earthquake Engineering and Structural Dynamics,2005,Vol.34(9):1089-1108.
    [44]Vial,I.J.,J.C.De La Llera,J.L.Almazan,et al.torsional Balance of Plan-Asymmetric Structures With Frictional Dampers:Experimental Results[J].Earthquake Engineering and Structural Dynamics,2006,Vol.35(15):1875-1898.
    [45]Garcia,M.,J.C.De La Llera,J.L.Aimazan.Torsional Balance of Plan Asymmetric Structures With Viscoelastic Dampers[J].Engineering Structures,2007,Vol.29(6):914-932.
    [46]Singh,M.P.,S.Singh,L.M.Moreschi.Tuned Mass Dampers For Response Control of torsional Buildings[J].Earthquake Engineering and Structural Dynamics,2002,Vol.31(4):749-769.
    [47]Yoshida,O.,S.J.Dyke,L.M.Giacosa,et al.Experimental Verification of torsional Response Control of Asymmetric Buildings Using MR Dampers[J].Earthquake Engineering and Structural Dynamics,2003,Vol.32(13):2085-2105.
    [48]Yoshida,O.,S.J.Dyke.Response Control of Full-Scale Irregular Buildings Using Magnetorheological Dampers[J].Journal of Structural Engineering,2005,Vol.131(5):734-742.
    [49]Kim,H.,H.Adeli.Hybrid Control of Irregular Steel Highrise Building Structures Under Seismic Excitations[J].international Journal For Numerical Methods in Engineering,2005,Vol.63(12):1757-1774.
    [50]李忠献,万家.高层建筑结构扭转耦合地震反应阻尼器控制试验研究[J].振动工程学 报,1999,Vol.12(02):262-266.
    [51]霍林生,李宏男,孙丽.多维地震作用下非对称结构利用TLCD减震控制研究[J].地震工程与工程振动.2001,Vol.21(4):147-153.
    [52]黄世敏,魏琏,衣洪建等.地震作用下不对称高层建筑平移—扭转耦联振动的控制研究[J].工程抗震,2003,(04):1-5.
    [53]李春祥,韩传峰.非对称结构扭转振动多重调谐质量阻尼器(MTMD)控制的最优位置[J].地震工程与工程振动,2003,Vol.23(06):149-155.
    [54]郑久建,魏琏.多高层建筑采用粘滞阻尼器减震结构的扭转分析[J].工程抗震,2004,(02):1-5.
    [55]李宏男,杨浩.多维地震作用下偏心结构的磁流变阻尼器半主动控制[J].地震工程与工程振动,2004,Vol.24(3):167-174.
    [56]李宏男,霍林生.调液阻尼器对结构扭转耦联振动控制的优化设计[J].计算力学学报,2005,Vol.22(2):129-134.
    [57]韩兵康.MTMD控制非对称结构扭转振动的最优位置[J].振动与冲击.2005,Vol.24(3):27-31.
    [58]李秀领,李宏男.框架-剪力墙偏心结构的MRD减振试验研究[J].东南大学学报,2005,Vol.35(S):27-30.
    [59]程光煜,叶列平,朱兴刚.偏心结构消能减震技术的分析研究[J].工程抗震与加固改造,2006,Vol.28(02):78-83.
    [60]吕西林,孟春光,田野。消能减震高层方钢管混凝土框架结构振动台试验研究和弹塑性时程分析[J].地震工程与工程振动,2006,Vol.26(04):231-238.
    [61]杜永峰,刘彦辉,李慧.双向偏心结构扭转耦联地震反应的序列最优控制[J].地震工程与工程振动,2007,Vol.27(4):133-138.
    [62]李春祥,张丽卿.地震作用下不规则建筑AMTMD控制的动力特性-Ⅰ:平动振动控制[J].振动与冲击,2007,Vol.26(8):44-49.
    [63]李春祥,张丽卿。地震作用下不规则建筑AMTMD控制的动力特性-Ⅱ:扭转振动控制[J].振动与冲击,2007,Vol.26(8):50.
    [64]李春祥,王超,张丽卿.基于Kanai-Tajimi地震模型不规则建筑AMTMD减震行为的研究[J].振动与冲击,2007,Vol.26(10):68-75.
    [65]中华人民共和国国家标准.建筑抗震设计规范(GB 50011-2001).北京:中国建筑工业出版社,2001
    [66]Claret,A.M.,F.Venancio-Filho.A Modal Superposition Pseudo-Force Method For Dynamic analysis of Structural Systems With Non-Proportional Damping[J].Earthquake Engineering & Structural Dynamics,1991,Vol.20(4):303-315.
    [67]桂国庆,何玉敖.非比例阻尼线性结构体系动力分析的拟力实[J].工程力学,1992,Vol.9(02):23-35.
    [68]李忠献,何玉敖.高层建筑地震反应的优化阻尼器控制[J].建筑结构学报,1994,Vol.15(04):53-61.
    [69]桂国庆,何玉敖.非比例阻尼结构体系近似解耦分析中的误差研究[J].工程力学,1994,Vol.11(04):40-45.
    [70]Sinha,R.,T.Igusa.CQC and SRSS Methods For Non-Classically Damped Structures[J].Earthquake Engineering & Structural Dynamics,1995,Vol.24(4):615-619.
    [71]桂国庆,何玉敖。非比例阻尼结构复模态问题求解的矩阵摄动法[J].同济大学学报,1996,Vol.24(06):613-618.
    [72]Goel,R.K.Simplified analysis of Asymmetric Structures With Supplemental Damping[J].Earthquake Engineering and Structural Dynamics,2001,Vol.30(9):1399-1416.
    [73]崔峰,蒋永生,刘文锋.基于反应谱理论的复模态抗震设计方法[J].地震工程与工程振动,2002,Vol.22(3):32-36.
    [74]杜永峰,李慧,苏磐石等.非比例阻尼隔震结构地震响应的实振型分解法[J].工程力学,2003,Vol.20(04):24-32.
    [75]周锡元,董娣,苏幼坡.非正交阻尼线性振动系统的复振型地震响应叠加分析方法[J].土木工程学报,2003,Vol.6(05):30-36.
    [76]李正良,范文亮,周志祥等.基于摄动法及等效线性化的耗能减震结构振型分解法[J].工程力学,2005,Vol.22(3):16-20.
    [77]俞瑞芳,周锡元.非比例阻尼弹性结构地震反应强迫解耦方法的理论背景和数值检验[J].工业建筑,2005,Vol.35(02):52-56.
    [78]周锡元,马东辉,俞瑞芳.工程结构中的阻尼与复振型地震响应的完全平方组合[J].土木工程学报,2005,Vol.38(01):31-39.
    [79]周锡元,俞瑞芳.非比例阻尼线性体系基于规范反应谱的CCQC法[J].工程力学,2006,Vol.23(02):10-17.
    [80]俞瑞芳,周锡元.具有过阻尼特性的非比例阻尼线性系统的复振型分解法[J].建筑结构学报,2006,Vol.27(01):50-59.
    [81]俞瑞芳,周锡元.非比例阻尼线性体系地震响应的部分平方组合(CPQC)法[J].土木工程学报,2006,Vol.39(11):43-49,126.
    [82]Smith,K.G.Innovation in Earthquake Resistant Concrete Structure Design Philosophies;A Century of Progress Since Hennebique's Patent[J].Engineering Structures,2001,Vol.23(1):72-81.
    [83]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报,2002,Vol.30(012):1429-1434。
    [84]徐培福,傅学怡,王翠坤等.复杂高层建筑结构设计[M].北京:中国建筑工业出版社,2005.
    [85]Kim,J.,H.Choi,K.W.Min.Performance-Based Design of Added Viscous Dampers Using Capacity Spectrum Method[J].Journal of Earthquake Engineering,2003,Vol.7(1):1-24.
    [86]Kim,J.,Y.Seo.Seismic Design of Steel Structures With Buckling-Restrained Knee Braces[J].Journal of Constructional Steel Research,2004,Vol.59(12):1477-1497.
    [87]邹银生,陈敏,冯承辉.粘滞阻尼器消能减震结构的简化设计[J].湖南大学学报,2005, Vol.32(06):1-5.[88]Kim,J.,H.Choi.Displacement-Based Design of Supplemental Dampers For Seismic Retrofit of A Framed Structure[J].Journal of Structural Engineering,2006,Vo1.132(6):873-883.
    [89]张思海,梁兴文,邓明科.被动耗能减震结构基于能力谱法的抗震设计方法研究[J].土木工程学报,2006,Vol.39(07):26-32.
    [90]Lin,Y.Y.,M.H.Tsai,J.S.Hwang,Et al.Direct Displacement-Based Design For Building With Passive Energy Dissipation Systems[J].Engineering Structures,2003,Vol.25(1):25-37.
    [91]Takewaki,I.Optimal Damper Placement For Minimum Transfer Functions[J].Earthquake Engineering & Structural Dynamics,1997,Vol.26(11):1113-1124.
    [92]Takewaki,I.,S.Yoshitomi.Effects of Support Stiffnesses On Optimal Damper Placement For A Planar Building Frame[J].Structural Design of Tall Buildings,1998,Vol.7(4):323-336.
    [93]Takewaki,I.,K.Uetani.Optimal Damper Placement For Building Structures including Surface Ground Amplification[J].Soil Dynamics and Earthquake Engineering,1999,Vol.18(5):363-372.
    [94]Takewaki,I.Displacement-Acceleration Control Via Stiffness-Damping Collaboration[J].Earthquake Engineering and Structural Dynamics,1999,Vol.28(12):1567-1585.
    [95]Takewaki,I.Optimal Damper Placement For Critical Excitation[J].Probabilistic Engineering Mechanics,2000,Vol.15(4):317-325.
    [96]Singh,M.P.,L.M.Moreschi.Optimal Seismic Response Control With Dampers[J].Earthquake Engineering & Structural Dynamics,2001,Vol.30(4):553-572.
    [97]Mahendra,P.S.,P.V.Navin,M.M.Luis.Seismic analysis and Design With Maxwell Dampers[J].Journal of Engineering Mechanics,2003,Vol.129(3):273-282.
    [98]Lee,S.H.,D.I.Son,J.Kim,et al.Optimal Design of Viscoelastic Dampers Using Eigenvalue Assignment[J].Earthquake Engineering and Structural Dynamics,2004,Vol.33(4):521-542.
    [99]Park,J.H.,J.Kim,K.W.Min.Optimal Design of Added Viscoelastic Dampers and Supporting Braces[J].Earthquake Engineering and Structural Dynamics,2004,Vol.33(4):465-484.
    [100]Lavan,O.,Ro Levy.Optimal Design of Supplemental Viscous Dampers For Irregular Shear-Frames in The Presence of Yielding[J].Earthquake Engineering and Structural Dynamics,2005,Vol.34(8):889-907.
    [101]Lavan,O.,R.Levy.Optimal Design of Supplemental Viscous Dampers For Linear Framed Structures[J].Earthquake Engineering and Structural Dynamics,2006,Vol.35(3):337-356.
    [102]Cimellaro,G.P.Simultaneous Stiffness-Damping Optimization of Structures With Respect to Acceleration,Displacement and Base Shear[J].Engineering Structures,2007, 29:2853-2870.
    [103]Aydin,E.,M.H.Boduroglu,D.Guney.Optimal Damper Distribution For Seismic Rehabilitation of Planar Building Structures[J].Engineering Structures,2007,Vol.29(2):176-185.
    [104]Zhang,R.H.,T.T.Soong.Seismic Design of Viscoelastic Dampers For Structural Applications[J].Journal of Structural Engineering,1992,Vol.118(5):1375-1392.
    [105]Wu,B.,J.P.Ou,T.T.Soong.Optimal Placement of Energy Dissipation Devices For Three-Dimensional Structures[J].Engineering Structures,1997,Vol.19(2):113-125.
    [106]Shukla,A.K.,T.K.Datta.Optimal Use of Viscoelastic Dampers in Building Frames For Seismic Force[J].Journal of Structural Engineering,1999,Vol.125(4):401-409.
    [107]徐赵东,刘军生.随机地震下阻尼器的优化设置[J].世界地震工程,2000,Vol.16(04):78-81.
    [108]Gareia,D.L.A Simple Method For The Design of Optimal Damper Configurations in MDOF Structures[J].Earthquake Spectra,2001,Vol.17(3):387-398.
    [109]Garcia,L.Efficiency of a Simple Approach to Damper Allocation in MDOF Structures[J].Journal of Structural Control,2002,Vol.9(1):19-30.
    [110]Liu,W.,M.tong,G.C.Lee.Optimization Methodology For Damper Configuration Based On Building Performance indices[J].Journal of Structural Engineering,2005,Vol.131(11):1746-1756.
    [111]Furuya,O.,H.Hamazaki,S.Fujita.Proper Placement of Energy Absorbing Devices For Reduction of Wind-induced Vibration Caused in High-Rise Buildings[J].Journal of Wind Engineering and industrial Aerodynamics,1998,74-76:931-942.
    [112]Li,Q.S.,D.K.Liu,N.Zhang,et al.Multi-Level Design Model and Genetic Algorithm For Structural Control System optimization[J].Earthquake Engineering and Structural Dynamics,2001,Vol.30(6):927-942.
    [113]Singh,M.P.,L.M.Moreschi.optimal Placement of Dampers For Passive Response Control[J].Earthquake Engineering and Structural Dynamics,2002,Vol.31(4):955-976.
    [114]Ahlawat,A.S.,A.Ramaswamy.Multiobjective Optimal Absorber System For torsionally Coupled Seismically Excited Structures[J].Engineering Structures,2003,Vol.25(7):941-950.
    [115]Liu,D.K.,Y.L.Yang,Q.S.Li.Optimum Positioning of Actuators in Tall Buildings Using Genetic Algorithm[J].Computers and Structures,2003,Vol.81(32):2823-2827.
    [116]Park,K.S.,H.Mo Koh,D.Hahm.integrated Optimum Design of Viscoelastically Damped Structural Systems[J].Engineering Structures,2004,Vol.26(5):581-591.
    [117]Wongprasert,N.,M.D.Symans.Application of A Genetic Algorithm For Optimal Damper Distribution Within The Nonlinear Seismic Benchmark Building[J].Joumal of Engineering Mechanics,2004,Vol.130(4):401-406.
    [118]Dargush,G.F.,R.S.Sant.Evolutionary Aseismic Design and Retrofit of Structures With Passive Energy Dissipation[J].Earthquake Engineering and Structural Dynamics,2005,Vol.34(13):1601-1626.
    [119]黄铭枫,唐家祥.高层建筑粘弹性阻尼器的优化设置[J].华中科技大学学报,2001,Vol.29(011):73-75.
    [120]徐玉野,王全凤,罗漪.地震作用下摩擦耗能减震结构优化分析的遗传算法求解[J].计算力学学报,2005,Vol.22(01):83-88.
    [121]周星德,彭宣茂.基于遗传算法的建筑结构最优阻尼研究[J].计算力学学报,2005,Vol.22(6):780-784
    [122]李宏男,董松员,李宏宇.基于遗传算法优化阻尼器空间位置的结构振动控制[J].振动与冲击,2006,Vol.25(02):1-4.
    [123]郭勇,孙炳楠,叶尹.大跨越输电塔线体系风振响应的时域分析[J].土木工程学报,2006,Vol.39(12):12-17.
    [124]赵大海,李宏男.非线性结构利用摩擦阻尼器振动控制的优化设计[J].振动与冲击,2007,Vol.26(10):35-40.
    [125]Lin,W.H.,A.K.Chopra.Earthquake Response of Elastic Sdf Systems With Non-Linear Fluid Viscous Dampers[J].Earthquake Engineering and Structural Dynamics,2002,Vol.31(9):1623-1642.
    [126]Lin,W.H.,A.K.Chopra.Earthquake Response of Elastic Single-Degree-of-Freedom Systems With Nonlinear Viscoelastic Dampers[J].Journal of Engineering Mechanics,2003,129:597.
    [127]欧进萍,龙旭.速度相关型耗能减振体系参数影响的复模量分析[J].工程力学,2004,Vol.21(04):6-12.
    [128]孟春光.复杂体型方钢管混凝土框架结构抗震性能和减震研究:[博士学位论文].上海:同济大学,2006:133-135.
    [129]蒋通,贺磊.非线性粘滞阻尼器消能结构减振效果分析[J].世界地震工程,2005,Vol.2l(2):57-63.
    [130]Kasai,K.,J.A.Munshi,M.L.Lai,et al.Viscoelastic Damper Hysteretic Model:Theory,Experiment and Application[J].Proceedings of Seminar on Seismic Isolation,Energy Dissipation,And Active Control,ATC- 17-1,1993:521-532.
    [131]Fu,Y.,K.Kasai.Comparative Study of Frames Using Viscoelastic and Viscous Dampers[J].Journal of Structural Engineering,1998,Vol.124(5):513-552.
    [132]徐赵东,周洲,赵鸿铁等.粘弹性阻尼器的计算模型[J].工程力学,200l,Vol.18(6):88-92.
    [133]Pekcan,G,J.B.Mander,S.S.Chen.Fundamental Considerations For The Design of Non-Linear Viscous Dampers[J].Earthquake Engineering & Structural Dynamics,1999,Vol.28(11):1405-1425.
    [134]Yoon,Y.S.,B.S.Smith.Assessment of Translational-torsional Coupling in Asymmetric Uniform Wall-Frame Structures[J].Journal of Structural Engineering,1995,Vol.121(10): 1488-1496.
    [135]李德葆.关于复模态理论的数学方法、物理概念及其与实模态理论的统一性[J].清华大学学报,1985,Vol.25(3):26-37.
    [136]宗志桓,罗兆辉.复模态理论及其与实模态理论的统一性[J].天津大学学报,1992,(1):88-94。
    [137]Caughey,T.K.Classical Normal Modes in Damped Linear Dynamic Systems[J].Journal of Applied Mechanics,1960,27.
    [138]Caughey,T.K.,M.E.J.O'Kelly.Classical Normal Modes in Damped Linear Dynamic Systems[J].Journal of Applied Mechanics,1965,Vol.32(3):583-588.
    [139]欧进萍,吴斌,龙旭.耗能减震结构的抗震设计方法[J].地震工程与工程振动,1998,Vol.18(2):98-107.
    [140]Wilson,E.L.,M.W.Yuan,J.M.Dickens.Dynamic analysis By Direct Superposition of Ritz Vectors[J].Earthquake Engineering and Structural Dynamics,1982,Vol.10(6):813-821.
    [141]Ibrahimbegovic,A.,H.C.Chen,E.L.Wilson,et al.Ritz Method For Dynamic analysis of Large Discrete Linear Systems With Non-Proportional Damping[J].Earthquake Engineering & Structural Dynamics,1990,Vol.19(6):877-889.
    [142]Xia,H.,J.L.Humar.Frenqueney Dependent Ritz Vectors[J].Earthquake Engineering and Structural Dynamics,1992,Vol.21(3):215-23 I.
    [143]Nour-Omid,B.,R.W.Clough.Dynamic analysis of Structures Using Lanczos Co-Ordinates[J].int.J.Earthquake Eng.Struct.Dyn,1984,Vol.12(4):565-577.
    [144]Joo,K.J.,E.L.Wilson.Ritz Vectors and Generation Criteria For Mode Superpositon analysis[J].Earthquake Engineering and Structural Dynamics,1989,Vol.18(2).
    [145]楼梦麟.结构振动模态分析的Wilson—Ritz向量法[J].地震工程与工程振动,1992,Vol.12(04):40-47.
    [146]Clough,R.W.Dynamics of Structures[M].Mcgraw-Hill Singapore,1993.
    [147]张景绘,王超,工程随机振动理论.西安:西安交通大学出版社,1988:134-136.
    [148]下乡太郎。随机振动最优控制理论及应用[M].北京:宇航出版社,1984:142-145.
    [149]Bommer,J.J.,R.Mendis.Scaling of Spectral Displacement Ordinates With Damping Ratios[J].Earthquake Engineering & Structural Dynamics,2005,Vol.34(2):145-165.
    [150]Lin,Y.Y.,E.Miranda,K.C.Chang.Evaluation of Damping Reduction Factors For Estimating Elastic Response of Structures With High Damping[J].Earthquake Engineering & Structural Dynamics,2005,Vol.34(11):1427-1443.
    [151]Faccioli,E.,R.Paolucci,J.Rey.Displacement Spectra For Long Periods[J].Earthquake Spectra,2004,20:347.
    [152]梁兴文,黄雅捷,杨其伟.钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报,2005,Vol.38(9):53-60.
    [153]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构,2001,Vol.3l(04):3-6.
    [154]Medhekar,M.S.,D.J.L.Kennedy.Displacement-Based Seismic Design of Buildings- Theory[J].Engineering Structures,2000,Vol.22(3):201-209.
    [155]Miranda,E.,J.Ruiz-Oarcia.Evaluation of Approximate Methods to Estimate Maximum inelastic Displacement Demands[J].Earthquake Engineering & Structural Dynamics,2002,Vol.31(3):539-560.
    [156]Priestley,M.J.N.Performance Based Seismic Design[J].Bulletin of The New Zealand National Society For Earthquake Engineering,2000,Vol.33(3):325-346.
    [157]Chopra,A.K.,R.K.Goel.A Modal Pushover analysis Procedure For Estimating Seismic Demands For Buildings[J].Earthquake Engineering and Structural Dynamics,2002,Vol.31(3):561-582.
    [158]Chopra,A.K.,R.K.Goel.A Modal Pushover analysis Procedure to Estimate Seismic Demands For Unsymmetric-Plan Buildings[J].Earthquake Engineering and Structural Dynamics,2004,Vol.33(8):903-927.
    [159]Lin,W.H.,A.K.Chopra.Asymmetrie One-Storey Elastic Systems With Non-Linear Viscous and Viscoelastic Dampers:Earthquake Response[J].Earthquake Engineering & Structural Dynamics,2003,Vol.32(4):555-577.
    [160]郑久建.粘滞阻尼器减震结构分析方法及设计理论研究:[博士学位论文].北京:中国建筑科学研究院,2003:66-72.
    [161]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社,2001.
    [162]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005。
    [163]霍林生.偏心结构利用调液阻尼器减震控制的研究:[博士学位论文].大连:大连理工大学,2005:56-57.
    [164]王翠坤,赵鹏飞,马宏睿等.深圳京基大梅沙酒店模型振动台试验研究[C].第十九届全国高层建筑结构学术会议论文.长春,2006:338-345.
    [165]中国建筑科学研究院.深圳京基大梅沙酒店模拟地震振动台结构模型试验报告[R],2006
    [166]钟善桐.钢管混凝土结构(第三版)[M].北京:清华大学出版社,2003.
    [167]周颖,吕西林,卢文胜.高层结构整体模型抗震动力试验误差分析[J].结构工程师,2006,Vol.22(1):62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700