机组组合问题紧外逼近与内外逼近模型方法及优化问题QP-free算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界各国积极发展低碳经济的背景下,降低能源消耗是实现低碳经济最直接的重要途径。近年来,中国电力工业发展很快,消耗的电绝大部分来自燃煤电厂。因此,在保证电力系统安全稳定运行和可靠供电的前提下,优化燃煤电厂的发电调度模式具有重要的现实意义。
     本文以电力系统机组组合问题为研究对象。一方面研究适合于实际工程应用的大规模非线性含整数与连续变量的机组组合问题的高效求解方法。另一方面,鉴于在机组组合问题的求解过程中涉及到求解其连续松弛问题,该问题属于光滑非线性规划问题,本文对求解光滑非线性优化问题的QP-free算法开展了深入细致的研究工作。
     首先,在回顾和总结现有发电调度计划的应用研究现状基础上,给出了所研究的机组组合问题的凸可分模型,提出了基于该模型的紧外逼近方法和内外逼近方法。这两类方法能有效地求解非光滑、非线性、大规模、含混合变量、多时段的机组组合问题,为实施节能发电计划提供实现的方法及手段。其次,本着探索求解光滑非线性规划问题结构简单、计算量少、收敛速度快及数值效果更好的算法以适用于大规模电力系统优化问题,提出了不等式约束优化问题一种新的线性方程组构造方法以及新型的QP-free算法。全文共分为6章,归纳如下:
     第1章分析研究了发电调度计划制定的要求,阐明了本课题研究的理论及实践意义。围绕机组组合问题及其连续松弛后的光滑非线性规划问题的求解方法两条主线,回顾总结机组组合问题的求解方法和求解非线性规划问题的QP-free算法的研究现状,提炼出尚需研究解决的关键问题,并基于此,引述本文的主要研究工作。
     第2章给出本文使用的数学理论基础。针对特殊的凸可分模型给出了紧外逼近法及其算法步骤,详细阐述了内外逼近法的思想和基本原理,以及设计光滑非线性规划问题算法的一些相关理论基础,为后续章节内容提供理论分析和算法两方面的支撑。
     第3章通过研究机组组合问题的特点及数学模型,提出一种机组组合问题的凸可分模型,以及基于该模型而获得机组组合问题次优解的紧外逼近确定性全局优化方法。通过将多变量函数分解成多个单变量函数,利用多个已经分离的单变量函数的次梯度不等式进行多步外逼近获得更紧的混合整数线性规划主问题,通过交替求解更紧的混合整数线性规划主问题和非线性规划子问题来逼近机组组合问题的最优解。
     第4章通过进一步减小松弛间隙,提出一种内外逼近方法求解机组组合问题。给出了改进的初始外逼近子问题,并提出了新的内逼近混合整数线性规划子问题。通过交替求解一系列混合整数线性规划外逼近子问题与内逼近子问题,产生更好的下界和更好的上界。充分利用内、外逼近子问题的有效性,既改进了迭代间隙又提高了解的质量。分别对10~300机组24时段8个算例以及10~100机组24~96时段系统进行了数值仿真。
     第5章基于对约束函数梯度的扰动,提出光滑非线性约束优化问题一个新的可行QP-free算法。新算法不仅保存了现有算法的优点,还具有其他一些良好的特性:算法每次迭代只需求解三个具有相同系数矩阵的线性方程组,计算量小;求解一个线性方程组即可产生可行下降方向,克服了以往至少要求解两个线性方程组,然后再做适当的凸组合方可获得可行下降方向的困难;迭代点均为可行点,并不要求是严格内点;算法中采用了试探性线搜索,可以进一步减少计算量;算法中参数很少,针对数学测试问题而言,数值试验表明算法具有较好的数值效果和较强的稳定性。
     第6章概括总结了本文的主要研究工作和成果,展望了有待进一步深入开展的几个研究工作。
Under the background of developing positively the low-carbon economy all over the world, the reduction of the energy consumption is the most direct and important way to realize low-carbon economy. In recent years, the development of China's power industry is rapid, and the most part of the consumed electricity is from coal-fired power plants. Therefore, it has important realistic significance to study the dispatch of coal-fired power plants on the premise of ensuring the safe and stable operation of the power system and reliable power supply.
     This thesis aims to study the unit commitment (UC) problem in power systems. On the one hand, this paper aims to study some efficient methods for solving the large-scale, nonlinear unit commitment problems with many integer and continuous varibles. On the other hand, in the process of solving the unit commitment problems, it needs to solve its continuous relaxation problem which is a smooth nonlinear programming (NLP) problem. The QP-free algorithm for solving nonlinear programming problem has been carried out in-depth and meticulous research at the same time.
     Firstly, based on the review and summary of the application of the existing generation dispatching, the paper proposes a new convex separable model for the unit commitment problem, and the tighter outer approximation and outer-inner approximation approaches for this model. These two methods can effectively solve the nonlinear, nonsmooth, large-scale and multi-period unit commitment problem with mixed variables, and provide methods and means for achieving the energy-saving generation dispatching. Secondly, with the aim of searching an algorithm with a simple structure, less amount of calculation, fast convergence rate and better numerical performance for the nonlinear programming problems to be suitable for large-scale power system optimization problems, this paper put forward a new method of structuring system of linear equations and a new type of QP-free algorithm for optimization problem with inequality constraints. This thesis contains6chapters as follows:
     Chapter1presents the meaning of theory research and practice through the analysis of the requirements of the generation dispatching. This chaper reviews and sums up the status of solution methods of UC problem and around the QP-free algorithm for solving NLP problem around two main lines of the solution methods of UC problem and the smooth NLP problem, and extracts the key issues that still need to be studied and solved. The main research and expectations are described based on these.
     Chapter2discusses the mathematical theory foundations used in this paper. For the special convex separable model, this chapter gives a tighter outer approximation method and its algorithm steps, and elaborates the thought and basic principle of the outer-inner approximation method in detail and some theoretical basis of designing specific algorithm for smooth NLP problem. All of them provide support for subsequent chapters in both the theory analysis and algorithm.
     Chapter3presents a new convex separable model and a tighter outer approximation methodology which is a deterministic global optimization method based on it by studying the characteristics and mathematical models of UC problem. By decomposing a multivariate function into several univariate functions, a tighter mixed integer linear programming (MILP) master problem is obtained by several step outer approximation using subgradient inequalites of the separated univariate functions. The optimal solution of UC problem is approached by alternately solving the MILP master problems and the NLP subproblems.
     In chapter4, an outer-inner approximation approach is presented to solve UC problem by further reducing the relaxation gaps. This chapter gives an improved initial outer approximation subproblem and presents a new inner approximation MILP subproblem. A sequence of MILP outer approximation subproblem and.inner approximation subproblem are solved alternately to yield better lower bound and upper bound. Both the iteration gap and the solutions'quality have been improved by taking advantages of the effectiveness of inner and outer approximation subproblems. Some numerical simulations are carried out on the systems of up to300units with24h, and systems of up to100units with24~96h.
     In chapter5, a new feasible QP-free algorithm for solving the smooth nonlinear constrained optimization problems based on the perturbation for the gradients of the constraint functions is presented. It reserves all the advantages of previous algorithms, and there are some other interesting features of the algorithm. At each iteration, only three systems of linear equations with the same coefficient matrix need to be solved, which decreases largely the amount of computations. A feasible descent direction can be obtained by solving only one system of linear equations, while the previous algorithms need to solve one linear system to get a feasible direction and another one to obtain a descent direction, and an improving direction is obtained by doing a convex combination. The iteration points are all feasible without requiring to be strictly interior points. The exploratory line search is introduced to the algorithm, and the computational cost can be further reduced. The parameters in the proposed algorithm are few, and some numerical results for math test problems illustrate that the proposed algorithm is efficient and stable.
     Chapter6summarizes the main research work and achievements of this paper and points out the further research works in the future.
引文
[1]2020年我国电力工业发展规划及前景预测分析.国际能源网,http://ieaip.chinaelc.cn,2009-11-17.
    [2]刘欢,牛琪,王建华.中国首次宣布温室气体减排清晰量化日标.http://news.xinhuanet.com/ politics/2009-11/26/content_12545939.htm,2009-11-26.
    [3]喻洁,李杨,夏安邦.兼顾环境保护与经济效益的发电调度分布式优化策略.中国电机工程学报,2009,29(16):63-68.
    [4]Wang S, Shahidehpour S, Kirschen D, et al. Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation[J]. IEEE Transactions on Power Systems,1995,10(3):1294-1301.
    [5]李文沅.电力系统安全经济运行——模型与方法[M].重庆:重庆大学出版社,1989.
    [6]王喆,余贻鑫,张弘鹏.社会演化算法在机组组合中的应用[J].中国电机工程学报,2004,24(4):12-17.
    [7]Fu Y, Shahidehpour M, Li Z. Security-constrained unit commitment with AC constraints[J]. IEEE Transactions on Power Systems,2005,20(3):1538-1550.
    [8]Fu Y, Shahidehpour M, Li Z. AC contingency dispatch based on security-constrained unit commitment[J]. IEEE Transactions on Power Systems,2006,21(2):897-908.
    [9]Bai X, Wei H. Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints[J]. IET Generation, Transmission & Distribution,2009,3(2):182-197.
    [10]张利,赵建国,韩学山.考虑网络安全约束的机组组合新算法[J].电网技术,2006,30(21):50-55.
    [11]Shaw J. A direct method for security-constrained unit commitment[J]. IEEE Transactions on Power Systems,1995,10(3):1329-1342.
    [12]Ma H, Shahidehpour S. Transmission-constrained unit commitment based on Benders decomposition[J]. Electrical power and Energy Systems,1998,20(4):287-294.
    [13]耿建,徐帆,姚建国,等.求解安全约束机组组合问题的混合整数规划算法性能分析[J].电力系统自动化,2009,33(21):24-27.
    [14]杨朋朋,韩学山,查浩.一种计及静态安全约束机组组合的有效算法[J].电力系统自动化,2009,33(8):39-43.
    [15]Bertsimas D, Litvinov E, Sun X A, et al. Adaptive robust optimization for the security constrained unit commitment problem[J]. IEEE Transactions on Power Systems,2013,28(1):52-63.
    [16]Ma H, Shahidehpour S. Unit commitment with transmission security and voltage constraints[J]. IEEE Transactions on Power Systems,1999,14(2):757-764.
    [17]马瑞.电力市场中兼顾环境保护和经济效益的双目标模糊优化短期交易计划新模型[J].中国电机工程学报,2002,22(4):104-108.
    [18]Li X B. Study of multi-objective optimization and multi-attribute decision-making for economic and environmental power dispatch[J]. Electric Power Systems Research,2009,79:789-795.
    [19]Yalcinoz T, Koksoy O. A multiobjective optimization method to environmental economic dispatch[J]. Electrical Power and Energy Systems,2007,29:42-50.
    [20]Basu M. An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling[J]. Electric Power Systems Research,2004,69: 277-285.
    [21]Gjenged T. Emission constrained unit-commitment[J]. IEEE Trans. on Energy Conversion,1996, 11(1):132-138.
    [22]王欣,秦斌,阳春华.机组短期负荷环境/经济调度多目标混合优化[J].控制理论与应用,2006,23(5):730-734,739.
    [23]康重庆,陈启鑫,夏清.低碳电力技术的研究展望[J].电网技术,2009,33(2):1-7.
    [24]张晓花,赵晋泉,陈星莺.节能减排多目标机组组合问题的模糊建模及优化[J].中国电机工程学报,2010,30(22):71-75.
    [25]Dinter J V, Rebennack S, Kallrath J. The unit commitment model with concave emissions costs:a hybrid Benders'Decomposition with nonconvex master problems [J]. Annals of Operations Research,2012, DOI 10.1007/s 10479-012-1102-9.
    [26]孙闻,房大中.考虑系统可靠性和经济性的机组组合方法[J].电网技术,2008,32(6):47-51.
    [27]杨梓俊,丁明,孙昕.电力市场下综合考虑系统可靠性和旋转备用效益的机组组合[J].电网技术,2003,27(6):13-18.
    [28]杨朋朋,韩学山,王静等.用拉格朗日松弛法求解概率备用解析表达的机组组合[J].山东大学学报(工学版),2007,37(2):58-62,108.
    [29]Ozturk U A, Mazumdar M, Norman B A. A solution to the stochastic unit commitment problem using chance constrained programming[J]. IEEE Transaction on Power Systems,2004,19(3): 1589-1598.
    [30]Zhai D, Breipohl A M, Lee F N, et al. The effect of load uncertainty on unit commitment risk[J]. IEEE Transaction on Power Systems,1994,9(1):510-517.
    [31]Saravanan B, Das. S, Sikri S,et al. A solution to the unit commitment problem-a review[J]. Frontiers in Energy,2013,7(2):223-236.
    [32]黎静华,兰匕.机组组合问题的模型及算法综述[J].现代电力,2011,28(6):1-10.
    [33]Gibson C A, R. M. B. Optimization of priority lists for a unit commitment program[R]. Paper presented at:Proceedings IEEE PES (San Francisco, CA).
    [34]Shoults R R, Chang S K, Helmick S, et al. A practical approach to unit commitment, economic dispatch and saving allocation for multi-area pool operation with import/export constraints[J]. IEEE Transaction on Power Apparatus and Systems,1980, PAS-99(2):625-635.
    [35]Senjyu T, Shimabukuro K, Uezato K, et al. A fast technique for unit commitment problem by extended priority list[J]. IEEE Transaction on Power Systems,2003,18(2):882-888.
    [36]黎静华,兰飞.适合于机组组合问题的扩展优先顺序法[J].电力系统保护与控制,2010,38(2):1-7.
    [37]Tseng C L, Guan X, Svoboda A J. Multi-area unit commitment for large-scale power system[J].1EE Proceedings-Generation, Transmission and Distribution,1998,145(4):415-421.
    [38]Li C, Johnson R B, Svoboda A J. A new unit commitment method[J]. IEEE Transaction on Power Systems,1997,12(1):113-119.
    [39]杨朋朋,韩学山.基于改进拉格朗日乘子修正方法的逆序排序机组组合[J].电网技术,2006,30(9):40-45.
    [40]Li C, Svoboda A J, Tseng C L, et al. Hydro unit commitment in hydro-thermal optimization[J]. IEEE Transaction on Power Systems,1997,12(2):764-769.
    [41]Snyder W L, Powell H D, Rayburn J C. Dynamic programming approach to unit commitment[J]. IEEE Transaction on Power Systems,1987, PWRS-2(2):339-348.
    [42]Su C C, Hsu Y Y. Fuzzy dynamic programming:an application to unit comnitment[J]. IEEE Transaction on Power Systems,1991,6(3):1231-1237.
    [43]Ouyan Z, Shahidehpour S M. An intelligent dynamic programming for unit commitment application[J]. IEEE Transaction on Power Systems,1991,6(3):1203-1209.
    [44]Hobbs W J, Hermon G, Warner S, et al. An enhanced dynamic programming approach for unit commitment[J]. IEEE Transaction on Power Systems,1988,3(3):1201-1205.
    [45]Pang C, Chen H. Optimal short-term thermal unit commitments[J]. IEEE Transactions on Power Apparatus and Systems,1976, PAS-95(4):1336-1346.
    [46]Pang C, Sheble G, Albu F. Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments[J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(3):1212-1218.
    [47]Sheble G B, Fahd G N. Unit commitment literature synopsis[J]. IEEE Transaction on Power Systems, 1994,9(1):128-135.
    [48]王承民,郭志忠.确定机组组组合的一种改进的动态规划方法[J].电网技术,2001,25(5):20-24.
    [49]Li Z, Shahidehpour M. Security-constrained unit commitment for simultaneous clearing of energy and ancillary services markets[J]. IEEE Transaction on Power Systems,2005,20(2):1079-1088.
    [50]Seki T. New local search methods for improving the lagrangian-relaxation-based unit commitment solution[J]. IEEE Transaction on Power Systems,2010,25(1):272-283.
    [51]Fisher M. The lagrangian relaxation method for solving integer programming problems[J]. Management Science,1981,27(1):1-18.
    [52]Merlin A, Sandrin P. A new method for unit commitment at Electricite De France[J]. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(5):1218-1225.
    [53]Cheng C P, Liu C W, Liu C C. Unit commitment by lagrangian relaxation and genetic algorithms[J]. IEEE Transactions on Power Systems,2000,15(2):707-714.
    [54]Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive lagrangian relaxation[J]. IEEE Transactions on Power Systems,2004,19(1):620-628.
    [55]Belloni A, Diniz Souto Lima A L, Pineiro Maceira M E, et al. Bundle relaxation and primal recovery in unit commitment problems. The Brazilian Case[J]. Annals of Operations Research,2003, 120(1-4):21-44.
    [56]Atamturk A, Savelsbergh M. Integer-programming software systems[J]. Annals of Operations Research,2005,140(1):67-124.
    [57]Karlof J. Integer programming:theory and practice[M]. Boca Raton:CRC Press,2005:253-303.
    [58]Nemhauser G, Wolsey L. Integer and combinatorial optimization[M]. New York:John Wiley and Sons,1988.
    [59]Wosely L. Integer programming[M]. New York:John Wiley and Sons,1998.
    [60]Cohen A, Yoshimura M. A branch-and bound algorithm for unit commitment[J]. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(2):444-451.
    [61]Samer T, John B. Using integer programming to refine lagrangian-based unit commitment solutions[J]. IEEE Transaction on Power Systems,2000,15(1):151-156.
    [62]Turgeon A. Optimal scheduling of thermal generating units[J]. IEEE Transactions on Automatic Control,1978,23(6):1000-1005.
    [63]Chen C, Wang S. Branch-and-bound scheduling for thermal gnerating units[J]. IEEE Transaction on Power Systems,1993,8(2):184-189.
    [64]谢国辉,张粒子,舒隽等.基于分层分枝定界算法的机组组合[J].电力自动化设备,2009, 29(12):29-32.
    [65]张丽华,韦化.内点-分支定界法在最优机组投入中的应用[J].继电器,2006,34(18):18-21.
    [66]Sioshansi R, O'Neill R, Oren S S. Economic Cosequences of Alternative Solution Methods for Centralized Unit Commitment in Day-Ahead Electricity Markets[J]. IEEE Transaction on Power Systems,2008,23(2):344-352.
    [67]Takriti S, Supatgiat C, Wu. L-S Y. Coordinating fuel inventory and electric power generation under uncertainty[J]. IEEE Transaction on Power Systems,2001,16(4):603-608.
    [68]李晓磊,周景阳,于尔铿,等.基于动态搜索线性混合整数法的机组组合新算法[J].电力系统自动化,2008,32(21):18-21,76.
    [69]Carrion M, Arroyo J. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transactions on Power Systems,2006,21(3):1371-1378.
    [70]Frangioni A, Gentile C, Lacalandra F. Tighter approximated MILP formulations for unit commitment problems[J]. IEEE Transactions on Power Systems,2009,24(1):105-113.
    [71]Ostrowski J, Anjos M F, Vannelli A. Tight mixed integer linear programming formulations for the unit commitment problem[J]. IEEE Transactions on Power Systems,2012,27(1):39-46.
    [72]Fu Y, Shahidehpour M. Fast SCUC for large-scale power systems[J]. IEEE Transactions on Power Systems,2007,22(4):2144-2151.
    [73]Lovasz L, Schrijver A. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization,1991,1:166-190.
    [74]Fuentes-Loyola R, Quintana V. Medium-term hydrothermal coordination by semidefinite programming[J]. IEEE Transactions on Power Systems,2003,18(4):1515-1522.
    [75]Madrigal M, Quintana V H. Semidefinite programming relaxations for{0,1}-power dispatch problems[C]. IEEE Power Engineering Society Summer Meeting Conference, Edmonton, Alberta, Canada,1999:697-702.
    [76]韦化,吴阿琴,白晓清.一种求解机组组合问题的内点半定规划方法[J].中国电机工程学报,2008,28(1):35-40.
    [77]Mhanna S N, Jabr R A. Application of semidefinite programming relaxation and selective pruning to the unit commitment problem[J]. Electric Power Systems Research,2012,90:85-92.
    [78]杨林峰,简金宝,韩道兰,郑海艳.机组组合问题的超立方锥松弛模型及其求解方法[J].电工技术学报.2013,28(7):252-261.
    [79]全然,韦化,简金宝.求解大规模机组组合问题的二阶锥规划方法[J].中国电机工程学报,2010,30(25):101-107.
    [80]全然,简金宝,韦化,杨林峰.基于特殊有效不等式求解机组组合问题的内点割平面法[J].中 国电机工程学报.2011,31(19):51-59.
    [81]杨林峰,简金宝,郑海艳,韩道兰.求解机组组合问题的次超立方紧混合整数规划广义割平面法[J].中国电机工程学报.2013,33(1): 99-108.
    [82]Benders J. Partitioning procedures for solving mixed-variables programming problems[J]. Numerische Mathematik,1962,4(1):238-252.
    [83]Geoffrion A. Generalized Benders decomposition[J]. Journal of Optimization Theory and Applications,1972,10(4):237-260.
    [84]Duran M, Grossmann I. An outer-approximation algorithm for a class of mixed-integer nonlinear programs[J]. Mathematical Programming,1986,36(3):307-339.
    [85]Kocis G, Grossmann I. Relaxation strategy for the structural optimization of process flow sheets[J]. Industrial and Engineering Chemistry Research,1987,26(9):1869-1880.
    [86]Kocis G, Grossmann I. Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis[J]. Industrial and Engineering Chemistry Research,1988, 27(8):1407-1421.
    [87]Viswanathan J, Grossmann I. A combined penalty function and outer-approximation method for MINLP optimization[J]. Computers and Chemical Engineering,1990,14(7):769-782.
    [88]Niknam T, Khodaei A, Fallahi F. A new decomposition approach for the thermal unit commitment problem[J]. Applied Energy,2009,86:1667-1674.
    [89]Liu C, Shahidehpour M, Wu L. Extended benders decomposition for two-stage SCUC[J]. IEEE Transactions on Power Systems,2010,25(2):1192-1194.
    [90]全然,简金宝,郑海艳.基于外逼近方法的中期机组组合问题[J].电力系统自动化,2009,33(11):24-29.
    [91]Hijazi H. Mixed-integer nonLinear optimization approaches for network design in telecommunications,2010. Ph.D.thesis.
    [92]Kazarlis S A, Bakirtzis A G, Petridis V. A genetic algorithm solutionto the unit commitment problem[J]. IEEE Transactions on Power Systems,1996,11(1):83-92.
    [93]蔡兴国,初壮.用遗传算法解算机组组合的研究[J].电网技术,2003,22(7):36-39.
    [94]孙力勇,张焰,蒋传文.基于矩阵实数编码遗传算法求解大规模机组组合问题[J].中国电机工程学报,2006,26(2):82-87.
    [95]陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法[J].中国电机工程学报,1999,19(12):9-13,40.
    [96]邵建新.机组组合的混合编码遗传/Tabu搜索组合算法[J].南通大学学报(自然科学版),2005,4(4):54-58.
    [97]杨俊杰,周建中,喻菁.一种求解大规模机组组合问题的混合智能遗传算法[J].电网技术,2004,28(19):47-50.
    [98]Eberhart R, Kennedy J. A new optimizer using particle swarm theory [C]. Proceedings of the sixth International Symposium on Micro Machine and Human Science, IEEE service center, Nagoya, Japan,1995:39-43.
    [99]胡家声,郭创新,曹一家.一种适合于电力系统机组组合问题的混合粒子群优化算法[J].中国电机工程学报,2004,24(4):24-28.
    [100]娄素华,余欣梅,熊信艮,等.电力系统机组启停优化问题的改进DPSO算法[J].中国电机工程学报,2005,25(8):30-35.
    [101]袁晓辉,王乘,袁艳斌,等.一种求解机组组合问题的新型改进粒子群方法[J].电力系统自动化,2005,29(1):34-38.
    [102]刘涌,侯志俭,蒋传文.求解机组组合问题的改进离散粒子群算法[J].电力系统自动化,2006,30(4):35-39.
    [103]孙力勇,张焰,蒋传文.求解机组组合问题的嵌入贪婪搜索机制的改进粒子群优化算法[J].电网技术,2006,30(13):44-48,65.
    [104]Jeong Y W, Park J B, Jang S H, et al. A new quantum-inspired binary PSO:application to unit commitment problems for power systems[J]. IEEE Transactions on Power System,2010,25(3): 1486-1495.
    [105]Pappala V S, Erlich L. A Variable-Dimension Optimization Approach to Unit Commitment Problem[J]. IEEE Transaction on Power Systems,2010,25(3):1696-1704.
    [106]Kuo C C.A Novel Coding Scheme for Practical Ecomomic Dispatch by Modified Particle Swarm Approach[J]. IEEE Transaction on Power Systems,2008,23(4):1825-1835.
    [107]Xiao G, Li S, Wang X, et al. A Solution to Unit Commitment Problem by ACO and PSO Hybrid Algorithm[C]. Paper presented at:the 6th World Congress on Intelligent Control and Automation (Dalian, China).
    [108]张炯,刘天棋,苏鹏.基于遗传粒子群混合算法的机组组合优化[J].电力系统保护与控制,2009,37(9):25-29.
    [109]Powell M J D. A fast algorithm for nonlinearly constrained optimization calculations[R]. Numerical analysis (Proc.7th Biennial Conf., Univ. Dundee,1977). Berlin:Springer-Verlay,1978, 630:144-157.
    [110]Boggs P T and Tolle J W. Sequential quadratic programming[M], Acta Numerica,1995,1-51.
    [111]Boggs P T, Tolle J W and Wang P. On the local convergence of Quasi-Newton methods for constrained optimization problems[J], SIAM J. on Control and Optimization,1982,20:161-171.
    [112]Powell. M. J. D. and Yuan Y. A recursive quadratic programming algorithm that uses differentiable exact penalty functions[J], Math Programming,1986,35:265-278.
    [113]Polak E, Mayne D Q. A superlinearly convergent algorithm for constrained optimization problems[J]. Mathematical Programming Study,1982,16:45-61.
    [114]De J F A, Pantoja O, Mayne D Q. Exact penalty function algorithm with simple updating of the penalty parameter[J]. Journal of Optimization Theory Application,1991,69(3):441-467.
    [115]Panier E R, Tits A T. A superlinearly convergent feasible method for the solution of inequality constrained optimization problems[J]. SIAM Journal on Control and Optimization,1987,25(4): 934-950.
    [116]Spellucci, P. A new technique for inconsistent QP problems in the SQP methods[J]. Mathematical Methods of Operations Research,1998,47(3):355-400.
    [117]Liu X W, Yuan Y X. A robust algorithm for optimization with general equality and inequality constraints[J]. SIAM Journal on Scientific Computing,2000,22:517-534.
    [118]Qi L, Wei Z. On the constant positive linear dependence condition and its application to SQP methods[J]. SIAM Journal on Optimization,2000,10:963-981.
    [119]Jian J B. A feasible decent algotithm combining SQP with generalized projiection for optimization problems without strict complementarity[J], Applied Mathematics and Computation,2005,162: 1065-1081.
    [120]Jian J B, Tang C M. An SQP feasible descent algorithm for nonlinear inequality constrained optimization without strict complementarity[J], Computers and Mathematics with Applications, 2005,49:223-238.
    [121]Lawarence C T, Tits A T. Nonlinear equality constraints in feasible sequential quadratic programming[J]. Optimization Methods and Software,1996,6:265-282.
    [122]Lawarence C T, Tits A T. A computationally efficient feasible sequential quadratic programming algorithm[J]. SIAM Journal on Optimization,2001,11(4):1092-1118.
    [123]Cawood M E, Kostreva M M. Norm-relaxed method of feasible direction for solving the nonlinear programming problems[J]. Journal of Optimization Theory Application,1994,83:311-320.
    [124]Zhu Z B, Zhang K C.A new SQP method of feasible directions for nonlinear programming. Applied Mathematics and Computation,2004,148(5):121-134.
    [125]Zhu. Z B. An efficient sequential quadratic programming algorithm for nonlinear programming[J]. Journal of Computational and Applied Mathematics,2005,175:447-464.
    [126]贺国平,下永丽.求解非线性最优化问题的序列线性方程组算法[J].山东科技大学学报(自然科学版),2005,4:1-6.
    [127]Panier E R, Tits A L, Herskovits J N. A QP-free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization[J]. SIAM Journal on Control and Optimization,1988,26(4):788-811.
    [128]高自友,吴方,赖炎连.非线性最优化问题的一个超线性收敛的序列线性方程组方法[J].科学通报,1994,39(9):774-777.
    [129]Gao Z Y, He G P, Wu F. An algorithm of sequential systems of linear equation for nonlinear optimization problems, Part Ⅰ Inequality constrained problem[R]. Technical Report of Institute of Applied Mathematics, Academia Sinica.1994:94-31.
    [130]Gao Z Y, He G P, Wu F. An algorithm of sequential systems of linear equation for nonlinear optimization problems, Part Ⅱ General constrained problem[R]. Technical Report of Institute of Applied Mathematics, Academia Sinica.1994:94-035.
    [131]Gao Z Y, He G P, Wu F. An algorithm of sequential systems of linear equations for nonlinear optimization problems with arbitrary initial point[J]. Science in China (Series A),1997,40(2):1-10.
    [132]Qi H D, Qi L Q. A new QP-free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization[J]. SIAM Journal on Control and Optimization,2000,11: 113-132.
    [133]简金宝.不等式约束最优化无严格互补条件下的快速收敛序列线性方程组算法[J].数学学报,2004,47(4):781-792.
    [134]Jian J B, Cheng W X. A superlinearly convergent strongly sub-feasible SSLE-type algorithm with working set for nonlinearly constrained optimization[J]. Journal of Computational and Applied Mathematics,2009,225:172-186.
    [135]Yang Y F, Li D H, Qi L Q. A feasible sequential linear equation method for inequality constrained optimization[J]. SIAM Journal on Optimization,2003,13(4):1222-1244.
    [136]Mo X D, Jian J B, Yang S M. An improved strongly sub-feasible SSLE method for optimization problems and numerical experiments[J]. Applied Mathematics and Computation,2011,217: 7226-7237.
    [137]简金宝,赖炎连,张可村.超线性与二次收敛的序列方程组可行方向法[J].数学学报,2002,45(6):1137-1146.
    [138]Gao Z Y, He G P, Wu F. Sequential systems of linear equations algorithm for nonlinear optimization problems-general constrained problems[J]. Applied Mathematics and Computation,2004,147(1): 211-226.
    [139]Wang Y L, Chen L F, He G P. Sequential systems of linear equations method, for general constrained optimization without strict complementarity [J]. Journal of Computational and Applied Mathematics, 2005,182(2):447-471.
    [140]Zhu Z B. A globally and superlinearly convergent feasible QP free method for nonlinear programming[J]. Applied Mathematics and Computation,2005,168(1):519-539.
    [141]Zhu Z B, Jian J B. An improved feasible QP-free algorithm for inequality constrained optimization[J]. Acta Mathematica Sinica (English Series),2012,28(12):2475-2488.
    [142]Jian J B, Ma G D, Guo C H. A new quasi-strongly sub-feasible directions SSLE-type algorithm with working set for inequality constrained optimization[J]. Journal of System Science and Complex, 2011,24:604-618.
    [143]Gao Z Y, Guo D T, He G P, et al. Algorithm of sequential systems of linear equations for nonlinear optimization problems--inequality constrained problems[J]. Journal of Computational Mathematics, 2002,20(3):301-312.
    [144]Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation[J]. Mathematical Programming,1994,66(1-3):327-349.
    [145]Quesada I, Grossmann 1. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems[J]. Computers and Chemical Engineering,1992,16(10-11):937-947.
    [146]Bonami P, Biegler L, Conn A, et al. An algorithmic framework for convex mixed integer nonlinear programs[J]. Discrete Optimization,2008,5(2):186-204.
    [147]Kesavan P, Barton P L, Decomposition algorithms for nonconvex mixed-integer nonlinear programs[J]. AIChE Symposium Sereies,2000,96:458-461.
    [148]Kesavan P, Allgor R J, Gatzke E P, Barton P I. Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs[J]. Mathematical Programming,2004,100(3): 517-535.
    [149]Hijazi H, Bonami P, Ouorou A. An outer-inner approximation for separable MINLPs. [Online]. Available:https://projects.coin-or. org/Bonmin.
    [150]Tawarmalani M, Sahinidis N V. A polyhedral branch-and-cut approach to global optimization[J]. Mathematical Programming, Series B,2005,103(2):225-249.
    [151]Nowak M P, Romisch W. Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty[J]. Annals of Operations Research,2000,100(1-4) 251-272.
    [152]Su C C, Hsu Y Y. Fuzzy dynamic programming:an application to unit commitment[J], IEEE Transactions on power systems,1991,6(3):1231-1237.
    [153]Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive lagrangian relaxation[J]. IEEE Transactions on Power Systems,2004,19(1):620-628.
    [154]Balci H, Valenzuela J. Scheduling electric power generators using particle swarm optimization combined with the lagrangian relaxation method[J]. International Journal of Applied Mathematics and Computer Sciences,2004,14(3):411-421.
    [155]Patra S, Goswami S K, Goswami B. Differential evolution algorithm for solving unit commitment wit ramp constraints[J]. Electric Power Components and Systems,2008,36(8):771-787.
    [156]Valenzuela J, Smith A E. A seed memetic algorithm for large unit commitment problems[J]. Journal of Heuristics,2002,8(2):173-195.
    [157]Juste K, Kita H, Tanaka E, et al. An evolutionary programming solution to the unit commitment problem[J]. IEEE Transactions on Power Systems,1999,14(4):1452-1459.
    [158]Moosa M H, Behrooz V. A solution to the unit commitment problem using imperialistic competition algorithm[J]. IEEE Transactions on Power Systems,2012,27(1):117-124.
    [159]Hosseini S H, Khodaei A, Aminifar F. A novel straightforward unit commitment method for large-scale power systems[J]. IEEE Transactions on Power Systems,2007,22(4):2134-2143.
    [160]Ebrahimi J, Hosseinian S H, Gharehpetian G B. Unit commitment problem solution using shuffled frog leaping algorithm[J]. IEEE Transactions on Power System,2011,26(2):573-581.
    [161]Chung C Y, Yu H, Wong K P. An advanced quantum-inspired evolutionary algorithm for unit commitment[J]. IEEE Transactions on Power System,2011,26(2):847-854.
    [162]Chen P H. Two-level hierarchical approach to unit commitment using expert system and elite PSO[J]. IEEE Transactions on Power System,2012,27(2):780-789.
    [163]Simopoulos D N, Kavatza S D, Vournas C D. Unit commitment by an enhanced simulated annealing algorithm [J]. IEEE Transactions on Power System,2006,21(1):68-76.
    [164]Dieu V N, Ongsakul W. Improved merit order and augmented Lagrange Hopfield network for unit commitment[J]. Generation, Transmission & Distribution, IET,2007,1(4):548-556.
    [165]郭三刚,管晓宏,翟桥柱.具有爬升约束机组组合的充分必要条件[J].中国电机工程学报,2005,25(24):14-19.
    [166]Jian J B, Han D L, Xu Q J. A new sequential systems of linear equations algorithm of feasible descent for inequality constrained optimization[J]. Acta Mathematica Sinica, English Series,2010, 26(12):2399-1420.
    [167]韩道兰,简金宝,张钦锋.不等式约束优化一个新型可行QP-free算法[J].计算数学,2012,34(2):203-214.
    [168]堵丁柱.非线性约束条件下的梯度投影方法[J].应用数学学报,1985,8(1):7-16.
    [169]Facchinei F, Fischer A, Kanzow C. On the accurate identification of active constraints[J]. SIAM Journal on Optimization,1998,9:14-32.
    [170]Jian J B, Xu Q J, Han D L. A norm-relaxed method of feasible directions for finely discretized problems from semi-infinite programming[J]. European Journal of Operational Research,2008,186: 41-62.
    [171]Hock W, Schittkowski K. Test Examples for Nonlinear Programming Codes[A]. Lecture Notes in Economics and Mathematical Systems[C]. Berlin:Springer-Verlay,1981,187.
    [172]Schittkowski K. More Test Examples for Nonlinear Programming Codes[A], Berlin:Springer-Verlay, 1987.
    [173]Bongartz I, Conn A R, Gould N I M, Toint Ph L. CUTE:Constrained and unconstrained testing environment[J]. ACM Transactions on Mathematical Software,1995,21:123-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700