智能辨识技术及其在物体出水水动力参数辨识中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于自由面和空泡的影响,物体穿越水面过程是一个强烈非定常流体力学问题,物体在这瞬变过程中将承受强烈的不定常流体动力载荷作用,这在工程设计上十分重要。但目前国内外对物体出水过程的水动力载荷还难以用试验手段或理论精确研究。本文设想利用现代辨识技术,从物体出水的弹道试验数据中并结合物体的动力学方程,对物体出水水动力系数进行建模。
     辨识技术在飞行器的线性气动参数辨识方面发展比较成熟,但对非线性气动参数的辨识还存在不少难点,而非线性流体动力系数的辨识与估计目前则还处于探索阶段。本文从物体出水水动力系数辨识的特点出发,在模型辨识、参数估计、试验设计和系统验证方面进行了相关研究工作。
     我们首先利用模糊系统研究了物体垂直出水非定常水动力系数的建模问题,然后利用粒子群优化算法PSO对水下航行体的多个定常水动力系数进行了模拟辨识,得到的结果与实际值相当吻合,证明了智能技术在水动力系数辨识中具有良好的工程应用价值和启发作用。但对于多维复杂的水动力系统,还需要进一步从非线性模型结构的优化、参数估计算法等方面进行改进。
     在模型辨识方面,我们专门研究了参数线性的非线性模型结构的选择技术及其算法。在Hilbert空间中提出并证明了一种新的双正交函数的前后向递推式,新的双正交函数可以给出任意函数在已知函数序列张成的子空间中的正交投影,特别是当张成子空间的函数序列扩大或缩小时,新的递推式可以快速给出在变化子空间中的新的正交投影,并且不需要求逆运算,也不需要Gram-Schmidt正交化技术。基于新递推式,本文提出了一个新的模型结构选择技术—逐步投影算法(SP),SP是一个双向选择技术,它首先通过前向选择技术获得初始模型项集合,然后通过后向选择技术进一步从初始模型项集合中筛选出最优的模型项,最后同时给出模型结构和参数估计。SP不仅可以用于系统辨识,还可以用于数据压缩、信号的稀疏逼近等方面。
     在参数估计方面,由于通过引入辨识准则,水动力系数辨识问题可转化为非线性约束优化问题,因此我们专门研究了适合水动力系数辨识的智能优化算法。一般意义上的智能优化算法,如PSO、DE等都是无约束优化技术,本身缺乏明确的处理约束条件的机制,当它们用于约束优化问题时需要增加其它处理约束条件的手段,如惩罚函数法,但这会带来新的问题。我们在PSO、DE的启发下提出了一个改进的群体智能优化算法—差分群体智能算法DS,DS在算法的机制中结合了约束条件的影响,具有一定的自适应处理约束条件的能力。通过对IEEE CEC06上的24个约束优化基准测试函数的大量试验,并和其它进化算法的比较,证明了DS对约束优化问题具有良好的快速优化能力和通用性,适合用于水动力系数辨识。
     在试验设计方面,由于6自由度物体出水水动力系统过于复杂,我们设计了约束模型单平面斜出水的水动力测量试验,并结合约束模型在出水过程中不同阶段的物理特点,分别对约束模型全湿流的定常水动力系数、约束模型出水的轴向和法向的非定常水动力系数分别进行了建模与辨识。
     在系统验证方面,我们利用辨识的水动力系数对相近试验条件下的其它出水试验的水动力进行了预测,预测结果与实际测量结果相当一致,由此验证了出水水动力系数模型的合理性。
Due to the impact of free-surface and cavitation bubbles,the moving process of water-exit body is a very strong unsteady hydrodynamics problem.The body will endure very strong unsteady hydrodynamic forces during the transient process;this is of great importance in engineering design.However,it has been thus far,both at home and abroad,a rather difficult task to investigate the unsteady hydrodynamic forces due to water-exit body.In this dissertation,by using modern identification techniques,we would like to contribute to such investigations by focusing on mathematical modeling and parameter identification of the above mentioned hydrodynamic system, based on related experimental data and the corresponding hydrodynamics equations.
     Whilst identification techniques in the field of linear aerodynamics parameter identification have been considerably developed,some difficult problems remain untackled on identification of nolinear aerodynamics parameter.However,the identification and estimation of nonlinear hydrodynamics parameters is still in its initial stage.Starting with the characteristics of parameters of hydrodynamics due to water-exit body,we conduct investigations on model identification,parameter estimation,experimental design,and system verification.
     First of all,we study the parameter modeling problem of unsteady hydrodynamics due to vertical water-exit body based on fuzzy system.Next,we use Particle Swarm Optimization(PSO) algorithm to investigate the simulated identification of the several parameters of the unsteady hydrodynamic forces due to a submerged body. The results we obtained are considerably consistent with the real values,this being a strong evidence for the practical value and inspiriting effects of intelligence techniques in hydrodynamics parameter identification. Nevertheless,for multi-dimensional complex hydrodynamic systems,further improvements need to be done on several issues such as optimization of nonlinear model structure and parameter estimation algorithms.
     On the aspect of model identification,we specially study the selection techniques for nonlinear model structure with linear parameters and the corresponding algorithms.We propose a new set of bi-orthogonal functions in Hilbert space,derive the corresponding forward and backward recursive equations,and prove that the proposed bi-orthogonal functions can generate the orthogonal projection of an arbitrary function onto the subspace spanned by a given set of functions.It is appropriate to stress that the proposed recursive method avoids the computation of inverse operations,does not need the Gram-Schmidt orthogonalization technique,and allows us to update the whole set of bi-orthogonal function when the dimension of the subspace is enlarged or decreased. Based on the proposed recursive equations,we further propose a new model structure selection technique,termed Stepwise Projection(SP) algorithm.SP is a bi-direction selection technique,which firstly selects an initial set of model items through forward selection technique,and then further selects the optimal items from the initial set by use of backward selection technique,and finally yields model structure and parameter estimations simultaneously. SP is applicable not only to system identification,but to a broad range of signal processing problems such as data compression and sparse approximation of signals.
     On the aspect of parameter estimation,due to introduce of identification rules,the hydrodynamics parameter identification problems can be converted to nonlinear constrained optimization problems.Therefore,we investigate specialized intelligent optimization algorithms suitable for hydrodynamics parameter identification. The general intelligent optimization algorithms,taking PSO and Differential Evolution(DE) for instances,are unconstrained optimization techniques and thereby lack an implicit constraint-handling mechanism.Therefore, they need extra technique(say,penalty function method) to handle constraints when they are used for soling constrained optimization problems.But this would result in some new difficulties.Inspired by the philosophy of PSO,we propose an improved swarm intelligence algorithm,called Differential Swarm(DS),which incorporates into its algorithmic mechanism the impact of constraints and has a certain ability to self-adaptively handle constraints.The performance of DS is experimented on the benchmark set of 24 functions for CEC06 and compared with other evolutionary algorithms.Experimental results show that DS performs considerably well in terms of optimization ability,simplicity,convergence rate,and generality,and is suitable for hydrodynamics parameter identification.
     On the aspect of experimental design,since the hydrodynamic forces due to water-exit body of six-degree freedom is over complicated,we devise relevant experiments to measure the hydrodynamic forces acting on constrained model exiting water obliquely.Moreover,by considering the physical characteristics of such constrained model at different stages of water-exit process,we conduct research on modeling and identification of steady hydrodynamics parameters of no cavity flow,and of the axial and normal unsteady hydrodynamics parameters.
     On the aspect of system verification,we predict the hydrodynamic forces of other water-exit experiments under similar condition by using the hydrodynamics parameters obtained through identification techniques.It has been shown that the predicted results are highly consistent with the experimental results,thus verifying the correctness of the hydrodynamics parameter model of water-exit body.
引文
1.Lennart Ljung.System Identification-Theory for the user.Second Edition.Beijing:Tsinghua University Press,2002
    2.Wanmer E P,Norton F H.Preliminary report on free flight tests,NACA Report,(70):1919
    3.Norton F H.A study of longitudinal dynamic stability in flight,NACA Report,(170):1923
    4.蔡金狮.飞行器系统辨识学[M],北京:国防工业出版社,2003,1-157
    5.蔡金狮.空气动力系数辨识研究现状与展望[C].空气动力学发展论文集.北京空气动力研究所.北京:国防工业出版社,1997,314-325
    6.蔡金狮.飞行器气动参数辨识进展.力学进展.1987,17(4):467-477
    7.汪清.飞机大攻角非定常气动力建模及其应用研究[D].西安:西北工业大学航天工程学院,1994
    8.李天森.鱼雷操作性[M].第2版.北京:国防工业出版社,2006
    9.吴旭光,徐德民水下自主航行器动力学模型-建模和参数估计[M].西安:西北工业大学出版社.1998
    10.汤新元.水下航行体穿越水面过程不定常流体动力试验方法研究[D].[硕士学位论文].江苏无锡:中国船舶科学研究中心,2006
    11.丁文镜,罗仁凡等.受控航行体水动参数的极大似然辨识[J].清华大学学报(自然科学版),1992,32(2):89-95
    12.丁文镜,罗仁凡等.辨识航行器水动力系数的预报误差法[C].鱼雷控制系统学组学术交流会.1991
    13.慕春隶.施阳.水下自主航行器动力学模型辨识的研究.中国船舶科学研究中心科技报告,2001
    14.刘建成,刘学敏,徐玉如.极大似然法在水下机器人系统辨识中的应用[J].哈尔滨工程大学学报,2001,22(5):1-4
    15.白文平,胡伟松.某型潜射物体水动力载荷识别方法研究[J].水面兵器.2003,12(4):20-26
    16.缪弋.带空泡物体附加质量辨识试验技术初探[J],水面兵器,2003,(12)1:33-35
    17.王秀峰,卢桂章.系统建模与辨识[M].北京:电子工业出版社,2004,106-129
    18.傅慧萍.潜射物体运载器水弹道动力学系统建模理论与应用[D].[博士学位论文].西安:西北工业大学,2000
    19.飞机大攻角空间机动气动力建模研究.汪清,何开锋等.航空学报[J],2004,25(4):447-450
    20.Tobak M.On the use of the Indicial Function Concept in the Analysis of Unsteady Motion of Wings and Wing-Tail Combinations.NACA R-1188,1954
    21.吴志刚,杨超.基于Volterra级数对跨音速非定常气动力建模[J],北京航空航天大学学报,2006,32(4):373-376
    22.王士同.模糊系统、模糊神经网络及应用程序设计[M].上海:上海科学技术文献出版社,1998
    23.王士同.神经模糊系统及其应用[M].北京:北京航空航天出版社,1998
    24.张智新,孙春在,水谷英二.神经-模糊和软计算[M].西安:西安交通大学出版社,2000
    25.Narendra K S,etc.Identification and Control of Dynamical System Using Neural Networks.IEEE Transactions on Neural Networks,1990,1(1)
    26.Chen S,Billings S A.Neural Networks for Nonlinear Dynamics System Modeling and Identification.International Journal of Control,1992,56(2)
    27.Hunt K J,etc.Neural Networks for Control Systems-A Survey.Automatica.1992,29(6)
    28.张亮,张凤鸣.一种基于动态模糊神经网络的飞行数据模型辨识方法[J].空军工程大学学报(自然科学版).2006,7(6):16-18
    29.李言俊,张科.系统辨识理论与应用[M].北京:国防工业出版社,2003,112-119
    30.陈新海,阎晓明,李言俊.一种适用于飞行器控制系统的快速时变参数辨识方法.航空学报.1990,11(9):474-479
    31.朱金虎,丁文境,陈玮琪.物体垂直出水轴向水动力系数辨识研究及算法.中国船舶科学研究中心科技报告,2006
    32.陈玮琪,颜开等.基于TSK智能技术的物体垂直出水水动力系数辨识研究[J].水动力学研究与进展2005,20(4):445-451
    33.Chen S,Billing S A.Represetentation of Nonlinear Systems:the NARMAX model.Int J Control,1989,48:1013-1032
    34.Haber R,Unbehause H.Structure Identification of Nonlinear Dynamic Systems-A Survey on Input/Output Approaches.Automatic,1990,26(4):651-677
    35.Goldberg J H.Genetic algorithms in search,optimization and machine leafing.Addision-wesely. Reading MA,1989
    36.王晓鹏,物体气动力系数辨识中的一种鲁棒算法[J].物体与航天运载技术.2003,(1):8-11
    37.陈玮琪,颜开等.水下航行体水动力系数的智能辨识方法研究.船舶力学[J].2007,11(1):40-46
    38.陈玮琪,颜开等.物体斜出水过程的轴向水动力系数辨识.船舶力学[J].2007,11(4):521-527
    39.Akaike H.A New Look at the Statistical Model Identification.IEEE Transactions on Automatic Control.1974,19(6):716-723
    40.Gupta,Hall,etc.Advanced Methods of Model Structure Determination From Test Data.AIAA 77-1170,1977
    41.Astrom K J,EykhoffE System Identification-A Survey.Automatica.1971,7(2):123-162
    42.Soderstrom T.On Model Structure Testing in System Identification.International Journal of Control,1977,26(1):1-18
    43.Klein V,Batterson J G,Murphy P C.Determinaton of Airplane Model Structure from Flight Data by Using Modified Stepwise Regression.NASA TP-1916,1981
    44.Taylor L W Jr.Application of a New Criterion for Modeling Systems.AGARD CP-172,Paper 4,1974
    45.Klein V,Batterson J G.Murphy P C.Determinaton of Model Structure and Parameters of an Airplane from Pre- and Post-Stall Flight Data.AIAA 81-1866,1981
    46.Mallows.Some comments on Cp.Technometrics,1973,15:661-676
    47.张润楚.多元统计分析[M].北京:科学出版社,2006,138-141
    48.Aguirre L A,Freitas U S,Letellier C,Maquet J.Structure-selection techniques applied,to continuous-time nonlinear models.Physica D,2001,158(1-4):1-18
    49.R R Hocking.The analysis and selection of variables in linear regression.Biometrics.1976,32(1):1-49
    50.A J Miller.Subset Selection in Regression.New York:Chapman and Hall,1990
    51.Mallat S,Zhang Z.Matching pursuits with time-frequency dictionaries.IEEE Trans Signal Process.1993,41(12):3397-3415.
    52.王秀峰,劳育红.非线性动态系统模型结构确定和参数估计新算法[J].自动化学报.1992,18(4):385-392
    53.王秀峰,李波.随机非线性系统辨识的正交优先算法[J].自动化学报.1993.17(1):91-94
    54.Billings S A,Chen S,Korenberg M J.Identification of MIMO non-linear systems using a forward-regression orthogonal estimator.Int J Control.1989,49(6):2157-2189
    55.Chen S,Billings S A,Luo W.Orthogonal least squares methods and their application to non-linear system identification.Int J Control.1989,50(5):1873-1896.
    56.Luis Antonio Agnirre.On the Structure of Nonlinear Polynomial Models:Higher Order Correlation Functions,Spectra,and Term Clusters,IEEE Transactions on Circuits and Systems Part Ⅰ:Fundamental Theory and Applications.1997,44(5):450-453.
    57.Aguirre L A.Retrieving Dynamical Invariants from Chaotic Data Using NARMAX Models.Int.J.Bifurcation and Chaos.1995,5(2):449-474.
    58.Morelli E A.Global Nonlinear Aerodynamic Modeling Using Multivariate Orthogonal Function.Journal of Aircraft.1995,32(2):270-275
    59.S.Chen,C F N Cowan,P M Grant,Orthogonal least squares learning algorithm for radial basis function networks.IEEE Trans.Neural Networks.1991,2(2):302-309.
    60.Davis G,Mallat S,Zhang Z.Adaptive time-frequency decomposition.Opt Eng.1994,33(7):2183-2191.
    61.Pati Y C,Rezaiifar R,Krishnaprasad P S.Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition.Proceedings of the 27th Annual Asilomar Conference in Signals,Systems,and Computers,Monterey,CA,USA.1993,1(11):40-44.
    62.D Donoho,Y Tsaig,I Drori,etc.Sparse solutions of underdetermined linear equations by stagewise orthogonal matching pursuit.Technical Report 2006-02,Dept.of Statistics,Stanford University,2006.
    63.L Rebollo-Neira,D Lowe.Optimized orthogonal matching pursuit approach.IEEE Signal Processing Letters,2002,9(4):137-140,.
    64.G H Golub,F Van Loan.Matrix Computations(3rd Ed.).Johns Hopkins University Press,1996.
    65.M Andrle,L Rebollo-Neira,E Sagianos.Backward-optimized orthogonal matching pursuit approach,IEEE Signal Process.Lett.2004,11(9):705-708.
    66.L Rebollo-Neira.Recursive biorthogonalization approach and orthogonal projectors.math-phi/0209026.2002
    67.L Rebollo-Neira.Backward adaptive biorthogonalization.Int J Math.Math Sci.,2004,20(1):1843-1853
    68.G M Davis,S Mallat,M Avellaneda.Adaptive greedy approximations.Const Approx,1997,13:57-98
    69.Steven M.Kay著,罗鹏飞,张文明等译.统计信号处理基础[M].北京:电子工业出版社,2003.182-225
    70.张景绘.动力学系统建模[M].北京:国防工业出版社,2000
    71.Hald.A Statistical Theory with Engineering Applications.New York:John Wiley and Sons,Inc.1952.
    72.M Henon.A Two-dimensional Mapping with a Strange Attractor.Commun.math Phys.1976,50:69-77
    73.Z Michalewicz.A survey of constraint handling techniques in evolutionary computation methods.In Proceedings of the 4th Annual Conference on Evolutionary Programming.Cambridge,Massachusetts.The MIT Press,1995.135-155.
    74.C A C Coello.Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:A survey of the state of the art.Computer Methods in Applied Mechanics and Engineering.2002,191(12):1245-1287
    75.J J Liang,T P Runarsson,E Mezura-Montes,M Clerc,P N Suganthanl,C A Coello Coello,K.Deb.Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization.Technical Report,Nanyang Technological University,Singapore,2006
    76.S Kazarlis,V Petridis.Varying fitness functions in genetic algorithms:Studying the rate of increase of the dynamic penalty terms.In Proceedings of the 5th Parallel Problem Solving from Nature(PPSN V),Amsterdan,The Netherlands.Heidelberg,Germany:Springer-Verlag,1998.211-220
    77.R Farmani,J A Wright.Self-adaptive fitness formulation for constrained optimization.IEEE Transactions on Evolutionary Computation.2003,7(5):445-455
    78.Biruk Tessema,Gary G.Yen.A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization.2006 IEEE Congress on Evolutionary Computation.Canada.2006
    79.T P Runarsson and Yao X.Stochastic ranking for constraint evolutionary optimization.IEEE Transaction on Evolutionary Computation.2000,4:344-354
    80.K Deb.An efficient constraint handling method for genetic algorithms.Computer Methods in Applied Mechanics and Engineering.2000,186(214):311-338
    81.S Venkatraman,G G Yen.A generic framework for constrained optimization using genetic algorithms.IEEE Transaction on Evolutionary Computation.2005,9(4):424-435
    82.E Mezura-Montes,C A C Coello.A simple multimembered evolution strategy to solve constrained optimization problems.IEEE Trans.on Evolutionary Computation.2005,9(1):1-17
    83.谢晓锋,张文俊,阮骏,杨之廉.针对带约束非线性规划问题的遗传算法[J].计算机工程与应用.2002,21:64-67
    84.Munoz-Zavala,A E Hernandez-Aguirre,A Villa-Diharce,etc.PESO+ for Constrained Optimization.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    85.Y Wang,Z Cai.A multiobjective optimization based evolutionary algorithm for constrained optimization.In Proceedings of Congress on Evolutionary Computation,Edinburgh,UK,2005,1081-1087
    86.E Mezura-Montes,C A C Coello.A Numerical Comparison of some Multiobjective-Based Techniques to Handle Constraints in Genetic Algorithms.Technical Report EVOCINV-0302002,Evolutionary Computation Group at CINVESTAV.Mexico.2002
    87.周育人,李元香,王勇,康立山.Pareto强度值演化算法求解约束优化问题[J].软件学报.2003,14(7):1243-1249
    88.J Kennedy,R C Eberhart.Particle swarm optimization.In Proc.IEEE Int Conf on Neural Networks,Piscataway,NJ,1995.1942-1948.
    89.J Kennedy.Bare bones particle swarms.In Proceedings of the IEEE Swarm Intelligence Symposium 2003(SIS2003),Indiana,2003.80-87.
    90.X.Hu,R C Eberhart.Solving constrained nonlinear optimization problems with particle swarm optimization.In Proceedings of 6th World Multiconference on Systemics,Cybernetics and Informatics (SCI2002),Orlando,USA,2002.
    91.G T Pulido,C A Coello Coello.A Constraint-Handling Mechanism for Particle Swarm Optimization.Proc of IEEE Congress on Evolutionary Computation(CEC'2004).2004,2:1396-1403
    92.J Chunlin.A Revised Particle Swarm Optimization Approach for Multi-Objective and Multi-Constraint Optimization.Proc GECCO 2004 Conference,2004
    93.T Takahama,S Sakai.Constrained optimization by e constrained particle swarm optimizer with e-level control.In Proc of the 4'IEEE International Workshop on Soft Computing as Transdisciplinary Science and Technology(WSTST'05),Muroran,Japan,May 2005.1019-1029
    94.J J Liang,P N Suganthan.Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    95.Karin Zielinski,Rainer Laur.Constrained Single-Objective Optimization Using Particle Swarm Optimization.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    96.N Li,F Liu,D Sun,C Huang.Particle Swarm Optimization for Constrained Layout Optimization.Proc.of the Fifth World Congress on Intelligent Control and Automation.2004,3:2214-2218
    97.R Mendes,J Kennedy,J Neves.The Fully Informed Particle Swarm:Simpler,Maybe Better.IEEE Transactions on Evolutionary Computation.2004,8(3):204-210
    98.Frans van den Bergh.An Analysis of Particle Swarm Optimizers.[Ph.D.dissertation],University of Pretoria,2001
    99.R Store,K Price.Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces.Technical report,International Computer Science Institute,Berkley,1995
    100.R Storn,K Price.Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.Journal of Global Optimization.1997,11:341-359
    101.Janez Brest,Viljem Zumer,Mirjam Sepesy Maucec.Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    102.V L Huang,A K Qin,P N Suganthan.Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    103.Efren Mezura-Montes,Jesus Velazquez-Reyes,Carlos A Coello Coello.Modified Differential Evolution for Constrained Optimization.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    104.Karin Zielinski,Rainer Laur.Constrained Single-Objective Optimization Using Differential Evolution.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    105.Saku Kukkonen,Jouni Lampinen.Constrained Real-Parameter Optimization with Generalized Differential Evolution.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    106.Tetsuyuki Takahama,Setsuko Sakai.Constrained Optimization by the ε "Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    107.M.Fatih Tasgetiren,P N Suganthan.A Multi-Populated Differential Evolution Algodthrn for Solving Constrained Optimization Problem.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    108.Haiyan Lu,Weiqi Chen.Dynamic-objective particle swarm optimization for constrained optimization problems,J Comb Optim.2006,12(4):409-419
    109.Haiyan Lu,Weiqi Chen.Self-adaptive velocity particle swarm optimization for solving constrained optimization problems.Journal of Global Optimization.DOI:10.1007/s10898-007-9255-9.(Accepted).2007
    110.陈玮琪.物体斜出水水动力系数辨识.中国船舶科学研究中心科技报告,2006
    111.T P Runarsson.Approximate Evolution Strategy using Stochastic Ranking.2006 IEEE Congress on Evolutionary Computation.Canada,2006
    112.J Kennedy.Bare bones particle swarms.In Proceedings of the IEEE Swarm Intelligence Symposium 2003(SIS2003),Indiana:2003.80-87
    113.Christopher K Monson,Kevin D Seppi,Exposing Origin—Seeking Bias in PSO,Proceedings of the Genetic and Evolutionary Computation Conference(GECCO),2005.241-248
    114.Batterson J G,Klein V.Partitioning of Flight Data for Aerodynamical Modeling of Aircraft at High Angles of Attack.Journal of Aircraft.1989,26(4):334-339
    115.袁显兴.水下弹道的理论计算.航天科技会议文献.HY8402054
    116.严卫生.鱼雷航行力学[M].西安:西北工业大学出版社,2005
    117.项静恬,史久思.非线性系统中数据处理的统计方法.北京:科学出版社,2000,1-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700