基于白光干涉超精密表面形貌测量方法与系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超精密加工技术、半导体工业、MEMS和NEMS技术的发展,在纳米尺度内进行超精密表面形貌测量的需求越来越迫切。超精密表面形貌测量仪器必须具备垂直、水平方向上的高分辨率和较大的测量范围。文中系统论述了纵、横向分辨率均可达到纳米量级、测量范围可达到毫米量级的超精密表面形貌测量系统的创新设计和关键技术。主要研究内容和创新如下:
     提出了基于白光显微干涉的原子力探针扫描测量方法,该方法利用白光干涉零级条纹的特点,采用白光干涉零级条纹的移动量测量探针微悬臂的变形量。研究了白光干涉零级条纹中心线的提取算法以及白光干涉零级条纹中心线移动量算法,推导了探针微悬臂变形量与条纹移动量的关系,提出了微悬臂变形量检测非线性误差修正方法。
     研究了原子力探针扫描测量的基本理论,根据本测量系统的特点,提出了一种融合垂直扫描系统的位移量和微悬臂变形量得到被测表面形貌的原子力探针接触式工作方法,实现了原子力探针的可溯源跟踪测量。
     提出了基于同一显微镜基体实现非接触光学测量与原子力探针扫描测量两种功能的超精密表面形貌测量方法。该方法可以针对超精密表面不同的测量要求采用不同的测量方法,并可以对同一表面进行互补测量。
     基于上述超精密表面形貌测量方法和测量原理,研制了具有显微干涉测量与原子力探针测量两种功能的超精密表面形貌测量系统。研制了包括大量程计量型纳米级垂直扫描系统和大量程计量型纳米级共运动平面二维精密工作台的纳米驱动系统。研制了激光干涉位移计量系统,分析了采用四象限光电管接收激光干涉条纹时两路正弦信号满足正交的条件、在测量过程中干涉务的宽度与方向发生变化时引起的非正交误差以及影响激光干涉测量精度的因素,采用硬、软件结合法对由干涉信号误差引起的测量误差进行实时补偿。开发了超精密表面新貌测量系统软件,该软件可以实现原子力探针扫描测量,白光干涉垂直扫描测量,相移干涉扫描测量。
     本论文所提出的测量方法和研制的测量系统可用于超精密加工工程表面,光学表面以及微纳几何结构的测量。文中给出了精度实验结果及测量实例。
With the development of ultra-precision processing technology, the semiconductor industry, MEMS and NEMS technology, the need for ultra-precision surface topography measurement at the nanoscale is urgent. Instruments for measuring ultra-precision surface topography should have high lateral resolution, high vertical resolution and large measurement range. The innovative design and key technologies of the ultra-precision surface topography measurement system are discussed. Both lateral resolution and vertical resolution of the measurement system can achieve nano-scale with measuring range of millimeters. The main research contents, results and new ideas are as follows:
     Using the characteristics of white light interference fringes, a novel atomic force probe scanning measurement method based on white light interference is proposed, in which the deflection of atomic force probe cantilever is obtained by measuring the movement of white light interference central fringe. The extraction algorithms of the centerline of zero-order fringe and the calculation method of the centerline movement amount are analyzed. The relationship between the deflection of the atomic force probe cantilever and the movement amount of the central fringe is analyzed, and nonlinearity error correction of probe cantilever deflection measurement is proposed.
     The basic theory of atomic force probe scanning measurement is investigated. To overcome the shortcomings of the contact mode of atomic force microscopy, a new contact operation mode which combines the displacement of vertical scanning system and the deformation of the cantilever is proposed according to the characteristics of the measurement system. Traceable tracking measurement of atomic force probe scanning was realized.
     A measurement method for measuring ultra-precision surface topography, based on one interference microscope substrate, which combined non-contact optical measurement with atomic force scanning probe measurement, is proposed. According to different measurement requirements of ultra-precision surface, different measurement methods can be used. In addition, complementary quantitative measurement can be implemented for same surface.
     An ultra-precision surface topography measuring system, which combined atomic force probe scanning measurement with non-contact optical measurement, based on the measurement methods and measurement principles for ultra-precision surface topography measuring is developed successfully. Nano driving system, which including metrological vertical scanning system and coplanar 2D precision stage with large-stroke and nanopositioning resolution, is developed. A laser interference displacement measuring system is developed and four-quadrant optoelectronic detectors are used to detect laser interference fringes. The conditions to get a couple of quadrature signals, the non-orthogonal error caused by changes of the width of fringe period and/or the offset angle in the measurement process and the causes of measurement errors in detecting laser interference fringes are analyzed. A method combining hardware circuits and software is used to compensate measurement errors caused by the signal errors. The software for ultra-precision surface measurement is developed and atomic force probe scanning measurement, white light interference vertical scanning measurement, phase shifting interferometry measurement were realized.
     The measurement method proposed and measurement system developed in this paper can be used to measure ultra-precision machining engineering surface, optical surface, geometry of micro-nano, is developed successfully. The results of accuracy testing and measurement examples are given.
引文
[1]http://www.taylor-hobson.com/surface-profilers.html.
    [2]http://www.hommel-etamic.de/cps/rde/xchg/SID-26EE34DB-179438C8/hommelwerke /hs.xsl/277.htm.
    [3]Hocken RJ, Chakraborty N, Brown C. Optical metrology of surfaces. CIRP Annals-Manufacturing Technology,2005,54(2):169-183
    [4]Sommargen GE. Optical heterodyne profilometry. Appl. Opt.,1981,20(4):610-618
    [5]Lech M, Mruk I, Strupnicki J. Holographic contouring of the surface topography and stusy of the contact rigidity of rough surfaces. Wear,1979,57(2):236-168.
    [6]梁嵘,李达成,曹芒.在线测量表面粗糙度的共路激光外差干涉仪.光学学报,1999,19(7):958-961
    [7]Groves D, Lalor. MJ. A holographic technique with computer aided analysis for the measurement of wear. J. Phys. E,1980,13(7):741-746.
    [8]Atkinson JT, Groves D. The measurement of wear in dental restorations using laser dual source contouring. Wear,1982,76(1):91-104.
    [9]Andrzej WD, Tomasz RW. Surface roughness measurement with optical fibers. IEEE Trans. Instrum. Meas.1992,41(6):1057-1061
    [10]Vorburger TV, Lusema KC. Ellipsometry of rough surfaces. Appl. Opt.,1980, 19(4):561-573.
    [11]陈叶金.创新型微纳米测量探头机理的研究.合肥工业大学博士学位论文,2007
    [12]church EL. The measurement of surface texture and topography by differential light scattering. Wear,1979,57(1):93-105.
    [13]Chida SN., Sato H. Two dimensional measurement of surface roughness by the light sectioning methods. Ann. CIRP,1981,30(1):481-486
    [14]白春礼.扫描隧道显微技术及应用.上海:上海科学技术出版社,1992.9-13
    [15]Ronald Dixson, Rainer Koning, Joseph Fu, et al. Accurate dimensional metrology with Atomic Force Microscopy. Proceedings of SPIE.2000,3998:362-368
    [16]M.Chuard, J.Mignot. Range expansion and automation of a classical profilometer. Journal of Manufacturing System,1987,6:223-230.
    [17]杨练根.基于微恒力位移传感器的表面形貌测量系统和Motif评定方法.华中科技大学博士学位论文,2003
    [18]郭军.激光干涉表面形貌测量系统及3D-MOTIF评定研究.华中科技大学博士学位论文,2003
    [19]FAN K C, SU C D, JONG I. Error analysis for a diffraction grating interferometric stylus probing system. Meas.Sci.Technol.,2001,12:482-490
    [20]蒋向前,李柱,谢铁邦.全息光栅干涉法测量曲面形貌的理论研究.华中理工大学学报,1994,22(2):60-64
    [21]杨旭东.大量程轮廓综合测量系统研究.华中科技大学博土学位论文,2007
    [22]K.J. Stout, P.J. Sullivan, W.P. Dong, et al. The development of methods for the characterisation of roughness in three dimensions.1st edn, Commission of the European Communities,1993.
    [23]常素萍.基于白光干涉轮廓尺寸与形貌非接触测量方法和系统.华中科技大学博土学位论文,2007
    [24]Brunning JH. Herriott DR. Digital wavefront measring inteferometer for testing optical surfaces and lens. Appl. Opt.,1974,13(11):2663-2673
    [25]Bhushan B, Wyant JC, Koliopoulis CL. Measurement of surface topography of magnetic tapes by Mirau interferometry. Appl. Opt.,1985,24(7):1489-1497
    [26]Balsubramanian N. Optical system for surface topography measurement. U. S. Patent No.4340306
    [27]M P Arroyo and J Lobera. A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography. Meas. Sci. Technol.2008,19:1-13
    [28]李朝辉,井文才,周革等.相移干涉三维形貌纳米检测及算法研究.纳米技术与精密工程,2004,2(3):217-220
    [29]Helen HS, Kothiyal MP, Sirohi RS. Phase shifting by rotating polarizer in white-light interferometry for surface profling. J. Mod. Opt.,2000,47(3):1137-1145
    [30]惠梅.表面微观形貌测量中相移干涉术的算法与实验研究.中国科学院西安光学精密机械研究所博士学位论文,2001
    [31]Yeou-Yen Cheng, J. C. Wyant. Two-wavelength phase shifting interferometry. Appl. Opt.1984,23(24):4539-4543
    [32]Yeou-Yen Cheng, James C. Wyant. Multiple-wavelength phase-shifting interferometry. Appl. Opt.1985,24(6):804-807
    [33]L. Deck, P. de Groot. High-speed noncontact profiler based on scanning white-light interferometry. Appl. Opt.,1994,33(31):7734-7338
    [34]Groot P, Deck L. Surface profiling by analysis of white-light interferogram in the spatial frequency. J. Mod. Opt.,1995,42(2):389-401
    [35]Schmit J, Olszak A. High-precision shape measurement by white-light interferometry with real-time scanner correction. Appl.Opt.,2002,41(26):5943-5950
    [36]Peter de Groot, Xavier Colonna de Lega. Signal modeling for low-coherence height-scanning interference microscopy. Appl. Opt.2004,43(25):4821-4830
    [37]Emilia Pecheva, Paul Montgomery, Denis Montaner, et al. White light scanning interferometry adapted for large-area optical analysis of thick and rough hydroxyapatite layers. Langmuir,2007,23:3912-3918.
    [38]C.J. Tay, C. Quan, M. Li. Investigation of a dual-layer structure using vertical scanning interferometry. Optics and Lasers in Engineering,2007,45:907-913
    [39]Liang-Chia Chen, Yao-Ting Huang, Kuang-Chao Fan. A dynamic 3-D surface profilometer with nanoscale measurement resolution and MHz bandwidth for MEMS characterization. IEEE/ASME TRANSACTIONS ON MECHATRONICS,2007, 12(3):299-307.
    [40]戴蓉.基于大量程垂直扫描工作的白光干涉表面形貌测量系统的研究:华中科技大学博士学位论文,2007
    [41]Mike Conroy, Joe Armstrong. A comparison of surface metrology techniques. Journal of Physics:Conference Series,2005,(13):458-465
    [42]Minsky M. Microscopy Apparatus. U.S. Patent,3013467
    [43]Minsky M. Memoir on Inventing the Confocal Scanning Microscope. Scanning, 1988,10(4):128-138
    [44]J. F. Aguilar, M. L. K. Mistsui, M. Sakai. Imaging of spheres and surface profiling by confocal microscopy. Appl. Opt.2000,39(25):4621-4628
    [45]Gu M.共焦显微术的三维成像原理.王桂英,陈侦,杨莉松译,北京:新时代出版社,2000.1-4:14-28
    [46]Jordan H. J, Wegner M, Tiziani H J. Highly accurate non-contact characterization of engineering surfaces using confocal microscopy. Meas Sci Technol.1998,9:1142-1151
    [47]http://www.sunano.com.cn/html/p_20096191555534.html
    [48]邵宏伟,徐毅,高思田等.激光干涉共焦显微镜.计量学报,2004,25(2):104-106
    [49]Goodhew PJ. Electron microscopy and analysis. London:Wykeham,1975
    [50]Rasigni M, Rasigni G. Validity of surface roughness study using microdensitometer analysis of electron micrographs of surface replicas. J. Opt. Soc. Am.,1981, 71(12):1549-1550
    [51]K. D. Vernon-parry. Scaning Electron Microscopy:an introduction.2000, Analysis, III-Vs Review,13(4):40-44
    [52]Toru Fujii, Masataka Yamaguchi, Masatoshi Suzuki. Scanning Tunneling Microscope with three dimensional interferometer for surface roughness measurement. Rev Sci Instrum,1995,66:2504-2507
    [53].GLenihan, A.P.Malshe, W.D.Brown, et al. Artifacts in SPM measurements of thin films and coatings. Thin Solid Films 1995,27:356-361
    [54]白春礼,田芳,罗克.扫描力显微术.北京:科学出版社,2000.139;46-49
    [55]Gaoliang Dai, Frank Pohlenz, Hans-Ulrich Danzebrink, et al. Metrological large range scanning probe microscope. Rev. Sci. Instrum.,2004,75(4):962-969
    [56]John A Kramar. Nanometre resolution metrology with the Molecular Measuring Machine. Meas. Sci. Technol.2005,16:2121-2128
    [57]卢明臻,高思田,杜华等.计量型原子力测头用于纳米台阶高度样板的测量.计量学报,2008,29(3):193-197
    [58]陈治,高思田,卢明臻等.利用计量型原子力显微镜进行纳米台阶高度测量.纳米技术与精密工程,2008,6(4):288-292
    [59]Gaoliang Dai, Lena Jung, Frank Pohlenz, et al. Measurement of micro-roughness using a metrological large range scanning force microscope. Meas. Sci. Technol. 2004,15:2039-8
    [60]Jong-Ahn Kim, Jae Wan Kim, Chu-Shik Kang, et al. Metrological Atomic Force Microscope Using a Large Range Scanning Dual Stage. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING. 2009,10(5):11-7
    [61]V. Korpelainen, J. Seppa, A. Lassila. Design and characterization of MIKES metrological atomic force microscope. Precis. Eng.2010, doi:10.1016/j.precisioneng. 2010.04.002 (in press)
    [62]J. Haycocks, K. Jackson. Traceable calibration of transfer standards for scanning probe microscopy. Precis. Eng..2005,29:168-8
    [63]G. Jager, T. Hausotte, E. Manske, et al. Nanomeasuring and nanopositioning engineering. Proceedings of SPIE,2006,6280:628001-628009
    [64]J Hoffmann, A Weckenmann. Traceable profilometry with a 3D Nanopositioning Unit and zero indicating Sensors in compensation method. Journal of Physics:Conference Series,2005,13:228-231
    [65]I Schmidt, T Hausotte, U Gerhardt, et al. Investigations and calculations into decreasing the uncertainty of a nanopositioning and nanomeasuring machine (NPM-Machine). Meas. Sci. Technol.2007,18:482-486
    [66]K. Zimmermann, J. Grabow, E. Gerlach, et al. Virtual prototyping of nanopositioning and nanomeasuring machines using methods of multi-body system dynamics. http://wcms 1.rz.tu-ilmenau.de/fakmb/fileadmin/template/fgtm/div/publ-texte/ vietnam6.pdf
    [67]郭彤,傅星,陈津平等.利用纳米测量机实现大范围的计量型原子力显微镜.计量学报,2005,26(1):1-4
    [68]M.Jobin, A.Du, R.Foschia. Integrated optical profiler and AFM:a 3D metrology system for nanotechnology. NSTI-Nanotech,2005,2:695-697
    [69]James W. G. Tyrrell, Claudio Dal Savio, Rolf Kru"ger-Sehm, et al. Development of a combined interference microscope objective and scanning probe microscope. Rev. Sci. Instrum.,2004,75(4):1120-1126
    [70]Michael B. Sinclair, Maarten P. de Boer, et al. Long-working-distance incoherent-light interference microscope. APPLIED OPTICS,2005,44(36):7714-7721
    [71]吕乃光.傅里叶光学.北京:机械工业出版社,2006.
    [72]郧建平.基于白光干涉的表面形貌接触和非接触两用测量系统的研究:华中科技.大学博士学位论文,2008
    [73]Yun Jian Ping, Zhang Ling Ling, Xie Tie Bang, et al. A contact stylus profilometer based on Linnik interference microscope [C]. Key Engineering Materials,2008, 364-3661:371-376
    [74](?)O.B.靠洛米佐夫著,李承业,吴景文,秦南荣译.干涉仪的理论基础及应用.北京:技术标准出版社,1982.55-57
    [75]刘庆潭.材料力学.北京:机械工业出版社,2002.126-128
    [76]Akiko Harasaki. Improved vertical scanning interferometry. The university of Arizona, 2000
    [77]I. ABDULHALIMT. Theory for double beam interference microscopes with coherence effects and verification using the linnik microscope. JOURNAL OF MODERN OPTICS,2001,48(2):279-302
    [78]C.J.R.Sheppard, K.GLarkin. Effect of numerical aperture on interference fringe spacing. Appl.Opt,1995,34,4731-4734
    [79]Catherine Creath. Calibration of numerical aperture effects in interferometric microscope objectives. Appl.Opt.,1989,28:3333-3338
    [80]James F.Biegen. Calibration requirement for Mirau and Linnik microscope interferometers. Appl.Opt.,1989,28,1972-1974
    [81]Leonid P.Yatsenko, Matthias Loeffer, Bruce W.Shore, et al. Interferometric analysis of nano-structured surface profiles:correcting material-dependent error. Appl.Opt.,2004,43:3241-3250
    [82]Akiko Harasaki, Joanna Schmit, James C.Wyant. Offset of coherent envelope position due to phase change on reflection. Appl.Opt.,2001,40:2102-2106
    [83]Chen S, Palmer A W, Grattan K T V. Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry. Appl. Opt., 1992,31(28):6003-6010
    [84]R. Windecker, P. Haible, H. J. Tiziani. Fast coherence scanning interferometry for smooth, rough and spherical surfaces. J. Mod. Opt,1995,42:2059-2069
    [85]Alexander BF, KC Ng. Elimination of systematic error in subpixel accuracy centroid estimation. Opt. Eng.,1991,30(6):1320-1330
    [86]Stanley S, Claim C, Kino G S. Three-dimensional image realization in interference microscopy. Appl. Opt,1992,31:2550-2553
    [87]K.Freischlad,C.L.Koliopoulos. Fourier description of digital phase-measuring interferometry. J.Opt.Soc.Am.A,1990,7(4):542-551
    [88]Stanley S.C.Chim, Gordon S.Kino. Three-dimensional image realization in interference microscopy. Appl.Opt.,1992,31:2550-2553
    [89]P.Sandoz. Wevelet transform as processing tool in white-light interferometry. Opt.Lett.,1997,22:1065-1067
    [90]Recknagel R J. Analysis of white light interferograrns using wavelet methods, optics Communications,1998,148:122-128
    [91]Caber PJ. Interferometric profiler for rough surfaces. Appl.Opt,1993,32(19):3438-3440
    [92]Park MC, Kim SW. Direct quadratic polynomial fitting for fringe peak detection of white light scanning intefeograms. Opt. Eng.,2000,9(4):952-959
    [93]K.GLarkin. Efficient nonlinear algorithm for envelope detection in white light interferometry. J.Opt.Soc.Am.A,1996,13(4):832-843
    [94]P. Sandoz, R. Devillers, A. Plata. Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry. J.Mod.Opt.1997,44:519-534
    [95]P. Sandoz. An algorithm for profilometry by white-light phase-shifting interferometer. J.Mod.Opt.,1996,43:1545-1554
    [96]Harasaki A, Schmit J, Wyant JG. Improved vertical-scanning interferometry. Appl. Opt.,2000,30(13):2107-2115
    [97]Peter de Groot, Leslie Deck. Surface profiling by analysis of white-light interferograms in the spatial frequency domain. J.Mod.Opt.,1995,42,:389-401
    [98]Peter de Groot, Xavier Colonna de Lega, Jim Kramer, et al. Determination of fringe order in whitelight interference microscopy. Appl. Opt.,2002,41(22):4571-4578
    [99]Andreas Pfortner, Johannes Schwider. Dispersion error in white-light Linnik interferometers and its implications for evaluation procedures. APPLIED OPTICS, 2001,40(34):6223-6228
    [100]李朝辉.基于相移干涉法的微表面轮廓仪的研究.天津大学博士学位论文,2004
    [101]Rong-Fong Fung, Yi-Lung Hsu, Ming-Shyan Huang. System identification of a dual-stage XY precision positioning table. Precision Engineering,2009,33:71-24
    [102]K.Itoh. Analysis of the phase unwrapping algorithm. Appl. Opt., 1982,21(14):2470-2473
    [103]周明宝,林大键,郭履容等.基于白光的双波长相移干涉的误差分析.光学精密工程,2006,30(4):106-113
    [104]彭昌盛.宋少先.谷庆宝.扫描探针显微技术理论与应用.北京:化学工业出版社,2006.6-15;69-73
    [105]张冬仙.原子力显微镜的新方法研究及新型原子力显微镜系统研制.浙江大学博士学位论文,2004
    [106]Rifai Osamah M El, Kamal Youcef-Toumi. Dynamics of contact-mode atomic force microscopes. Proceedings of the American Control Conference,2000:2118-2122
    [107]Cleveland J P. The intersection of controls and physics in atomic force microscopy. Proceedings of the 42nd IEEE Conference on Decision and Control,2003:2124-2125
    [108]Spanner Karl, Vomdran Stefan. Advances in piezo-nano positioning technology. Proceedings of the 2003 IEEWASME International Conference on Advanced Intelligent Mechatronics,2003:1338-1343
    [109]Rifai Osamah M El, Kamal Youcef-Toumi. In-contact dynamics of atomic force microscopes. Proceedings of the 2001 IEEWASME International Conference on Advanced Intelligent Mechatronics,2001:1325-1328
    [110]王岳宇,赵学增,褚巍.用于减小控制对测量影响的AFM新工作模式.纳米技术与精密工程,2008,6(6):442-448
    [111]Patricia A Maurice. Applications of atomic-force microscopy in environmental colloid and surface chemistry. Colloids and Surfaces,1996,107:57-75
    [112]G. Scitter, P. Menold, H. F. Knapp, et al. High performance feedback for fast scanning atomic force microscopes. REVIEW OF SCIENTIFIC INSTRUMENTS,2001, 72(8):3320-3327
    [113]Jian Chent, Richard K Workmant, Dror Saridf, et al. Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever. Nanotechnology 1994,5:199-204
    [114]林晓峰.纳米计量的新方法研究及双成像单元原子力显微镜系统的研制.浙江大学博士学位论文,2006
    [115]G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope.1986,Phys. Rev. Lett. 56:930-933
    [116]T.Goddenhenrich, H.Lemke, U.Hartmann, et al. Force microscope with capacitive displacement detection J. Vac. SCI. Technol. A 1990,8:383-387
    [117]G.Neubauer, S.R.Cohen, G.M.McClell, et al. Force microscopy with a bidirectional capacitance sensor Rev. Sci. Instrum.1990,61(9):2296-2308
    [118]M. Tortonese, R. C. Barrett, C. F. Quate. Atomic resolution with an atomic force microscope using piezoresistive detection Appl. Phys. Lett.1993,62(8):834-836
    [119]C Dal Savio, S Dejima, H-U Danzebrink, et al.3D metrology with a compact scanning probe microscope based on self-sensing cantilever probes Meas. Sci. Technol. 2007,18:328-333
    [120]H.J.Mamin, R.Erlandsson, J.E.Stern, et al. Force microscope using a fiber-optic displacement sensor Rev. Sci. Instrum.1988,59(11):2337-2340
    [121]C. Schonenberger, S. F. Alvarado. A differential interferometer for force microscopy Rev. Sci. Instrum.1988,60(10):3131-3134
    [122]Gerhard Meyer, Nabil M. Amer. Novel optical approach to atomic force microscopy. Appl. Phys. Lett.1988,53:1045-1047
    [123]费业泰.误差理论与数据处理.北京:机械工业出版社,2000.94-98
    [124]钱劲.一种新型微流量计的设计、制备及力学分析.中国科学院研究生院硕士学位论文,2003
    [125]王淑珍,王生怀,谢铁邦.大量程纳米级垂直扫描系统研究.中国机械工程,2010,21(4):387-390
    [126]王淑珍,常素萍,谢铁邦.行程纳米级共平面二维精密工作台的研究.机械科学与技术,待出版
    [127]王淑珍,谢铁邦.基于激光干涉的接触式微位移测量仪.工具技术,2010,44(1):105-108
    [128]刘向阳,郁鼎文,冯平法等.纳米级大行程多维运动平台的方案研究.制造技术与机床,2005,3:107-110
    [129]王军,陈磊.基于空间频域算法的白光干涉微位移测量法.红外与激光工,2008,37(5):874-877
    [130]李庆祥,王东生,李玉和.现代精密仪器设计.北京:清华大学出版社,.2004:170-172
    [131]王纪武,陈恳,李嘉等.典型柔性铰链精度性能的研究.清华大学学报(自然科学版),2001,41(11):49-52
    [132]Elmustafa A A, Lagally Max G. Flexural hinge guided motion nanopositioning stage for precision machine:finite element simulations. Precision Engineering,2001,25:77-81
    [133]Theodor A. Bartic, Dirk J. Wouters, Herman E. Maes Bartic. A time independent model for simulating switching current and hysteresis characteristics of PZT thin-film ferroelectric capacitors. Integrated Ferroelectrics,1998,22(1):171-181
    [134]杨叔子,杨克冲.机械工程控制基础.武汉:华中理工大学出版社,1993.70-73
    [135]C.H. Wang, A.T. Augousti and J. Mason. Real time evaluation and correction of nonlinear errors in single frequency interferometers, Transactions of the Institute of Measurement and Control,2000,22(5):405-412
    [136]WANG Shuzhen, CHANG Suping, XIE Tiebang, et al. Applied research on four-quadrant optoelectronic detector in surface topography measurement. Proc. of SPIE,2007,6723:672329-1-672329-6
    [137]王选择.正交衍射光栅计量原理及在超精密工作台上的应用.华中科技大学博土学位论文,2004
    [138]王淑珍,谢铁邦,常素萍,王选择.四象限光电探测器用于表面形貌测量的研究.中国机械工程,2008,19(19):2348-2351
    [139]叶盛祥.光电信移精密测量技术.成都:四川科学技术出版杜,2003:186-188
    [140]齐永岳,赵美蓉,林玉池.高精度激光干涉条纹细分系统.传感器与微系统,2006,25(8)2:43-45
    [141]Chien-ming Wu, Ching-shen Su, Gwo-Sheng Peng. Correction of nonlinearity in one-frequency optical interferometry. Meas. Sci. Technol.1996,7:520-524
    [142]Zhi Li, Konrad Herrmann, Frank Pohlenz. A neural network approach to correcting nonlinearity in optical interferometers. Meas. Sci. Technol.2003,14:376-381
    [143]TaeBong Eom, JongYun Kim, Kyuwon Jeong. The dynamic compensation of nonlinearity in a homodyne laser interferometer. Meas. Sci. Technol.2001, 12:1734-1738
    [144]夏豪杰,费业泰,范光照等.基于衍射光栅的二维纳米位移测量技术.纳米技术与精密工程,2007,5(4):311-314
    [145]ISO 5436-12000 Geometrical Product Specifications (GPS)—surface texture:profile method. Measurement standards—part 1:material measures[S]. ISO 5436-1:9-2
    [146]王生怀.区域表面结构非接触测量与特征评定方法研究.华中科技大学博土学位论文,2009
    [147]张泰华,杨业敏,赵溥等MEMS材料力学性能的测试技术.力学进展,2002,32(4):545-562
    [148]李玉和,王东生,李庆祥等.一种多模式原子力探针扫描系统.发明专利,200510011612.1
    [149]戴蓉,谢铁邦.新型一维位移工作台的设计及特性分析.光学精密工程,2006,14(3):428-433
    [150]http://www.budgetsensors.com/lang/ch/soft_tapping_mode_afm_tip_dlt.html.
    [151]http://www.budgetsensors.com/lang/ch/downloads/Datasheet_ConDLC_CH.pdf
    [152]卢明臻,高思田,杜华等.计量型原子力测头模型研究及性能分析.纳米技术与精密工程,2007,5(1):33-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700