钢筋混凝土高层建筑结构三维线性及非线性地震反应分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济与社会的发展,社会财富大量集中,大地震造成的经济损失越来越大。现行的以保证人的生命安全为一级设计准则的抗震设计理念,在控制结构破坏、减少财产损失方面显得越来越力不从心。为了更好地控制结构在地震中的反应,美国学者在20世纪90年代初率先提出了基于性能的抗震设计,并得到各国工程界的广泛认同。作为实现基于性能抗震设计主要工具的线性动力分析方法、非线性静力分析方法(即pushover分析方法)及非线性动力分析方法,得到了广泛的研究和改进。本文在总结前人研究成果的基础上,对钢筋混凝土不规则空间结构的三维线性动力分析方法、三维非线性静力pushover方法进行了系统的研究,具体工作有以下几个方面。
     1、钢筋混凝土柱、梁、结点模型的研究与改进。建立了钢筋混凝土空间柱单元的纤维模型。与以往的纤维模型不同,本文根据柱的受力特征,假定其塑性变形均匀地发生在两端一定长度的塑性铰区内,将柱单元划分为三个区段,即两端的塑性铰区和中间的弹性区。塑性铰区用空间弹塑性柱单元模拟,中间弹性区用空间弹性柱单元模拟,再采用静力缩聚的方法得到整个柱单元的刚度矩阵。改进了钢筋混凝土平面梁单元的多区段单元模型,使区段数可以自由调整,每个区段的截面刚度根据截面分析的结果确定,整个梁单元的刚度矩阵由各个区段的刚度矩阵组合后通过静力缩聚而成。采用计算机数值模拟的方法研究了梁纵向钢筋在梁柱结点混凝土中的滑移,根据滑移分析与梁截面分析的结果,提出了确定梁端弯矩与附加滑移转角关系的方法。将梁两端的转动弹簧与梁一起,建立了超级梁单元。
     2、改进了剪力墙多垂直杆模型。在材料本构关系层次上确定各个垂直杆中钢筋和混凝土的轴向刚度,用软化桁架模型确定剪切弹簧的剪切刚度。并根据剪力墙截面的开裂长度和压溃长度,提出了一种考虑墙体弯曲变形影响剪切刚度的新方式,该方式计算简便,又能较好地考虑弯曲变形对剪切变形的影响。建议了一种考虑墙底转动的新方法,它通过计入墙体端部约束构件纵向钢筋的滑移来考虑墙底的转动。采用改进后的多垂直杆模型对文献上提供的两个剪力墙试验结果进行了比较,结果显示对带暗柱墙计算承载力高于试验结果约20%,对带明柱墙两者相符较好。
     3、三维线性地震反应分析方法的研究。采用刚性楼板假定,建立了三维结构的平面子结构平扭模型与杆系型平扭模型。通过一个9层框架结构和一个20层框筒双塔结构的动力时程分析,比较了这两种模型分析结果的差别并对其原因进行了探讨。针对平面子结构平扭模型的缺陷,从两个方面对其进行了改进,改进后模型的计算精度有较好的提高。
     4、结构三维非线性静力pushover分析方法的研究及程序编制。研究了在不规则空间结构中进行静力pushover分析的两种方法,即N2方法与模态pushover方法;以本文建立的单元模型为基础,应用MATLAB语言编制了结构三维非线性pushover分析的计算机程序,对两个不规则的空间钢筋混凝土框架结构分别使用N2方法与模态pushover方法进行了抗震性能计算,比较了这两种方法计算结果的差别。并探讨了结点钢筋滑移对结构抗震性能的影响,在考虑钢筋滑移后,结构的目标位移增大,从而使层间变形也增大。
     5、结构三维非线性pushover分析方法准确性评价。以通用软件CANNY为分析工具,采用多条地震波弹塑性时程分析的平均结果为标准,分别从目标位移、层间位移及层间扭转角三个方面对静力pushover分析结果的准确性进行了评估,揭示了现行三维pushover方法在抗震性能评估方面存在的缺点是:(1)高估结构下部的地震反应,低估结构上部的地震反应;(2)不能正确表现结构刚度突变层地震反应的突变情况。
     6、结构三维非线性pushover分析方法的改进。对N2方法提出了两种改进方法:(1)双向同时推覆N2方法。该方法按照使扭转变形最大的原则组合两个方向的水平推覆力,同时施加于结构上,对结构的层间扭转角评估有较大的改善。(2)多模态N2方法。此方法在x、y方向明确考虑了高阶模态荷载分量的影响,故在最大层间位移和扭转角方面都有较明显的改善。对模态pushover方法建议了三种改进方法:(1)正反向MPA方法。它综合考虑了模态荷载从正向与反向施加时的最不利组合情况,对于扭转不明显的结构,其结果与原MPA方法很相近;对扭转明显的结构,则大于原MPA方法的结果。该方法更能表现结构在地震中最不利的受力与变形情况。(2)模态位移成比例的MPA方法。该方法根据“基本模态组”的目标位移来计算高阶模态目标位移,一方面克服了MPA中高阶模态推覆曲线可能出现怪异形状的困难,另一方面简化了高阶模态的目标位移计算方法,其计算精度与原MPA方法相当,是一种可取的改进方法。(3)增大高阶模态目标位移的荷载相关Ritz向量(LDR)MPA方法。该方法采用与荷载相关Ritz向量而非精确的特征向量作为结构的振型,并且通过考虑被截断模态的振型参与质量来提高选用的较高阶振型的目标位移,取得了很好的改进效果。
With the development of economy and society, the social wealth accumulates greatly, so the financial loss caused by intense earthquake becomes heavier and heavier. The current seismic design concept,which aims to protect people’s lives,does not work well on controlling the damage of structures and on decreasing the wealth loss. In order to control the response of structures in earthquakes, the idea of performance-based seismic design was developed the first time by the American scholars in early 1990s, then it got widespread acceptance in the world. The linear dynamic analysis method, the nonlinear static analysis (pushover analysis) and the nonlinear dynamic analysis, as the key tools of practicing the performance-based seismic design, were widely developed and improved. In this dissertation, based on the forerunner’s works, the author studies the 3D seismic response analysis methods of linear dynamic analysis and pushover analysis of irregular concrete reinforced spatial structures systematically. The main work is as follows:
     1、Study and improvement on mechanic models of concrete reinforced columns, beams and beam-column joints.The 3D fibre model of concrete column is proposed in different type from the forerunner’s model.Based on the deformation characteristic of columns, it is assumed that column’s plastic deformation occurs evenly in the plastic hinge zones, and the column is divided into three parts, which are elastic zone in the middle and the plastic hinge zones with certain length in both ends. The elastic 3D column element is used to simulate the middle part, and the plastic 3D column element is used to simulate the plastic hinge zone. The column’s stiffness matrix is computed by condense the structural matrix of the super-column-element with three substructures.The multi-segment model of plane beam is improved in this dissertation. In this model, the beam is divided into some parts and the sum can be adjusted freely, the section stiffness in each part is computed by cross-section analysis, and the beam’s stiffness matrix is calculated by condensing the assembly matrix of all parts. Slippage of a rebar in the beam-column joints is studied by numerical simulating method. According to the result of slippage analysis and the result of the beam’s cross-section analysis,the method of computing the relation between bending moment and slipping rotation on the beam end is proposed.A model of evaluating the slipping effect, in which two rotation springs are added on the beam ends, is developed, in which the two springs and the beam constitute the super beam element.
     2、The multiple vertical-line element model of shear wall is improved in this dissertation. In author’s work, the axial stiffness of vertical-line is calculated by two-parallel component model, in which the stiffness of concrete and the steel bar components is determined based on their constitutive relationship. The stiffness of shear spring is determined by softened-truss model. A new procedure considering the flexual deformation of the wall influencing its shear stiffness is proposed based on the wall’s horizontal crack length and its crash length.This method is not only simple in calculation, but also effective in considering the wall’s flexual deformation reducing its shear ability. A new method evaluating the effect of fixed-end rotation of the wall is developed, in which the fixed-end rotation is considered as the slippage of the longitudinal reinforcement in the foundation of the wall’s column. The improved multiple vertical-line element model of shear wall is used to computed the two test walls, the load result is beyond the test result about 20% in terms of rectangular section wall, and agrees well with the test result in terms of wall with edge columns.
     3、Study on the 3D linear seismic response analysis method. Based on the rigid slab assumption, two types of 3D analysis model, which are the plane substructure model and the spatial pole-component-system model, are developed as the structural analysis model. The difference between the two types of 3D model and the reasons, studying by the dynamic analysis of a 9-story frame structure and a two-tower 20-story frame-tube structure, are discussed. Aiming at the deficiency of the plane substructure model, improvements at two perspectives are proposed, the improved model is more accurate.
     4、Study on the 3D nonlinear static pushover analysis method and making of computing procedure. N2 method and modal pushover analysis method (MPA) are studied. Based on the models developed in this dissertation, a 3D pushover analysis computing procedure is developed with MATLAB language. Then the N2 method and MPA method are used to evaluate the seismic performance of two irregular spatial frame structures with the computing procedure. The difference between the two pushover methods are examined. The influence of rebar slippage in the beam column joint is assessed, and the result shows that the target displacement and the story drifts increase due to rebar slippage.
     5、The accuracy evaluation of the 3D nonlinear static pushover analysis method. The accuracy of the 3D pushover method is evaluated from their target displacements, story drifts and story torsion rotations based on the average results of elasto-plastic time history analysis with multi earthquake waves, which use the common computing procedure CANNY as the analytical tool. The common drawbacks of 3D pushover method are disclosed, which are, (1) the seismic response in structural upper story is overestimated,and the seismic response in structural lower story is underestimated, (2) the deformation in the weaker story can not be discovered correctly.
     6、The improvements of the 3D pushover method. Two improved procedures are developed for N2 method, and they are: (1) pushing in x and y direction simultaneously N2 method. The combination of pushing loads in x and y direction, which leads to maximal torsion rotation, is given to the structure at same time. With this modification, the story torsion rotations improve effectively. (2)multi modal N2 method. The pushover analysis in x and y direction is performed with multi modal load pattern in this method, so the maximal story drifts and story torsion rotation improve greatly. Three improved methods are proposed for MPA method, and they are: (1) positive-and-negative MPA method. The disadvantageous effect of the modal load combination in positive and negative direction is considered in this method. For the slight irregular structure, the result of this method is much the same as that of MPA. But for the severe irregular structure, the result of this method is larger than that of MPA. So the disadvantage of the structural load or deformation in earthquake is discovered appropriately. (2) modal target displacements ratio MPA method. The higher modal target displacements are calculated based on the target displacements of“basic mode group”with a coefficient in this method. For one thing, the difficult caused by the odd higher mode pushover curves is solved, for another, the calculation of higher modal target displacements is simplified.And the accuracy of this method is as that of MPA, so it is a effective improvement.(3)load dependent Ritz vector (LDR) MPA with magnified higher modal target displacements. In this modification method, the load dependent Ritz vectors are used as the modal vectors in lieu of the exact eigenvectors, and the higher modal target displacements are magnified base on the truncation modal participating mass. This improvement leads to good result.
引文
[1]中华人民共和国建设部.建筑抗震设计规范.北京:中国建筑工业出版社,2001, 195-197
    [2]中国地震信息网,www.csi.ac.cn,2006-8-10
    [3]Federal Emergency Management Agency. Action plan for performance based seismic design. FEMA349,2000,1-3
    [4]汪梦甫,周锡元.基于性能的建筑结构抗震设计.建筑结构,2003,33(3):59-61
    [5]SEAOC Vision 2000.Performance-based seismic engineering of buildings, Structural Engineering Association of California,Sacramento,1995, 150-205
    [6]Federal Emergency Management Agency. Prestandard and commentary for the seismic rehabilitation of buildings. FEMA356,2000,1_1-1_35
    [7]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究.土木工程学报, 2005, 38(1):1-10
    [8]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题.同济大学学报, 2002,30(12):1429-1434
    [9]李晓莉,吴敏哲,郭棣.基于性能的结构抗震设计研究.世界地震工程, 2004, 20(1):153-156
    [10]程斌,薛伟辰.基于性能的框架结构抗震设计研究.地震工程与工程震动, 2003,23(4):50-55
    [11]程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨.建筑结构学报, 2000,21(1):5-11
    [12]白晓红,白国良.基于性能的抗震设计理论的研究现状及展望.河南科技大学学报(自然科学版),2005,26(6):74-77
    [13]Qiang Xue,Chia-Wei Wu. Preliminary detailing for displacement-based seismic design of buildings. Engineering structures,2005,28:431-440
    [14]European Committee For Standardization.Eurocode8: Design of structure for earthquake resistance.2003,201-204
    [15]Anil K.Chopra,Rakesh K.Goel.A modal pushover analysis procedure to estimate seismic demands for buildings.Earthquake Engineering and Structure Dynamics,2002,31:561-582
    [16]Anil K Chopra, Rakesh K.Goel. Modal pushover analysis of SAC buildings. In:Proceeding of the SEAOC,San Diego,California,2001
    [17]汪梦甫.钢筋混凝土高层结构抗震分析与设计.长沙:湖南大学出版社,1999, 14-24
    [18]Sean Wilkinson, David Thambiratnam. Simplified procedure for seismic analysis of asymmetric buildings. Computers and structures,2001,79: 2833-2845
    [19]朱江杰.高层钢筋混凝土结构三维推覆分析及非线性时程分析研究:[同济大学博士后工作报告],上海:同济大学,2003,25-53
    [20]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997,72-76,173-174
    [21]Melbourne Fernald Giberson. The response of nonlinear multi-story structures subjected earthquake excitation:[California University PhD dissertation]. USA: California University,1967,22-48
    [22]Graham H.Powell, Paul F.S. Chen. 3D beam-column blement with generalized plastic hinges. Journal of Engineering Mechanics,1986,112(7):627-641
    [23]杜宏彪,沈聚敏.在任意加载路径下双轴弯曲钢筋混凝土柱的非线性分析.地震工程与工程振动,1990,10(3):41-56
    [24]刘南科,周基云,肖允徽,向阳.钢筋混凝土框架的非线性全过程分析.土木工程学报,1990,23(4):2-14
    [25]姬守中.高层钢筋混凝土框架—剪力墙结构在地震作用下的弹塑性时程反应分析:[同济大学博士论文].上海:同济大学,2002,38-48
    [26]Mostafa Saad Eldine Elmorsi. Analytical modeling of reinforced beam column connection for seismic loading:[PhD dissertation], Canada: McMaster University , 1998,1-9
    [27]A.Ghobarah, Ashraf Biddag. Dynamic analysis of reinforced concrete frames including joint shear deformation. Engineering structures, 1999,21:971-987
    [28]汪梦甫,王朝晖.单调荷载下框架节点钢筋粘结滑移的数值分析.湖南大学学报(自然科学版) 2005,32(6)(增刊):56-60
    [29]杨红,白绍良.抗震结构节点内梁纵筋粘结滑移的模型化方法.重庆大学学报,2003,26(1):77-82
    [30]杨红,白绍良.考虑节点内梁纵筋粘结滑移的结构弹塑性地震反应.土木工程学报,2004,37(5):16-22
    [31]郭子雄,周素琴.考虑多种非线性变形的RC框架单元模型.华侨大学学报(自然科学版),2003,24(2):156-161
    [32]蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构.地震工程与工程振动,1998,18(3):40-48
    [33]汪梦甫,周锡元.钢筋混凝土框架—剪力墙结构非线性地震反应实用分析方法的研究.土木工程学报,2002,35 (6):32-38
    [34]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析.土木工程学报.2004,37(3):35-43
    [35]魏巍,冯启民.几种push-over分析方法对比研究.地震工程与工程振动, 2002, 22(4):66-73
    [36]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究与改进.工程力学, 2003,20(4):45-49
    [37]Tysh Shang Jan, Ming Wei Liu, Ying Chieh Kao. An upper-bound pushover analysis procedure for estimating the seismic demands of high-rise buildings. Engineering structures,2004,26:117-128
    [38]Helmut Krawinkler, G.D.P.K.Seneviratna. Pros and cons of a pushover analysis of seismic performance evaluation. Engineering structures, 1998,20(4-6):452-464
    [39]杨溥,李英民,王亚勇,赖明.结构静力弹塑性分析(push-over)方法的改进.建筑结构学报,2000,21(1):44-51
    [40]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,2004,24(3):89-97
    [41]钱稼茹,罗文斌.静力弹塑性分析—基于性能/位移抗震设计的分析工具.建筑结构,2000,30(6):23-26
    [42]叶献国.多层建筑结构抗震性能的近似评估-改进的能力谱方法.工程抗震,1998,(4):10-14
    [43]叶献国,周锡元.建筑结构地震反应简化分析方法的进一步改进.合肥工业大学学报(自然科学版),2000,23(2):149-153
    [44]杨溥,李东,李英民,赖明.抗震结构静力弹塑性分析(Push-over)方法的研究进展.重庆建筑大学学报,2000,22(增刊):87-92
    [45]杨志勇,何若全.高层钢结构弹塑性抗震分析静动力综合法.建筑结构学报, 2003,24(3):25-32
    [46]T.Tjhin, M.Aschheim, E.Hernandez-Montes. Estimate of peak roof displacement using“equivalent”single degree of freedom systems. Journal of Structural Engineering,2005,131(3):517-522
    [47]汪大绥,贺军利,张凤新.静力弹塑性分析(Pushover Analysis)的基本原理和计算实例.世界地震工程,2004,20(1):45-53
    [48]Chatpan Chintanapakdee, Anil K Chopra. Evaluation of the modal pushover analysis procedure using vertically“regular”and irregular generic frame. College of Engineering University of California,Berkeley,2002,47-161
    [49]Gr.G.Penelis, A.J.Kappos. 3D pushover analysis: the issue of torsion. In:Proceedings of 12th European Conference on Earthquake Engineering, London, 2002,paper No.015
    [50]A.S.Moghadam, W.K.Tso. 3-D Pushover analysis for damage assessment of buildings. Journal of Seismology and Earthquake Engineering, 2000,2(3): 23-31
    [51]A.S.Moghadam, W.K.Tso. Damage assessment of eccentric multistory building using 3D pushover analysis. In: Proceedings of 11th World Conference on Earthquake Engineering, Acapulco,1996,paper No.997
    [52]Rui Carneiro Barros, Riardo Almeida. Pushover analysis of asymmetric three-dimensional building frames. Journal of civil engineering and management,2005,6(1):3-12
    [53]Manuel Alfredo Lopez Menjivar.3D pushover of irregular reinforced concrete buildings:[Rose school master paper],Italy, Rose school ,2003,3-51
    [54]Kenji Fujii, Yoshiaki Nakano, Yasushi Sanada. A simplified nonlinear analysis procedure for single-story asymmetric buildings. Journal of Japan Association for Earthquake Engineering,2004,4(2):1-20
    [55]李刚,刘永.三维偏心结构的Pushover分析.计算力学学报,2005,22(5): 529-533
    [56]刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Pushover分析.建筑科学与工程学报,2005,22(2):47-50
    [57]P.Fajfar. Structural Analysis in earthquake engineering-a breakthrough of simplified non-linear method. In: Proceedings of 12th European Conference on Earthquake Engineering, London, 2002,paper No.843
    [58]Potuan Chen, Kevin R.Collins. Some observations on performance-based and reliability-based seismic design of asymmetric building structures. Engineering Structures,2001,23:1005-1010
    [59]Anil K Chopra, Rakesh K.Goel. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plane buildings: Theory and preliminary evaluation. College of Engineering university of California,Berkeley,2003, 1-39
    [60]叶英华,焦俊婷.双向偏压钢筋混凝土异行构件截面分析的简化方法.建筑结构学报,2004,25(6):83-87
    [61]过镇海.钢筋混凝土原理.北京:清华大学出版社,1999,19-22
    [62]朱伯龙,董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1985,6-17
    [63]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能.土木工程学报,1982,15(2):53-63
    [64]陈忠汉,朱伯龙,钮宏.斜向受力钢筋混凝土压弯构件的非线性分析.土木工程学报,1984,17(4):65-77
    [65]邱法维,刘中田,孙宪春等.考虑双向耦合作用的钢筋混凝土柱弹塑性简化分析方法.建筑结构学报,2004,25(5):85-91
    [66]薛守义.有限单元法.北京:中国建材工业出版社,2005,109-112
    [67]李宏,李峰.梁纵向钢筋的滑移及其引起的梁端位移.工业建筑,1998,28(7): 27-29
    [68]李宏,付恒菁.钢筋混凝土框架边节点粘结锚固试验研究.西安建筑科技大学学报,30(1):16-19
    [69]傅剑平.钢筋混凝土框架节点抗震性能与设计方法研究:[重庆大学博士论文],重庆:重庆大学,2002,45-58
    [70]蔡健.特殊配筋钢筋混凝土梁圆柱节点的试验(Ⅰ).华南理工大学学报(自然科学版),1995,23(3):14-20
    [71]蔡健.特殊配筋钢筋混凝土梁圆柱节点的试验(Ⅱ).华南理工大学学报(自然科学版),1995,23(3):21-27
    [72]张连德.钢筋砼空间框架节点抗震性能的研究.建筑结构学报,1987,8(2):1-8
    [73]钟益村,任富栋.二层双跨钢筋混凝土框架弹塑性性能试验研究.建筑结构学报,1981,2(3):34-41
    [74]徐云扉,胡庆昌,沉玉峰,施昌,洪柏年,林绍均,于洪.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究.建筑结构学报,1986,7(2):1-16
    [75]锚固搭接专题组.钢筋在混凝土中锚固和搭接的试验研究.混凝土结构研究报告3,北京:中国建筑工业出版社,1994,147-177
    [76]Vincenzo Colotti. Shear Behavior of RC Structural Walls. Journal of Structural Engineering,1993,119(3):728-746
    [77]蒋欢军,吕西林.一种宏观剪力墙单元模型应用研究.地震工程与工程振动, 2003,23(2):38-43
    [78]徐增全.钢筋混凝土薄膜元理论.建筑结构学报,1995,16(5):10-19
    [79]Mohamad Mansour, Thomas T.C.Tsu. Behavior of Reinforced Concrete Elements under Cyclic Shear. I: Experiments. Journal of Structural Engineering,2005, 131(1):44-53
    [80]Mohamad Mansour, Thomas T.C.Tsu. Behavior of Reinforced Concrete Elements under Cyclic Shear.Ⅱ:Theoretical Model. Journal of Structural Engineering, 2005,131(1):54-65
    [81]M.Y.Mansour, M.Dicleli, J.Y.Lee. Nonlinear Analysis of R/C Low-Rise Shear Walls. Advances in Structural Engineering,2004,7(4):345-360
    [82]M.Y.Mansour, Jung-Yoon Leeb, R. Hindic. Analytical prediction of the pinchingmechanism of RC elements under cyclic shear using a rotation-angle softened truss model. Engineering Structures, 2005,27: 1138–1150
    [83]Federal Emergency Management Agency. Improvement of nonlinear staticseismic analysis procedures. FEMA440, 2005,2_1-6_10
    [84]汪梦甫,周锡元.关于结构静力弹塑性分析(Push-over)方法中的几个问题.结构工程师,2002,(4):17-22
    [85]Peter Fajfar. A Nonlinear analysis method for performance based seismic design. Earthquake Spectra, 2000,16(3):573-592
    [86]Sigmund A.Freeman. The capacity spectrum method as a tool for seismic design. In: Proceedings of 11th European Conference on Earthquake Engineering, Paris, 1998
    [87]Giuseppe Faella. Evaluation of the R/C structure seismic in response by means of nonlinear static push-over analysis. In: Proceedings of 11th World Conference on Earthquake Engineering,Acapulco,1996
    [88]叶献国,种迅,李康宁,周锡元.Pushover方法与循环往复加载分析的研究.合肥工业大学学报(自然科学版),2001,24(6):1019-1024
    [89]侯爱波,汪梦甫.循环往复加载的pushover分析方法及其应用.湖南大学学报(自然科学版),2003,30(3):145-147
    [90]Chatpan Chintanapakdee, Anik Chopra. Seismic Response of Vertically Irregular Frames: Response History and Modal Pushover Analysis. Journal of Structural Engineering, 2004,130(8):1177-1185
    [91]Anil K Chopra, Rakesh K.Goel, Chatpan Chintanapakdee. Statistics of Single-Degree-of-Freedom Estimate of Displacement for Pushover Analysis of Buildings. Journal of Structural Engineering,2003,129(4): 459-469
    [92]邓胜江.建筑结构平面静力弹塑性反应分析方法的评估与改进:[湖南大学硕士论文],湖南:湖南大学,2004,29-47
    [93]Erol Kalkan, Sashi K.Kunnath. Assessment of current nonlinear static procedures for seismic evaluation of buildings. Engineering Structures,2006,28:1-12
    [94]T.Salonikios, C.Karakostas, V.Lekidis, A.Anthoine. Comparative inelastic pushover analysis of masonry frames. Engineering Structures,2003,25:1515-1523
    [95]叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报,2000,21(1):37-43
    [96]A.M.Mwafy, A.S.Elnashai. Static pushover versus dynamic collapse analysis of RC buildings. Engineering structures,2001,23:407-424
    [97]Andreas J.Kappos, Alireza Manafpour. Seismic design of R/C buildings with theaid of advanced analytical techniques. Engineering structures,2001,23:319-332
    [98]H.Moghaddam, I.Hajirasouliha. An investigation on the accuracy of pushover for estimating the seismic deformation of braced steel frames. Journal of constructional Steel Research,2006,62:343-351
    [99]Mehmet ?nel, Tjen Tjhin, and Mark A. Aschheim. The significance of lateral load pattern in pushover analysis. In: Proceedings of 5th National Conference on Earthquake Engineering, Chicago,2003,paper No.009
    [100]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究.土木工程学报,2003,36(11);44-49
    [101]Sermin O?uz. Evaluation of Pushover Analysis Procedures for frame structures:Turkey: Middle East Technical University ,2005,101-125
    [102]Rakesh K.Goel. Evaluation of nonlinear static procedures using strong-motion building records. In: Proceedings of SMIP04 seminar on utilization of strong-motion data, Sacramento, 2004,61-81
    [103]卢文生,吕西林.模态静力非线性分析中模态选择的研究.地震工程与工程振动,2004,24(6):32-38
    [104]卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究.地震工程与工程振动,2005,25(1):58-66
    [105]武藤清.结构物动力设计.滕家禄译.北京:中国建材工业出版社,1984,5-17
    [106] F. Daneshjoo,M. Gerami. Higher mode effects on seismic behavior of MDOF steel moment resisting frames. Journal of Seismology and Earthquake Engineering, 2003,5(3): 41-54
    [107]Anil K. Chopra, Rakesh K. Goel. Capacity-Demand-Diagram methods for estimating seismic deformation of inelastic structures: SDF systems. University of California, Berkeley,1999, Report No. PEER-1999/02,2-3
    [108]钱培风.结构抗震分析.地震出版社,1983,222-224
    [109]爱德华.L.威尔逊.结构静力与动力分析-强调地震工程学的物理方法(原著第四版).北京金土木软件技术有限公司,中国建筑标准设计研究院译.北京:中国建筑工业出版社,2006,141-156
    [110]Kangning Li.3-Dimension nonlinear static /dynamic structural analysis computer program CANNY99.CANNY Consultants Pte Ltd,1996
    [111]李康宁,洪亮.结构三维弹塑性分析方法及计算机程序CANNY.四川建筑科学研究.2001,27(4):1-6
    [112]Kangning Li, Xilin Lu,Tetsuo Kubo. Pushover analysis of RC shear-wall structure with concrete softening. IN: Proceeding of the third U.S.-Japanworkshop on performance-based earthquake engineering methodology for reinforced concrete building structures,Seattle,2001,41-46
    [113]种讯,叶献国,吴本华. Pushover分析中侧向力分布形式的影响.工程力学.2001(增刊):298-301
    [114]叶献国.基于非线性分析的钢筋混凝土地震反应与破损的数值模拟.土木工程学报,1998,31(4):3-13
    [115]叶献国.建筑结构弹塑性地震反应中的能量表达及应用.合肥工业大学学报(自然科学版),1998,21(5):9-16
    [116]吕西林,龚治国.某复杂高层建筑结构弹塑性时程分析及抗震性能评估.西安建筑科技大学学报,2006,38(5):593-602
    [117]龚治国,吕西林,翁大根.超高层主楼与裙楼黏滞阻尼器连接减振分析研究.土木工程学报,2007,40(9):8-15
    [118]庄金钊,高小旺,杨仁树.高层钢-混凝土结构连接方式对抗震性能影响.中国矿业大学学报,2005,34(5):644-649
    [119]聂建国,田淑明.大震下高层型钢混凝土结构弹塑性分析.清华大学学报(自然科学版),2007,47(6):772-775
    [120]杨溥,李英民,熊振勇等.能力曲线折线简化方法对比研究.重庆建筑大学学报.2005,27(4):59-63
    [121]叶英华,刁波.钢筋混凝土结构非线性分析中的本构关系.哈尔滨建筑大学学报.1995,28(3):7-13
    [122] Mehmet ?nel, Tjen Tjhin, and Mark A. Aschheim. The significance of lateral load pattern in pushover analysis. Fifth National Conference on Earthquake Engineering, Istanbul, 2003, Paper No: AE-009
    [123]Anil K Chopra, Rakesh K.Goel, Chatpan Chintanapakdee. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands. Earthquake Spectra ,2004, 20(3): 757-778
    [124]Andrew C. Guyader. A statistical approach to equivalent linearization with application to performance-based engineering: [PhD dissertation], USA, California Institute of Technology,2003
    [125]韦承基,史铁花,薛彦涛.合理振型数的确定及扭转振型判定.工程抗震.2002, (4):1-2
    [126]黄吉锋,李云贵,邵弘等.地震计算中几个问题的研究.建筑科学.2007, 23(3):15-19
    [127] Sigmund A.Freeman. Review of the development of the capacity spectrum method. Journal of Earthquake Technology.2004,41(1):1-13
    [128]Mark Aschheim. Yield point spectrum: a simple alternative to the capacity spectrum method. In: Proceeding of SEAOC 1999 Convention,1999:373-379
    [129]Anil K.Chopra, Rakesh K.Goel. Capacity-Demand-diagram methods based on inelastic design spectrum. Earthquake Spectra.1999,15(4):637-656
    [130] Peter Fajfar, Matja? Dol?ek, Damajan Maru?i?. Extensions of the N2 method—asymmetric buildings, infilled frames and incremental N2. PEER Report. 2004/05: 357-368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700