自锚式悬索—斜拉组合结构体系桥梁静力学性能与施工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式悬索—斜拉组合结构体系桥梁是一种全新的桥型,作为城市桥梁既实现了桥梁本身的使用功能,又体现了桥梁的美观和后期社会效益。但这类桥型结构复杂,传力不很明晰,国内外对其受力性能几乎未见报道。论文依托实桥工程建设需求,结合江苏省交通科学研究计划项目“自锚式悬索与斜拉组合结构体系桥梁受力性能与安全评价”(06Y19b),针对自锚式悬索—斜拉组合结构体系桥梁成桥状态与施工过程高度耦合的特点,以世界首座自锚式悬索—斜拉组合结构体系桥梁设计和施工资料收集分析为基础,以其他相似桥型理论研究成果为借鉴,以理论分析、数值计算、模型试验、实桥监控为手段,对自锚式悬索—斜拉组合结构体系桥梁施工和使用阶段的力学性能以及结构参数敏感性进行系统地研究。主要研究内容如下:
     (1)以应变位移协调为条件,考虑主梁和主塔的梁—柱效应,建立自锚式悬索—斜拉组合结构体系桥梁的势能泛函,根据大位移分区不完全变分原理,推导了自锚式悬索—斜拉组合结构体系桥梁的基础微分方程,建立了自锚式悬索—斜拉组合结构体系桥梁的分析理论。算例分析表明本文解析解与数值解比较接近。
     (2)根据结构力学理论,考虑空间交叉吊索的影响,分析自锚式悬索跨初始平衡状态,提出了自锚式悬索—斜拉组合结构体系桥梁自锚式悬索跨空间主缆线形及索力的计算方法;基于最小弯曲能量原理,考虑自锚式悬索跨对斜拉跨斜拉索力的影响,计算斜拉跨成桥状态,进而建立了自锚式悬索—斜拉组合结构体系桥梁的合理成桥状态分析计算方法。通过全桥模型试验验证计算方法的可靠性。
     (3)基于有限位移理论,根据悬索的精确计算公式,推导空间索单元切线刚度矩阵;根据虚功原理,推导基于U.L列式空间梁单元刚度矩阵,建立了自锚式悬索—斜拉组合结构体系桥梁结构分析的有限元计算方法;分析车辆荷载、温度荷载、温度梯度及索梁温差、收缩徐变等作用对结构内力及位移等方面的影响,得到了自锚式悬索—斜拉组合结构体系桥梁在不同荷载作用下的结构力学响应。
     (4)以敏感性分析理论为指导,对实桥工程的结构参数进行分析,探讨了桥跨布置(边中跨比、外伸跨长度)、主缆矢跨比、主梁预拱度、主梁刚度、缆索刚度以及主塔刚度等参数变化对结构内力和变形的影响,分析了自锚式悬索—斜拉组合结构体系桥梁的受力特性与地锚式悬索桥以及自锚式悬索桥的异同。
     (5)针对自锚式悬索—斜拉组合结构体系桥梁施工过程中呈现显著的几何非线性特点,考虑空间缆索、倾斜主塔、斜拉索及空间交叉吊索构成的空间效应,从结构施工过程的受力分析及施工实际出发,提出了自锚式悬索—斜拉组合结构体系桥梁空间缆索合理施工状态的分析方法;对比分析多种施工方案,提出了空间主缆空间交叉吊索自锚式悬索—斜拉组合结构体系桥梁吊索张拉技术(所有吊索只需张拉一次)。
     (6)以理论分析为基础,结合自锚式悬索—斜拉组合结构体系桥梁不同缆索体系张拉方案的数值分析结果,分析施工阶段的力学特性,得到了吊索张拉过程空间主缆位移变化的弱相干性,斜拉索张拉对空间主缆线形的影响,以及空间交叉吊索力的相邻影响性。以塔顶水平位移为控制原则,探讨了自锚式悬索—斜拉组合结构体系桥梁斜拉索的合理张拉时机。通过模型试验验证研究成果的正确性。
     (7)基于本文建立的自锚式悬索—斜拉组合结构体系桥梁合理成桥状态和合理施工状态分析方法,采用本文提出的吊索一次张拉技术,对首座自锚式悬索—斜拉组合结构体系桥梁实施施工监测和控制,通过计算与实测结果对比分析,验证了计算方法的可靠性、张拉技术的可行性和合理性。
As a new type of bridge, the self-anchored suspension and cable-stayed combination system bridge embodies aesthetic effect and social benefit. But its mechanical properties are more complicated and there are few relevant papers on this kind of bridge at present. Under the background of first self-anchored suspension and cable-stayed combination system bridge in the world, this paper analyzes design and construction data, studies the mechanical properties and parameter sensitivity by use of theoretical analysis, numerical calculation, model test and safety monitoring. In detail, the following aspects are investigated:
     1. According to the coordination of strain and displacement, the incomplete potential energy functional of self-anchored suspension and cable-stayed combination system bridge is established based on the pressure-bending of girder and tower. The equations of this kind of bridge are approximately derived, and the analysis theory is also obtained. The example shows that the results of analytic method agree with those of numerical calculation.
     2. Based on the structure mechanics theory, initial equilibrium conditions on structure of self-anchored suspension is analyzed based on spatial cross suspender cable. And the calculation method of spatial line shape and suspender force on self-anchored suspension and cable-stayed combination system bridge is also proposed. Finished bridge state on structure of cable-stayed is determined according to the principle of minimum bending energy. The calculation method of reasonable finished bridge state on self-anchored suspension and cable-stayed combination system bridge is then established. Furthermore, the reliability of the method is verified by the model test.
     3. By using finite displacement theory and the accurate calculation formula for cable, the spatial cable element tangent stiffness matrix is deduced. The three dimensional beam element tangent stiffness matrix is also developed. Furthermore, the finite element calculation method of self-anchored suspension and cable-stayed combination system bridge is established. Mechanical responses are obtained from the load of vehicle, temperature, temperature difference, shrinkage and creep.
     4. Under the guidance of sensitivity analysis theory, the structure parameters of self-anchored suspension and cable-stayed combination system bridge are analyzed including the ratio between side span and main span, length of overhang span, rise-span ratio, camber of girder, beam rigidity, cable rigidity and tower rigidity. Regularities of internal force and deformation are summarized. Similarities and differences'between the self-anchored suspension and cable-stayed combination system bridge and other types of bridges are discussed.
     5. In view of the geometric nonlinearity on self-anchored suspension and cable-stayed combination system bridge, the analysis method of reasonable construction state is proposed according to mechanical properties and construction condition. The method involves in spatial cable, inclined tower, spatial effect of cable and cross suspender cable. Then the new tensioning technique about self-anchored suspension and cable-stayed combination system bridge is put forward.
     6. Mechanical properties of self-anchored suspension and cable-stayed combination system bridge in construction control are studied on the basis of difference construction method. Weak interference principle on main cable displacement and near influence principle on suspender cable force are proposed. The influence of tension of cable is studied. And the opportunity of tension of cable is also investigated to the control principle of tower displacement. These principles are proved correctly through the model test.
     7. For the first self-anchored suspension and cable-stayed combination system bridge, the analysis method for the finished bridge state and reasonable construction state in this paper is used. The new tensioning technique(a single tension technique) is adopted. And construction monitoring techniques for this kind of bridge are set up. By compared with calculation results and measured results, the reliability of caculation method and rationality of tensioning technique are verified.
引文
[1]中国公路学会桥梁和结构工程分会.面向创新的中国现代桥梁[M].北京:人民交通出版社,2009.
    [2]Anon. Longest Cable-Stay Bridge on Schedule[J]. Better Roads.2003,73(11):38-39.
    [3]项海帆.中国桥梁[M].上海:同济大学出版社/香港建筑与城市出版社,1993.
    [4]孟凡超,杨晓滨,王麒,等.青岛海湾大桥设计特点[A].青岛海湾大桥国际桥梁论坛论文集[C].北京:人民交通出版社,2008:1-11.
    [5]项海帆.21世纪桥梁技术发展论坛论文集[M].北京:中国公路杂志社,2002.
    [6]Spyrakos C., Kemp EL., Venkatareddy R.. Validated Analysis of Wheeling Suspension Bridge[J]. Journal of Bridge Engineering. ASCE,1999,4(1):1-7.
    [7]范立础.桥梁工程(上)[M].北京:人民交通出版社,2001.
    [8]辛丽华,林飞.城市桥梁景观设计[A].青岛海湾大桥国际桥梁论坛论文集[C].北京:人民交通出版社,2008:489-493.
    [9]Yuzuru Sato, Shinichi Sasaki, Katsutoshi Morohashi, Nobumasa Suzuki, Constructuion of Nagisa Bridge Hybrid System of Cable-Stayed PC Bridge and Steel Suspension Bridge[J]. Technical Memorandum of Public Works Research Institute.2003(3920): 53-60.
    [10]Powers T., Price K., He Eddie, et al. Reconstruction of North Avenue bridge over the Chicago River, Chicago, Illinois [A].6th International Bridge Engineering Conference[C],2005:459-464.
    [11]王伯惠.斜拉-悬索协作体系桥[J].辽宁省交通高等专科学校学报.2000,2(3):1-6.
    [12]王伯惠.斜拉-悬索协作体系桥(续)[J].辽宁省交通高等专科学校学报.2000,2(4):1-7.
    [13]尼尔斯J·吉姆辛.缆索承重桥梁[M].北京:人民交通出版社,1992.
    [14]伊藤学,川田忠树.超长大桥梁建设的序幕—技术者的新挑战[M].北京:人民交通出版社,2002.
    [15]Lin.T.Y, Chow.P. Cibraltar Strait Crossing-A Challenge to Bridge and Structural Engineers[J]. Structural Engineering International,1991(2):53-58.
    [16]Menn.C, Billington.D.P. Breaking Barriers of Scale a Concept for Extremely Long Span Bridges[J]. Structural Engineering International,1995(1):48-50.
    [17]王伯惠.斜拉桥结构发展和中国经验[M].北京:人民交通出版社,2004.
    [18]杜高明.大跨度自锚式斜拉一悬索协作体系桥结构性能分析[D].大连:大连理工大学,2006.
    [19]大连理工大学桥梁工程研究所.大连庄河建设大桥.大连:大连理工大学,2005.
    [20]王会利.自锚式斜拉-悬索协作体系桥结构性能分析与试验研究[D].大连:大连理工大学,2006.
    [21]张凯.自锚式斜拉—悬索协作体系桥地震反应分析[D].大连:大连理工大学,2006.
    [22]张永杰.自锚式吊拉组合桥设计及力学性能分析[D].大连:大连理工大学,2006.
    [23]张哲,王会利,黄才良,等.自锚式斜拉—悬索协作体系桥梁设计与分析[J].公路.2006,(7):44-48.
    [24]郝俊峰,徐海军,林英.龙城大桥主桥设计与结构分析[A].杭运河常州市区段改线工程建设丛书—论文专集[M].北京:人民交通出版社,2008.
    [25]京杭运河常州市区段改线工程施工图设计(共三册),第二册—桥梁工程,第七分册—龙城大桥(一)上(主桥总体、主梁和桥塔)[R].上海:同济大学建筑设计研究院,2006.
    [26]长安大学.龙城大桥静力模型试验研究报告[R].西安:长安大学,2006.
    [27]陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社,1994.
    [28]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003.
    [29]Pugsley A.. Theory of Suspension Bridges[M].2nd.Ed.,1968.
    [30]Timoshenko S. The Stiffness of Suspension Bridge[J]. Trans. ASCE,1930,94:14-29.
    [31]Godard M.T. Rechereches Sur le Calcul de la resistance des tabliers des Ponts Suspends[M]. Ann. Pants et Choussees,1984.
    [32]Neukrich H.. Berechnung der Hangebrucke bei Berucksichtigung der Verformung des kabels,Ingenieur-Archiv[M]. Heft7,1936.
    [33]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [34]Peery D.J.. An Influence Line Analysis for Suspension Bridges[J]. Proc. ASCE, Vol.80, 1954.
    [35]Borges J.F., Lima C.S., Arantes e Oliveira E.R.. Martrix Analysis of Suspension Bridges [J]. Symposium on the Use of Computers in Civil Engineering, Lisbon,1964:12-18.
    [36]Saafan S.A.. Theoretical Analysis of Suspension Bridge[J]. Journal of the Structural Division, ASCE,1966,92(4):252-279.
    [37]Brotton D.M.. A general computer programme for the solution of suspension bridge problems. The Structural Engineer,1966,44(5):161-167.
    [38]Tezcan S.S., Mahapatra B.C.. Tangent Stiffness Matrix for Space Frames[J]. Journal of Structural Engineering, ASCE,1969,95:1257-1270.
    [39]Fleming J.F.. Nonlinear Static Analysis of Cable-stayed Bridge Structures [J]. Computers and Structures,1979,10:621-635.
    [40]张国正.铁路悬索桥非线性分析及其承载能力研究[D].北京:铁道部科学研究院,1992.
    [41]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5):34-44.
    [42]潘家英,程庆国.大跨度悬索桥有限位移分析[J].土木工程学报,1994,27(1):1-10.
    [43]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析:Ⅰ平面问题[J].计算结构力学及其应用,1995,12(1):7-16.
    [44]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析:Ⅱ三维问题[J].计算结构力学及其应用,1995,12(1):34-43.
    [45]Ernst. Der E-modul von seilen unter beruecksichtigung des durchhanges[J]. Der Bauingenieur,1965,40:52-55.
    [46]Gimsing NJ. Cable supported bridges[M].2nd Ed. Chichester:John Wiley,1997.
    [47]Ahmadi-Kashani K, Bell AJ. The analysis of cables subject to uniformly distributed loads[J]. Engineering Structures,1988,10:174-184.
    [49]Ozdemir H. A finite element approach for cable problems[J]. International Journal of Solids and Structures,1979,15:427-437.
    [50]袁行飞,董石麟.二节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-64.
    [51]唐建民,董明,钱若军.张拉结构非线性分析的五节点等参单元[J].计算力学学报,1997,14(1):108-113.
    [52]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [53]唐建民,何署廷.悬索结构非线性有限元分析[J].河海大学学报,1998,26(6):45-49.
    [54]Ali HM, Abdel-Ghaffar AM. Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings[J]. Computers and Structures,1995,54(3): 461-492.
    [55]O'Brien T. General solution of suspended cable problems[J]. Journal of Structural Division, ASCE,1967,93(ST1):1-26.
    [56]Peyrot AH, Goulois AM. Analysis of flexible transmission lines[J]. Journal of Structural Division, ASCE,1978,104(ST5):763-779.
    [57]Jayaraman HB, Knudson WC. A curved element for the analysis of cable structures[J]. Computers and Structures,1981,14(34):325-333.
    [58]Abbas S. Nonlinear geometric, material and time dependent analysis of segmentally erected, three dimensional cable stayed bridges[D]. USA:University of California at Berkeley,1993.
    [59]肖汝诚.确定大跨径桥梁合理设计状态理论与方法研究[D].上海:同济大学,1996.
    [60]Peyrot AH, Goulois AM. Analysis of cable structures [J]. Computers and Structures, 1979,10:805-813.
    [61]潘永仁.悬索桥的几何非线性静力分析及工程控制[D].上海:同济大学,1996.
    [62]Karouni R. Some modeling aspects in the nonlinear fnite element analysis of cable supported bridges [J]. Computers and Structures,1999, (71):397-412.
    [63]程进.缆索承重桥梁非线性空气静力稳定性研究[D].上海:同济大学,2000.
    [64]程志军,孙炳楠,唐锦春.大垂度悬索结构的几何非线性分析[J].浙江建筑,2000,(2):14-16.
    [65]Sun J, Manzanarez R, Nager M. Design of looping cable anchorage system for new San Francisco-Oakland Bay Bridge main suspension span[J]. Journal of Bridge Engineering, 2002,7(6):315-324.
    [66]Kim HK, Lee MJ, Chang SP. Non-linear shape-finding analysis of a self-anchored suspension bridge[J]. Engineering Structures,2002,24:1547-1559.
    [67]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学,2003.
    [68]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].上海:同济大学,2004.
    [69]Jayaraman HB, Knudson WC. A curved element for the analysis of cable structures [J]. Computers and Structures,1981,14(3-4):325-333.
    [70]Wang PH, Tseng TC, Yang CG. Initial shape of cable-stayed bridges[J]. Computers and Structures,1993,46:1095-1106.
    [71]潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社,2004.
    [72]肖汝诚,项海帆.大跨径悬索桥结构分析理论及其专用程序系统的研究[J].中国公路学报,1998,11(4):42-50.
    [73]曾东明.丰都长江大桥悬索桥索股矢度调整技术[J].桥梁建设,1997,(1):58-59.
    [74]干坚定.悬索桥主缆索夹位置计算及放样[J].桥梁建设,1999,(2):33-35.
    [75]孟超,辛克贵,张崇厚,等.人行景观悬索桥结构的设计与研究[J].工业建筑,2007,37(11):97-103.
    [76]林昱.自锚式悬索桥空间线形分析及锚固系统研究[D].北京:北京交通大学,2007.
    [77]Yoon MG, Shin HY, Son YS. The construction of the Yongjong Grand Bridge (Self-anchored Suspension Bridge)[A]. IABSE Conference on Cable-supported Bridges Challenging Technical Limits[C]. Seoul, Korea,2001.
    [78]Gil H, Choil Y. Cable erection test at pylon saddle for spatial suspention bridge[J]. Journal of Bridge Engineering,2001,6(3):183-188.
    [79]Kim HK, Lee M J, Chang SP. Determination of hanger installation procedure for a self-anchored suspension bridge[J]. Engineering Structures,2006,28:959-976.
    [80]董春燕.自锚式悬索桥关键施工阶段分析与研究[D].北京:北京交通大学,2006.
    [81]方海.自锚式悬索桥结构消能减震设计方法研究[D].南京:南京工业大学,2005.
    [82]周泳涛,李毅谦,涂金平.天津富民桥主缆设计与计算[J].公路,2006,(12):1-5.
    [83]谭冬莲.大跨径自锚式悬索桥合理成桥状态的确定方法[J].中国公路学报,2005.18(2):51-55.
    [84]Wang PH, Tang TY, Zheng HN. Analysis of cable-stayed bridges during construction by cantilever methods[J]. Computers and Structures,2004,82:329-346.
    [85]John A.O., Divid P.B.. Self-anchored suspension bridges[J]. Journal of Bridge Engineering,1999,4(3):151-156.
    [86]邱文亮.自锚式悬索桥非线性分析与试验研究[D].大连:大连理工大学,2004.
    [87]卢亚洲,颜东煌,许红胜,等.自锚式悬索桥钢箱梁顶升施工的监控要点[J].长沙交通学院学报,2006,22(4):11-16.
    [88]胡建华.大跨度自锚式悬索桥结构体系及静动力性能研究[D].长沙:湖南大学,2006.
    [89]胡建华,沈锐利,张贵明,等.佛山平胜大桥全桥模型试验研究[J].土木工程学报,2007,40(5):17-25.
    [90]Gil H, Choi Y. Cable Erection Test at Splay Band for Spatial Suspension Bridge[J]. Journal of Bridge Engineering,2002,7(5):300-307.;
    [91]刘小飞,郑凯锋.自锚式悬索桥吊索张拉过程计算分析[J].四川建筑,2007,27(1):173-174.
    [92]Gimsing NJ. Cable Supported Bridges with spatial cable systems[J]. Bulletin of the International Association for Shell and Spatial Structures.1992,33(108):33-42.
    [93]Barsotti R, Ligaro SS, Royer-Carfagni GF. The web bridge[J]. International Journal of Solids and Structures.2001,38(48-49):8831-8850.
    [94]曹兴松.吊拉组合索桥的设计[D].成都:西南交通大学,2001.
    [95]王信宗.超大跨径吊拉组合桥结构体系及分析方法的研究[D].重庆:重庆交通学院,2002.
    [96]胡隽.大跨度吊拉组合索桥的理论研究[D].北京:北方交通大学,2000.
    [97]Reddy P.,Ghaboussi J.,Hawkins N.M. Simulation of construction of cable-stayed bridges[J]. Journal of Bridge Engineering,1999,4(4):249-257.
    [98]Leonhardt F.,Zellner W.. Past, present and future of cable-stayed bridge[A]. Proceedings of The Seminar of Cable-stayed Bridges, Recent Development and Their Future[C]. Japan:Yokohama,1991.1-33.
    [99]Virlogeux M. Recent evolution of cable-stayed bridges[J]. Engineering Structures,1999, 21:737-755.
    [100]李传习.混合梁悬索桥非线性精细计算理论及其应用[D].长沙:湖南大学,2006.
    [101]Irvine H.M.. Cable structures[M]. The MIT Press,1981.
    [102]O'Brien T.W., Francis A.J.. Cable movements under two-dimensional loading[J]. J. Struct.Eng.Div.,ASCE.1964,90(ST3):89-123.
    [103]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [104]鹫津久一郎.能量原理[M].北京:中国建筑工业出版社,1977.
    [105]钱伟长.变分法及有限元(上册)[M].北京:科学出版社,1980.
    [106]石磊,刘春城,张哲.自锚式悬索桥挠度理论基础微分方程近似推导[J].哈尔滨工业大学学报.2004,36(12):1733-1735.
    [107]张哲.混凝土自锚式悬索桥[M].北京:人民交通出版社,2005.
    [108]刘春城,张哲,石磊,等.混凝土自锚式悬索桥竖向自由振动的理论研究[J].工程力学.2005,22(4):126-130.
    [109]王志诚.自锚式悬索桥静动力特性挠度理论研究[D].成都:西南交通大学,2006.
    [110]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,2003.
    [111]Grosse C, Shilov VN. Calculation of the Static Permittivity of Suspensions from the Stored Energy[J]. Journal of Colloid and Interface Science.1997,193(2):178-182.
    [112]Ying Xi, J.S. Kuang. Ultimate load capacity of cable-stayed bridge[D]. HongKong:The Hong Kong University of Science and Technology,1998.
    [113]Cook RD. Concepts and Applications of Finite Element Analysis. John Wiley,2002.
    [114]宣本金.变分法:理论与应用[M].合肥:中国科学技术大学出版社,2006.
    [115]檀永刚.自锚式悬索桥的力学特性与施工控制研究[D].大连:大连理工大学,2008.
    [116]沈锐利.悬索桥主缆系统设计及架设计算方法研究[J].土木工程学报.1996,29(2):3-9.
    [117]Ochsendorf John A, Billington DP. Self-anchored suspension bridges [J]. Journal of Bridge Engineering, ASCE.1999,4(3).
    [118]Irvine HM. Statics of suspended cables[J]. Journal of Engineering Mechanics,1975, 101(EM13):187-205.
    [119]Kim KS, Lee HS. Analysis of target configurations under dead loads for cable-supported bridges [J]. Computers and Structures,2001,79(29):2681-2692.
    [120]肖汝诚,项海帆.斜拉桥索力优化及其工程应用[J].计算力学学报.1998,15(1):118-126.
    [121]梁鹏,肖汝诚,张雪松.斜拉桥索力优化实用方法[J].同济大学学报(自然科学版).2003,31(11):1270-1274.
    [122]肖汝诚,项海帆.斜拉索力优化的影响矩阵法[J].同济大学学报(自然科学版).1998,26(3):235-240.
    [123]盖尔J.M.,韦孚W..杆系结构分析[M].北京:水利出版社,1980.
    [124]梁鹏.超大跨度斜拉桥几何非线性及随机模拟分析[D].上海:同济大学,2004.
    [125]Mattiasson K., Bengtsson A., Samuelsson A.. On the accuracy and efficiency of numerical algorithms for geontrically nonlinear structural analysis[A]. edited by Bergan PG, Bathe KJ. Finite element methods for nonlinear problems, proceedings of the Europe-US Symposium[C]. Berlin:Springer,1986.3-23.
    [126]Hsiao K.M., Lin W.Y.. A co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams[J]. Computer Methods in Applied Mechanics and Engineering,2000,188:567-594.
    [127]钟万勰,丁殿明,程耿东.计算杆系结构力学[M].北京:水利水电出版社,1982.
    [128]Pian T.H.H., Tong P..Variational formulation of finite displacement analysis[A]. IUTAM symposium on high speed computing of elastic structrucs[C]. Liege, Belgium, 1970,43-63.
    [129]Wempner G.A.. Discrete approximations related to nonlinear theories of solids [J]. International Journal of Solids and Structures,1971,7:1581-1599.
    [130]Crisfield M.A.. A arc-length method including line searches and acceleratons[J]. International Journal for Numerical Methods in Engineering,1983,19:1269-1289.
    [131]Forde B.W.R., Stiemer S.R.Improved arc length orthogonality methods for nonlinear finite element analysis[J]. Computers and Structures,1987,27(5):625-530.
    [132]Karamanlides D., Honecker A., Konthe K.. Large deflection finite element analysis for pre- and post-critical response of thin elastic frames [A]. Nonlinear finite element analysis in structural mechanics[C]. Wunderlich W Eds. Ruhr-Universitat, Bochum, 1980,217-235.
    [133]殷玉梅.大跨度悬索桥几何非线性地震反应分析[D].南京:河海大学,2007.
    [134]中华人民共和国交通部部颁标准.公路桥涵设计通用规范(JTG D60-2004)[S].北京:人民交通出版社,2004.
    [135]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [136]靳国胜,杨子江,刘炎海.斜拉-悬索协作体系桥的主要设计参数分析[J].公路.2007,3:80-83.
    [137]唐冕.大跨度自锚式悬索桥的静动力性能研究与参数敏感性分析[D].长沙:中南大学,2007.
    [138]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
    [139]黄侨,吴红林,李志波.确定斜拉桥施工索力的正装计算法[J].哈尔滨工业大学学报.2004,36(12):1702-1704.
    [140]颜东煌,刘光栋.确定斜拉桥合理施工状态的正装迭代法[J].中国公路学报.1999,12(2):59-64.
    [141]杜国华.斜拉桥的合理索力及其施工张拉力[J].桥梁建设.1989(3):11-17.
    [142]秦顺全.斜拉桥安装无应力状态控制法[J].桥梁建设.2003(2):31-34.
    [143]秦顺全.斜拉桥安装计算-倒拆法和无应力状态控制法评述[A].中国土木工程学会桥梁与结构工程学会第九届年会论文集[C].上海:同济大学出版社,1992.
    [144]邱文亮,张哲.自锚式悬索桥施工中的非线性误差调整研究[J].公路交通科技,2005,22(6):72-97.
    [145]D.Cobo Del Arco,A.C.Aparicio. Preliminary Static Analysis of Suspension Bridges[J]. Engineering Structure.2001,23:1096-1103.
    [146]韩艳,陈政清,罗世东等.自锚式悬索桥空间主缆线形的计算方法[J].湖南大学学报.2007,34(12):20-25.
    [147]周绪红,武隽,狄谨.大跨径自锚式悬索桥受力分析[J].土木工程学报,2006,39(2):42-45.
    [148]石磊,张哲,刘春城,檀永刚.混凝土自锚式悬索桥设计及其力学性能分析.大连理工大学学报.2003,43(2):202-206.
    [149]邵福彪.自锚式悬索桥施工控制方法研究[D].杭州:浙江大学,2006.
    [150]彭世恩.自锚式悬索桥设计与施工控制中相关问题的分析[D].成都:西南交通大学,2006.
    [151]中华人民共和国交通部部颁标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62—-2004)[S].北京:人民交通出版社,2004.
    [152]唐焕文,贺明峰.数学模型引论[M].北京:高等教育出版社,2002.
    [153]黄平明.大跨径悬索桥主缆系统施工控制计算[J].西安公路交通大学学报.2000,20(4):19-22,28.
    [154]范立础,‘潘永仁,杜国华.大跨度悬索桥结构架设参数精细算法研究[J].土木工程学报,1999,32(6):20-25.
    [155]潘永仁,杜国华,范立础.悬索桥恒载结构几何形状及内力的精细计算[J].中国公路学报,2000,13(4):33-36.
    [156]李小珍,强士中.悬索桥主缆空缆状态的线性分析[J].重庆交通学院学报.1999,18(3):7-13.
    [157]Karoumi R.. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges[J]. Computers and Structures.1999,71:397-412.
    [158]杨孟刚,陈政清.自锚式悬索桥施工过程模拟分析[J].湖南大学学报.2006,33(2):26-30.
    [159]李子奇,樊燕燕.自锚式悬索桥主缆无应力长度的计算分析研究[J].城市道桥与防洪,2007,(12):91-94.
    [160]王鹏.悬索桥空缆状态线形分析[D].上海:同济大学,2005.
    [161]钟万勰,刘元芳,纪峥.斜拉桥施工中的张拉控制和索力调整[J].土木工程学报.1992,25(3):10-15.
    [162]史建三,悬索桥大缆架设计算的索长分析法[J].桥梁建设.1993,(4):30-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700