自锚式悬索桥静力可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式悬索桥造型优美,适应于各种地质条件,是城市桥梁常用的桥型之一。二十一世纪来我国已建成和在建的自锚式悬索桥有20多座。迄今为止针对自锚式悬索桥的研究和分析工作大多停留在确定性分析方面,考虑其结构尺寸、材料特性和荷载的随机影响,开展其受力可靠度性能研究的工作很少。且作为高次超静定结构,自锚式悬索桥某一构件的破坏并不意味着整体结构的失效,其整个结构的体系可靠度问题是设计时的关键问题。基于此,本文针对大跨度自锚式悬索桥结构的静力可靠度问题开展了研究,主要完成了以下工作:
     (1)针对复杂工程结构的极限状态方程为隐式的问题,提出了基于均匀设计和支持向量机的响应面法,采用网格搜索法、遗传算法和粒子群算法确定支持向量机模型参数,实现了基于均匀设计和支持向量机的响应面法在结构可靠度计算方面的应用,并编制相应程序,通过数值算例验证了所提出方法的正确性和有效性,大大提高了可靠度分析的计算效率。
     (2)采用基于均匀设计和支持向量机的响应面法进行了猎德大桥和三汊矶大桥正常使用极限状态的可靠度分析。主跨满布汽车活载时,猎德大桥关于主梁最大挠度的可靠度指标为3.92,三汊矶大桥为3.94,在正常使用极限状态下两座桥的加劲梁均有较高的可靠度。通过结构几何形状、材料特性和外荷载等相关随机变量均值和变异系数对可靠度指标影响的分析,识别出主缆的弹性模量和面积,以及钢加劲梁的弹性模量和惯性矩是影响自锚式悬索桥关于加劲梁主梁最大挠度可靠度指标的主要随机变量。
     (3)采用CR列式法,推导了平面梁与杆单元的材料刚度矩阵和几何刚度矩阵,基于位移法梁-柱单元考虑材料非线性的影响,推导了直接微分法计算结构响应梯度的公式,将非线性有限元法与一次可靠度方法结合,建立了杆系结构的非线性随机有限元可靠度分析方法,编制了基于直接微分法的随机有限元可靠度计算程序,并通过数值算例验证了所编程序的正确性和精度。
     (4)采用编制的基于直接微分的杆系非线性随机有限元可靠度计算程序,考虑自锚式悬索桥主梁、主缆、索塔和吊索等各种构件可能的失效,对猎德大桥和三汉矶大桥进行了承载能力极限状态的体系可靠度评估,实现了基于直接微分的随机有限元计算结构体系可靠度的方法在大跨度自锚式悬索桥中的运用。计算表明,不同汽车活载下,猎德大桥进入失效历程第1阶段的都是主塔和主梁单元,当主跨均布汽车活载时,猎德大桥的1级体系可靠度指标是3.9439;三汊矶大桥进入失效历程第1阶段的是吊索单元,继续搜索到第2失效阶段,其2级体系可靠度指标是5.9170。这两座桥的承载能力极限状态具有较高的安全性。通过敏感性分析,得出单元截面的抗力对单元的可靠度指标影响最显著。恒载、活载和主梁的抗弯刚度对主梁、主缆和主塔的可靠度指标有较大影响。
     (5)进行了猎德大桥贝壳索塔结构1:10模型试验和空间分析,通过模型试验和精细模型的理论计算均表明该索塔结构强度满足规范要求;在施工荷载和成桥荷载作用下,索塔处于安全状态。在超载作用下,索塔结构没有出现可见裂缝,表明该索塔结构具有较强的超载能力,具有较高的安全系数,检验了设计的可靠性。
     (6)考虑索塔的几何和材料非线性,采用纤维模式的梁柱单元,建立了猎德大桥索塔弹塑性有限元分析模型,计算了其应力可靠度指标,并进行了敏感性分析。
Due to its aesthetic appearance and adaptability for poor foundation, self-anchored suspension bridge becomes one of the most widespread bridge types used in cities. From the beginning of the 21st century, more than 20 self-anchored suspension bridges have been built in China. So far the design of self-anchored suspension bridges are limited to deterministic analysis. However taking into account the stochastic variations of structural material parameters, geometry factors and external loadings, the reliability analysis of self-anchored suspension bridges are seldom investigated. As a highly indeterminate structure, the failure of some components of a self-anchored suspension bridge doesn't mean failure of the whole structure, system reliability is a key issue in the design and construction of self-anchored suspension bridges. In this dissertation the static reliability of long-span self-anchored suspension bridges was investigated and main results obtained are listed as follows:
     (1) As the limit state functions of complex engineering structures are inexplicit, a uniform design method and support vector machines (UDM-SVM)-based approach was proposed, which is an improvement of the traditional response surface method.. Three algorithms, i.e. grid search, genetic algorithm and particle swarm optimization methods, were adopted to determine the parameters of the model of SVM. The proposed UDM-SVM response surface method was applied to the reliability analysis of the structure, and a relevant program was then developed. With several numerical examples, the proposed method and program were demonstrated to be accurate and effective, and the efficiency of computation could be greatly improved.
     (2) The reliability analysis of Liede Bridge and Sanchaji Bridge under serviceability limit-state was carried out with the proposed UDM-SVM response surface method. When the main span was fully occupied with traffic loads, the reliability index of maximum displacement of main girder of Liede Bridge and Sanchaji Bridge were 3.92 and 3.94 respectively, which showed that both the two bridges owned high reliability under serviceability limit-state. The impact of the mean and coefficient of variation of random variables on the reliability index were also analyzed. The results showed that the section areas and Young's modulus of main cables, Young's modulus and inertia moment of steel stiffening girder were the main influential factors on the maximum deflection of stiffening girder.
     (3) With co-rotational formulation, the material and geometric stiffness matrix of a plane beam and bar element were deduced. The material nonlinearity of beam-column element was considered on the basis of the displacement method, from which the formula of response gradients in direct differentiation method was deduced. The nonlinear finite element method and first-order reliability method were combined, based on which the reliability approach was proposed and a program was developed, numerical examples were then computed to validate the accuracy and high efficiency of the proposed approach and program.
     (4) The nonlinear static stochastic finite element analysis program was used to assess the reliability of Liede Bridge and Sanchaji Bridge under ultimate limit states, taking account of the possible failure of girder, main cable, cable tower and suspension cables. The stochastic finite element method based on direct differentiation method was directly applied in the system reliability of long-span self-anchored suspension bridge. The results showed that the main tower and main beam of Liede Bridge failed at level 1 under different traffic loads. When the main span was fully occupied with traffic loads, the system reliability index at level 1 was 3.9439. For Sanchaji Bridge, its suspension cables failed at level 1. When searching for level 2, the system reliability index at level 2 was 5.9170. The results showed that two bridges processed high security under ultimate limit states. The sensibility analysis showed that the resistance of element sections had the most remarkable impact on element reliability index. Dead loads, live loads and bending stiffness of main girder had large impact on reliability of main beam, main cables and main tower.
     (5) A model test with 1:10 scale and spatial analysis were carried out on the shell shaped tower of Liede Bridge. The test and calculation indicated that strength of cable tower could meet the requirements of design specifications; the tower was safe under the construction load and operational load. And there was no visible crack under testing overloads. The results showed that the tower owned strong overload ability and high safety coefficient.
     (6) The main tower of Liede Bridge was modeled with elastic-plastic fiber beam-column elements, taking the geometry and material nonlinearity into consideration. The stress reliability of the main tower was assessed and the sensitivity analysis was conducted.
引文
[1]John A.O., David P.B.. Self-anchored suspension bridges[J]. Journal of Bridge Engineering,1999,4(3):151-156
    [2]张哲,窦鹏,石磊等.混凝土自锚式悬索桥的发展综述[J].世界桥梁,2003,(1):1-4
    [3]颜娟.自锚式悬索桥[J].国外桥梁,2002,(1):19-22
    [4]楼庄鸿.自锚式悬索桥[J].中外公路,2002,22(3):49-51
    [5]张元凯,肖汝诚,金成棣.自锚式悬索桥的设计[J].桥梁建设,2002,(5):30-32
    [6]楼庄鸿.近年来悬索桥发展的若干趋势[J].公路交通科技,1999,16(3):35-39
    [7]张哲.混凝土自锚式悬索桥[M].北京:人民交通出版社,2005
    [8]胡建华.现代自锚式悬索桥理论与应用[M].北京:人民交通出版社,2008
    [9]John S., Rafal M., Marwan N.. Design of looping cable anchorage system for new San Francisco-Oakland Bay bridge main suspension span[J]. Journal of Bridge Engineering, 2002,7(6):315-324
    [10]高小云译.日本Konohana桥[J].国外公路,1993,(1):30-31
    [11]林荫岳译.世界上第一座自锚体系斜吊杆悬索桥-日本此花大桥[J].国外桥梁,1993,(1):1-4
    [12]严国敏译.韩国永宗悬索桥[J].国外公路,1998,(12):16-18
    [13]John A., Ochsendorf. Self-anchored suspension bridges[J]. Journal of Bridge Engineering, 1999,4(3):151-156
    [14]宋旭明,戴公连,方淑君.三汊矶湘江大桥整体模型试验[J].中国公路学报,2009,22(1):53-59
    [15]宋旭明.大跨度自锚式悬索桥受力特性与极限承载力研究[D].长沙:中南大学,2009
    [16]胡建华.大跨度自锚式悬索桥结构体系及静动力性能研究[D].长沙:湖南大学,2006
    [17]胡建华,唐茂林,崔剑峰等.自锚式悬索桥恒载吊索力的设计方法研究[J].桥梁建设,2007,(2):39-42
    [18]孙叔禹.广州猎德大桥主桥设计[J].山西建筑,2007,(2):299-300
    [19]谢尚英,任清顺,郑爱华.广州猎德大桥曲面索塔设计[J].桥梁建设,2008,(3):30-32
    [20]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996
    [21]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000
    [22]Melchers R E. Importance sampling in structural systems [J]. Structural Safety,1989, 6(1):3-10
    [23]Ditlevsen O., Bjerager P., Olesen R., et al. Directional simulation in Gaussian processes[J]. Probabilistic Engineering Mechanics.1988,3:207-217
    [24]Bjerager P. Probability integration by directional simulation [J]. Journal of Engineering Mechanics,1988,114(8):1285-1302
    [25]Ditlevsen O., Madsen H. O..结构可靠度方法[M].何军.上海:同济大学出版社,2005
    [26]张明.结构可靠度分析—方法与程序[M].北京:科学出版社,2009
    [27]Hasofer A. M., Lind N. C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division,1974,100(1):111-121
    [28]Rackwitz R., Fiessler B. Structural reliability under combined random load sequences[J]. Computers & Structures,1978,57(2):171-176
    [29]Breitung K. Asymptotic approximations for multinormal integrals [J]. Journal of Engineering Mechanics,1984,110(3):357-366
    [30]Der Kiureghian A., Lin H. Z., Hwang S. J.. Second-Order reliability approximations [J]. Journal of Engineering Mechanics,1987,113(8):1208-1225
    [31]Bucher C. G, Bourgund U.. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety,1990,7(l):57-66
    [32]Conell C. A.. A Probability based structural code[J]. Journal of the American Conerete Institute,1969,66(12):974-985
    [33]Liu P. L., Der Kiureghian A. Optimization algorithms for structural reliability [J]. Structural Safety,1991,48(5):885-892
    [34]Polidori D. C., Beck J.L., Papadimitriou C.. New approximations for reliability integrals[J]. Journal of Engineering Mechanics,1999,125(4):466-475
    [35]Wong F.S.. Slope reliability and response surface method[J]. Journal of Geotechnical Engineering,1985,111(1):32-53
    [36]Moses F.. System reliability developments in structural engineering [J]. Structural Safety, 1982,1:3-13.
    [37]Feng Y. S.. Enumerating significant failure modes of a structural system by using criterion methods[J]. Computers& Structures.1988,3(5):1153-1157
    [38]冯元生,董聪.枚举结构主要失效模式的一种方法[J].航空学报,1991,12(9): 537-541
    [39]董聪,冯元生.枚举结构主要失效模式的一种新方法[J].西北工业大学学报,1991,9(39):284-289
    [40]董聪,杨庆雄.结构系统疲劳裂纹形成寿命的可靠性分析[J].西北工业大学学报,1992,10(2):252-258
    [41]董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社,2001
    [42]刘天云,赵国藩.一种识别结构主要失效模式的有效算法[J].大连理工大学学报,1998,38(1):97-100
    [43]吉国明,宋笔锋.枚举结构主要失效模式的改进分枝限界法[J].机械强度,2002,24(3):397-399
    [44]Thoft-Christensen P., and Murotsu Y.. Application of structural systems reliability theory. Berlin:Springer-Verlag Berlin,1986
    [45]Murotsu Y., Okada H., Niwa K., et al. Reliability analysis of truss structure by using matrix methods[J]. Mechanics Design,1980,102(4):749-756
    [46]Murotsu Y., Okada H., Yonezawa M., et al. Automatic generation of stochastically dominant modes of structural failure in frame structure[J]. Structural Safety,1984,28(2): 17-25
    [47]Melchers E. E., Tang L.K.. Domain failure modes in stochastic structural systems[J]. Structural Safety,1984,2:127-143
    [48]Conell C. A.. Bounds on the reliability of structural system[J]. Journal of the Structural Engineering,1967,93(1):171-179
    [49]Ditlevsen O., Narrow reliability bounds for structural systems[J]. Journal of Structural Mechanics,1979,7(4):453-472
    [50]Ditlevsen O.. System reliability bounding by conditioning[J]. Journal of Engineering Mechanics,1982,108(5):708-716
    [51]Feng Y. S.. A method for computing system reliability with high accuracy[J]. Computers & Struetures,1989,33(1):1-5
    [52]Murotsu Y., Okada H. Reliability analysis of frame system under combined loading[A]. In:International Conference on structural safety and reliability(ICASSAR’85). New York:Balkema,1985:213-217
    [53]Ditlevsen O., Bjerager P.. Methods of structural systems reliability [J]. Structural Safety, 1986,3:195-229
    [54]Hohenbichler M., Rackwitz R.. First-order concepts in system reliability [J]. Structural Safety.1983,1(3):177-188
    [55]Tang L. K., Melchers R. E.. Improved approximation for multinormal integral[J]. Structural Safety,1987,4(2):81-93
    [56]Ang A. H-S, Abdelnour J., Chaker A. A.. Analysis of activity networks under uncertainty[J]. Journal Engineering Mechanics Division,1975,101(4):373-387
    [57]Ang A. H-S, Ma H. F. On the reliability of structural systems[A]. In:Proceedings of International Conference on Structural Safety and Reliability, Trondheim,1981
    [58]Ang A. H-S, Tang W. H.. Probability concepts in engineering planning and design[J]. New York:John Wiley&Sons,1984:234-256
    [59]Gollwitzer S., Rackwitz R.. Equivalent components in first-order system reliability [J]. Reliability Engineering,1983,5(2):99-115
    [60]张小庆.结构体系可靠度分析方法研究[D].大连:大连理工大学,2003
    [61]刘扬,涂荣辉.微分等价递归算法在结构体系可靠度分析中的应用[J].长沙交通学院学报,2008,24(1):6-11
    [62]Bruneau M. Evaluation of System-Reliability Methods for Cable-Stayed Bridge Design[J]. Journal of Structural Engineering,1992,118(4):1106-1120
    [63]Cho H. N., Lim J. K., Park K. H.. System reliability and system reliability-based carrying capacity evaluation of cable-stayed bridges[A]//ICOSSAR.Proceedings of the 7th International Conference on Structural Safety and Reliability. Kyoto:Kyoto university, 1997:1927-1934
    [64]沈惠申,王宗新.斜拉桥主梁静动力可靠性分析[J].中国公路学报,1996,9(1):59-65
    [65]沈惠申,高峰.斜拉桥索塔的可靠性分析[J].中国公路学报,1994,7(4):40-43
    [66]刘志文,陈艾荣,贺拴海.风荷载作用下斜拉桥概率有限元分析[J].长安大学学报(自然科学版),2004,24(2):53-57
    [67]王军,宋一凡,贺拴海.圬工拱桥承载力可靠度分析[J].重庆交通学院学报,2005,24(3):8-10
    [68]陈铁冰,孙策.国外桥梁响应面法及其在桁架桥可靠度分析中的应用[J].国外桥梁,2000,4:66-67
    [69]陈铁冰,杨炳成,石洞.斜拉桥非线性随机静力分析[J].西安公路交通大学学报,2000,20(2):45-48
    [70]陈铁冰,王书庆,石志源.计入结构几何非线性影响时斜拉桥可靠度分析[J].同济 大学学报,2000,28(4):407-412
    [71]陈铁冰.斜拉桥几何、材料非线性静力分析及其可靠度评估[D].上海:同济大学,2000
    [72]张建仁,刘扬.GA和人工神经网络在斜拉桥可靠度分析中的应用[J].土木工程学报,2001,34(1):7-13
    [73]程进,肖汝诚.斜拉桥结构静力可靠度分析[J].同济大学学报,2004,32(12):1393-1598
    [74]李生勇.自锚式悬索桥结构可靠性研究[D].大连:大连理工大学,2007
    [75]Bucher C. G., Bourgund U.. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety,1990,7(1):57-66
    [76]Rajashekhar M. R., Ellingwood B. R.. A new look at the response surface approach for reliability[J]. Structural Safety,1993,12(3):205-220
    [77]Liu W. K., Moses F.. A sequential response surface method and its application in the analysis of aircraft stuctural system[J]. Structural Safety,1994,16(1):39-46
    [78]Kim S. H., Na S. W.. Response surface method using vector projected sampling points[J]. Structural Safety,1997,19(1):3-19
    [79]佟晓利,赵国藩.一种与结构可靠度几何法相结合的响应面法[J].土木工程学报,1997,30(4):51-57
    [80]Faravelli L.. Response surface approach for reliability analysis[J]. Journal of Structural Engineering,1989,115(12):2763-2781
    [81]Turk G. M., Ramirez R., Corotis R.. Structural reliability analysis of non-linear systems response-surface approach for reliability analysis[J]. Journal of Structural Engineering, 1989,115(12):2763-2781
    [82]苏成,李鹏飞,韩大建.结构可靠度计算的Neumann展开响应面法[J].华南理工大学学报(自然科学版),2009,37(9):13-17
    [83]刘扬,张建仁,李传习.混凝土斜拉桥施工期的时变可靠度计算[J].中国公路学报,2004,17(3):31-35
    [84]Guan X. L., Melchers R. E.. Effect of response surface parameter variation on structural reliability estimates[J]. Structural Safety,2001,16(3):229-230
    [85]Hurtado J. E.. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory [J]. Structural Safety,2004, 22(2):2298-2301
    [86]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003
    [87]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006
    [88]Papadrakakis M., Papadopoulos V., Lagaros N. D.. Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering,1996,14(1):27-32
    [89]桂劲松,康海贵.计算结构可靠度的RBF神经网络响应面法[J].海洋工程,2004(3):81-85
    [90]阎宏生,胡云昌,牛勇.基于神经网络响应面的结构可靠性分析方法研究[J].海洋工程,2002(2):2-6
    [91]陈颖,宁佐贵.基于神经网络响应面法的随机结构动力可靠度分析[J].振动与冲击,2007(1):65-68
    [92]朱劲松,肖汝诚.结构可靠度分析的人工智能响应面法及程序[J].哈尔滨工业大学学报,2009(4):169-172
    [93]黄靓,易伟建,汪优.基于RBF神经网络的结构可靠度分析方法[J].湘潭大学自然科学学报,2006(4):109-114
    [94]Herbert M. G, Armando M. A.. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety,2004(26):49-67
    [95]Deng J., Gu D., Li X., et al. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety,2005,35(3):459-467.
    [96]Deng J. Structural reliability analysis for implicit performance function using radial basis function network[J]. International Journal of Solids and Structures,2006,48(1):225-236
    [97]Cheng J., Li Q. S., Xiao R. A new artificial neural network-based response surface method for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2008,21(1):44-53
    [98]刘沐宇,袁卫国.基于模糊神经网络的大跨度钢管混凝土拱桥安全性评价方法研究[J].中国公路学报,2004(4):55-58
    [99]蔡长丰,郝海霞.模糊神经网络在钢筋混凝土桥梁结构可靠度分析中的应用[J].长沙交通学院学报,2008(2):29-33
    [100]Vapnik V. N. The Nature of Statistical Learning Theory[M]. New York:Springer,1995
    [101]Vapnik V. N. Statistical learning theory [M]. New York:Wiley,1998
    [102]邓乃扬,田英杰.支持向量机——理论、算法与拓展[M].北京:科学出版社,2009
    [103]Rocco C M, Moreno J A. A fast Monte Carlo reliability evaluation using support vector machine[J]. Reliability Engineering and System Safety,2002,76(4):237-243
    [104]Hurtado J. E., Alvarez D. A. Classification Approach for Reliability Analysis with Stochastic Finite-Element Modeling [J]. Journal of Structural Engineering, 2003,129(8):1141-1149
    [105]Hurtado J. E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory [J]. Structural Safety, 2004,22(2):2298-2301
    [106]Hurtado J. E.. Filtered importance sampling with support vector margin:A powerful method for structural reliability analysis[J]. Structural Safety,2007,22(2):160-166
    [107]金伟良,唐纯喜.基于SVM的结构可靠度分析响应面方法[J].计算力学学报,2007,24(6):713-718
    [108]赵卫,刘济科.基于支持向量回归的迭代序列响应面可靠度计算方法[J].机械强度,2008,30(6):916-920
    [109]李洪双,吕震宙.结构可靠性分析的支持向量机响应面法[J].计算力学学报,2009,26(2):199-202
    [110]陈铁冰,邢媛媛,谭也平.基于MATLAB的支持向量机结构可靠度分析方法[J].华中科技大学学报(城市科学版),2009,26(1):60-63
    [111]金伟良,袁雪霞.基于LS_SVM的结构可靠度响应面分析方法[J].浙江大学学报(工学版),2007,41(1):44-47
    [112]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社,2005
    [113]刘宁.可靠度随机有限元法及其工程应用[M].北京:中国水利水电出版社,2001
    [114]Der Kiureghian A., Ke J. B.. The stochastic finite element method in structural reliability[J]. Probabilistic Engineering Mechanics,1988,3(2):431-455
    [115]Zhang Y., Der Kiureghian A.. First-excursion probability of uncertain structures [J]. Probabilistic Engineering Mechanics,1994,9(2):135-143
    [116]Zhang J., Ellingwood B.. SFEM for Reliability of Structure with Material Nonlinearities[J]. Journal of Structural Engineering,1996,122(6):701-704
    [117]郭棋武.大跨斜拉桥的非线性及可靠性分析[D].长沙:湖南大学,2007
    [118]Der Kiureghian A., Zhang Y.. Space-variant finite element reliability analysis[J]. Comput.Method Appl.Mech.Engrg,1999,168:173-183
    [119]Imai K., Frangopol D. M.. Geometrically nonlinear finite elment reiability analysis of structural systems. I:theory[J]. Computers and Structures,2000,77:677-691
    [120]Frangopol D. M., Imai K.. Geometrically nonlinear finite elment reiability analysis of structural systems. Ⅱ:application[J]. Computers and Structures,2000,77:693-709
    [121]Haukaas T.. A New Computational Framework for Nonlinear Finite Element Reliability and Sensitivity Analysis[R]. Report for Qualifying Examination, University of California, Berkeley,2001
    [122]Haukaas T.. Finite element reliability and sensitivity methods for performance-based engineering [D]. Berkeley:University of California,2003
    [123]Der Kiureghian A. and Ke J.. Stochastic finite element method in structural reliability [J]. Probabilistic Engrg. Mech.3(2),1988:83-91
    [124]Ghanem R. G., Spanos P. D.. Stochastic finite elements:A spectral approach, Springer-Verlag, New York,1991
    [125]刘宁.基于三维弹塑性随机有限元的结构体系可靠度计算[D].南京:河海大学,1994
    [126]刘宁,卓家寿.三维弹塑性随机有限元的迭代计算方法研究[J].河海大学学报,24(1),1996:1-8
    [127]Ranganthan R. Generation of dominant models and reliability analysis of frames [J]. Struct.Safety,1987,113(6):1315-1328
    [128]刘春华,秦权.基于随机有限元的框架结构可靠度分析[J].工程力学增刊,1996,2:295-299
    [129]刘春华,秦权.材料变异时大跨悬索桥的静力分析[J].清华大学学报(自然科学版),1997,37(6):91-94
    [130]刘春华,秦权.架设阶段悬索桥静力问题的随机有限元分析[J].计算力学学报,1998,15(2):232-235
    [131]林道锦,秦权.一座现有拱桥面内失稳的可靠度随机有限元分析[J].工程力学,2005,22(6):122-126
    [132]Imai K., Frangopol D. M. System Reliability of Suspension Bridges[J]. Structural Safety.2002,24:219-259
    [133]Imai K, Frangopol D. M. Response Prediction of Geometrically Nonlinear Structures [J]. Joural of Structural Engineering.2000,126(11):1348-1355
    [134]苏成,范学明.考虑材料与施工变异时崖门大桥施工阶段随机分析[J].桥梁建设,2003,(1):62-65
    [135]JTG D60-2004,公路桥涵设计通用规范[S].北京:中国计划出版社,2004
    [136]梅刚.基于非线性随机有限元的结构可靠度问题研究[D].北京:清华大学,2005
    [137]Breitung K.. Asymptotic approximation for multi-normal integrals[J]. Journal of Engineering Mechanics.1984,110(3):357-366
    [138]秦权,林道锦,梅刚.结构可靠度随机有限元——理论及工程应用[M].北京:清华大学出版社,2006
    [139]Bucher C. G., Bourgund U.. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety.1990,7(1):57-66
    [140]赵选民.试验设计方法[M].北京:科学出版社,2006
    [141]方开泰,马长兴.正交和均匀试验设计[M].北京:科学出版社,2001
    [142]许建华,张学工译.统计学习理论[M].北京:电子工业出版社,2009
    [143]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42
    [144]阎辉,张学工,李衍达.最小二乘法与支持向量机的关系研究[J].清华大学学报(自然科学版),2001,41(9):77-80
    [145]Buciu I., Kotropoulos C., Pitas I.. Demonstrating the stability of support vector machines for classification[J]. Signal Processing,2006,86(9):2364-2380
    [146]Li Y., Lin C., Zhang W.. Improved sparse least-squares support vector machine classifiers[J]. Neurocomputing,2006,69(13-15):1655-1658
    [147]Katagiri S., Abe S.. Incremental training of support vector machines using hyperspheres[J]. Pattern Recognition Letters,2006,27(13):1495-1507
    [148]Cherkassky V., Ma Y.. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks,2004,17(1):113-126
    [149]Chapelle O., Vapnik V., Bousquet O., et al.. Choosing multiple parameters for support vector machines[J]. Machine Learning,2002,46(1):131-159
    [150]Trafalis T. B., Gilbert R. C.. Robust classification and regression using support vector machines[J]. European Journal of Operational Research,2006,173(3):893-909
    [151]Yu P. S., Chen S. T., Chang I.F.. Support vector regression for real-time flood stage forecasting[J]. Journal of Hydrology,2006,328(3-4):704-716
    [152]马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报(自然科学版),2000,40(3):76-78
    [153]何学文,赵海鸣.支持向量机及其在机械故障诊断中的应用[J].中南大学学报(自然科学版),2005,36(1):97-101
    [154]张葛祥,荣海娜,金炜东.支持向量机在雷达辐射源信号识别中的应用[J].西南交 通大学学报,2006,41(1):25-30
    [155]Cherkassky V., Ma Y.. Comparison of model selection for regression[J]. Neural Computation,2003,15(7):1691-1714
    [156]Cherkassky V., Ma Y.. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural networks,2004,17:113-126
    [157]Vapnik V.N.. The Nature of Statistical Learning Theory(2nd Edit)[M]. Berlin: Springer, 1999
    [158]Chapelle O., Vapnik V., Bousquet O., et al.. Choosing Multiple Parameters for Support Vector Machines[J]. Machine Learning,2002,46(1):131-159
    [159]Soares C., Brazdil P.B., Kuba P.. A meta-learning method to select the kernel width in support vector regression[J]. Machine Learning,2004,54(3):195-209
    [160]Scholkopf B., Sung K. K., Burges C.J.C., et al.. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. IEEE transactions on signal processing,1997,45(11):2758-2765
    [161]Chang M. W., Lin C. J.. Leave-one-out bounds for support vector regression model selection[J]. Neural Computation,2005,17(5):1188-1222
    [162]Keerthi S.S., Lin C. J.. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation,2003,15(7):1667-1689
    [163]Cristianini N., Shawe-Taylor J.. An introduction to support vector machines and other kernel-based learning methods[R]. Cambridge:Cambridge University Press,2000
    [164]Muller K.-R., Mika S., Ratsch G., et al.. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on Neural Networks,2001,12(2):181-201
    [165]Kwok J.T.. The evidence framework applied to support vector machines[J]. IEEE Transactions on Neural Networks,2000,11(5):1162-1173
    [166]邵信光,杨慧中,陈刚.基于PSO的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(5):740-743
    [167]纪震,廖惠连,吴青华.PSO及应用[M].北京:科学出版社,2009
    [168]Fourie P.C., Groenwold A.A.. The particle swarm optimization algorithm in size and shape optimization[J]. Structural and Multidisciplinary Optimization,2002,23(4): 259-267
    [169]Elhewy A. H., Mesbahi E., Pu Y.. Reliability analysis of structures using neural network method[J]. Probabilistic Engineering Mechanics,2006,21:44-53
    [170]Rajashekhar M. R., Ellingwood B. R.. A new look at the response surface approach for reliability analysis[J]. Structural Safety,1993,12:205-220
    [171]张崎.基于Kriging方法的结构可靠性分析及优化设计[D].大连:大连理工大学,2005
    [172]Cheng J., Lib Q.S., Xiao R. C.. A new artificial neural network-based response surface method for structural reliability analysis[J]. Probabilistic Engineering Mechanics,2008, 23:51-63
    [173]朱劲松,肖汝诚,何立志.大跨度斜拉桥智能可靠度评估方法研究[J].土木工程学报,2007,40(5):41-48
    [174]Wang J., Ghosn M.. Hybrid data mining/genetic shredding algorithm for reliability assessment of structural systems[J]. Journal of Structural Engineering,2006, 132(9):1451-1460
    [175]唐涛.斜拉桥结构体系使用安全性评估理论与方法研究[D].上海:同济大学,2006
    [176]韩立中.大跨度自锚式斜拉悬索桥分析方法与性能研究[D].大连:大连理工大学,2009
    [177]张小庆,康海贵,王复明.一种新的体系可靠度的近似计算方法[J].工程力学,2004,21(1):94-97
    [179]Liu P. L., Der Kiureghian A.. Finite element reliability of geometrically nonlinear uncertain structures [J]. Journal of Engineering Mechanics,1991,117(8):1806-1825.
    [180]Zhang Y., Der Kiureghian A. Dynamic response sensitivity of inelastic structures [J]. Computer Methods in Applied Mechanics and Engineering,1993,28(1):44-67.
    [181]Kleiber M., Antunez H., Hien T.. Parameter sensitivity in nonlinear mechanics[M]. West Sussex:John Wiley and Sons Ltd,1997
    [182]Conte J. P., Vijalapura P. K., Meghella M. Consistent finite-element response sensitivity analysis[J]. Journal of Engineering Mechanics,2003,129(12):1380-1393
    [183]Scott M. H., Franchin P., Fenves G. L., et al. Response sensitivity for nonlinear beam-column elements[J]. Journal of Structural Engineering,2004,130(9):1281-1288
    [184]Haukaas T., Der Kiureghian A.. Parameter sensitivity and importance measures in nonlinear finite element reliability analysis[J]. Journal of Engineering Mechanics,2005, 131(10):1013-1026
    [185]Scott M. H., Filippou F. C. Response Gradients for Nonlinear Beam-Column Elements under Large Displacements [J]. Journal of Structural Engineering,2007,133(2):155-165
    [186]Gu Q.. Finite element response sensitivity and reliability analysis of Soil-Foundation-Structure-Interaction (SFSI) systems[D]. San Diego:Uiversity of California, San Diego,2008
    [187]Gu Q., Barbato M., Conte J. P.. Handling of Constraints in Finite-Element Response Sensitivity Analysis[J]. Journal of Engineering Mechanics,2009,135(12):1427-1438
    [188]Kim H.K., Lee M. J., Chang S. P.. Non-linear shape-finding analysis of a self-anchored suspension bridge [J]. Engineering Structures,2002,24(12):1547-1559
    [189]Bassam A. Izzuddin. Conceptual issues in geometrieally nonlinear analysis of 3d framed structures [J]. Computer Methods in Applied Mechanics and Engineering,2001, 191:1029-1053
    [190]Felippa. C. A., Haugen B.. A unified formulation of small-strain corotational finite elements:i. Theory[J]. Computer Methods in APPlied Mechanics and Engineering,2005, 194:2285-2335
    [191]Crisfield M.A., Moita G.F.. A unified co-rotational framework for solids, shells and beams[J]. International Journal of Solids Structures,1996,33:2969-2992
    [192]Hsiao K. M., Lin W. Y.. A co-rotational finite element formulation for bulking and postbulkling analyses of spatial beams[J]. Computer Methods in Applied Mechanics and Engineering,2000,188:567-594
    [193]彭苗.空间自锚式悬索桥非线性分析与成桥状态确定[D].武汉:武汉理工大学,2008
    [194]Kramchandani A., Cornell C.A.. Sensitivity estimation within first and second order reliability methods[J]. Structure Safety,1992,11:97-105
    [195]潘家英,张国政,程庆国.大跨度桥梁极限承载力的几何与材料非线性耦合分析[J].土木工程学报,2000,33(1):5-8
    [196]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出出版社,2005
    [197]江见鲸.关于钢筋混凝土数值分析中的本构关系[J].力学进展,1994,24(1):117-123
    [198]颜全胜.大跨度钢斜拉桥极限承载力分析[D].长沙:长沙铁道学院,1994
    [199]徐金勇.大跨度混合梁斜拉桥弹塑性极限承载力及施工控制研究[D].广州:华南理工大学,2007
    [200]Kent D. C, Park R.. Flexural members with confined concrete[J]. Journal of the Structural Division,1971,97(7):1969-1990
    [201]周凌远.斜拉桥非线性理论及极限承载力研究[D].成都:西南交通大学,2007
    [202]沈在康.混凝土结构设计新规范应用讲评[M].北京:中国建筑工业出版社,1993
    [203]马宏旺,赵国藩.钢筋混凝土矩形柱截面曲率延性系数概率分析[J].大连理工大学学报,2001,41(4):485-490
    [204]刘天云,吕克顺,赵国藩.钢筋混凝土框架结构的可靠性分析[J].大连理工大学学报,1998,38(2):223-227
    [205]Harbitz A. An efficient method for probability of failure calculation[J]. Structrual Safety,1986,3:109-115
    [206]邱文亮.自锚式悬索桥非线性分析与试验研究[D].大连:大连理工大学,2003
    [207]李杰.自描式悬索桥地震非线性时程响应分析和简化方法研究[D].成都:西南交通大学,2007
    [208]张伟.结构可靠性理论与应用[M].北京:科学出版社,2008
    [209]Zheng Y., Das P. K.. Improved response surface method and its application to stiffened plate reliability analysis[J]. Engineering Structure,2000,22(5):544-551
    [210]李伟.大跨度斜拉桥静动力可靠度分析[D].广州:华南理工大学,2010
    [211]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007
    [212]Hughers T., Winget J.. Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large-deformation Analysis[J]. International Journal of Numerical Methods and Engineering,1980,15(12):1862-1867
    [213]Hsiao K. M., Jang J. Y.. Dynamic analysis of planar flexible mechanisms by co-rotational formulation[J]. Computer Methods in Applied Mechanics Engineering, 1987,1991:1-14
    [214]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].上海:同济大学,2004
    [215]Felippa C. A.. A systematic approach to the element-independent corotational dynamics of finite elements[R], Report CU-CAS-00-03, Center for Aerospace Structures, College of Engineering and Applied Sciences, University of Colorado at Boulder, January 2000
    [216]Battini J. M., Pacoste C.. Plastic instability of beam structures using co-rotational elements [J]. Computer Methods in Applied Mechanics Engineering,2002(191): 5811-5831
    [217]梁鹏.超大跨度斜拉桥几何非线性及随机模拟分析[D].上海:同济大学,2004
    [218]潘永仁.悬索桥结构分析理论与方法[M].北京:人民交通出版社,2004
    [219]Bathe K.J., Said B.. Large displacement analysis of three-dimensional beam structures [J]. International Journal for Numerical Methods in Engineering.1979,14:961-986
    [220]李扬海,鲍卫刚,郭修武等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997
    [221]GB 50068-2001,建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700