岩质边坡地震稳定性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震作用下边坡的稳定性问题是当前岩土地震工程和地震工程学研究的热点问题之一。研究表明,全球地震带的分布和滑坡带的分布具有惊人的一致性,这一现象充分反映了地震对岩土边坡失稳的触发作用。由于岩土材料的组成和本构关系的复杂性,加之地震动这一随机荷载的特殊性,使得地震作用下边坡稳定性研究内容变得十分复杂。本文针对岩质边坡在地震动随机荷载作用下的稳定性问题开展了一些初步的研究工作。
    本论文主要做了以下研究工作:
    1.回顾了岩土边坡地震稳定性分析研究中的若干重要问题的研究进展,包括边坡岩土体地震反应分析方法、边坡岩土体的动力特性和强度准则及参数测试、边坡地震失稳机理与失稳位置、边坡地震稳定性评价方法、边坡地震稳定性评价指标与安全标准、边坡地震动输入、边坡地震稳定性评价指标的计算精度,作了简要评述,并指出了需要解决的一些问题。
    2.针对岩质边坡存在明显的软弱带的特点,给出了有限元计算过程中不同软弱带的处理方法,结合工程中常用的极限平衡法,给出了岩质边坡稳定性的有限元分析方法,将其应用于某一岩质边坡,该方法为岩质边坡地震稳定性分析提供初始静应力场和安全系数。在此基础上,研究了材料参数对岩质边坡安全系数的影响。
    3.真实反映地震动传播特性的分析方法是准确描述岩体地震反应的基础。发展了一种能够考虑岩体动力特性-弹粘塑性的显式波动有限元分析方法,阐述了真实描述岩体地震动传播的弹粘塑性显式波动有限元的计算原理及实施细节,包括岩体弹粘塑性的本构关系、时域显式位移递推公式和两侧边界不等高的透射边界实施思路,编制了计算程序。以简单岩质边坡为例,分析了一位移脉冲和真实地震波输入下的岩质边坡的地震反应,初步定性地验证了程序的可靠性。
    4.给出了岩质边坡动力安全系数时程的计算方法,在此基础上,引入可靠度概念,提出了岩质边坡动力安全系数的概念,给出相应的计算方法,将其应用于某岩质边坡,并与拟静力法的结果进行了比较。
    5.研究了输入地震动峰值及频谱特性对岩质边坡稳定性的影响,给出了不同输入地震动峰值时拟静力安全系数与边坡动力安全系数之间的关系式及两者之间的修正系数,同时给出了输入地震动峰值与边坡动力安全系数之间的关系,为大型边坡的快速评估提供了一种可行的思路。此外,研究了竖向地震动输入对岩质边坡稳定性的影响。
    6.国道108线石棉大渡河雅安岸引道高陡边坡的稳定直接关系到国道
Seismic stability of slope is one of hot problems in geotechnical seismicengineering and earthquake engineering field. Studies show that there areegregious coherence between the distribution of global earthquake belts andlandslide belts, which sufficiently reflects the effects of earthquake inducing onslope stability losing. That complexity of the composition of geological materialsconstitutive models and speciality of earthquake ground motion with strongrandomicity make slope seismic stability difficult. Some primary studies, aimedat seismic stability of rock slope under earthquake ground motion are carried on.
    The main studies are as follows:
    1. The state-of-the-art advancement of several important problems onseismic stability analysis of rock-soil slopes is reviewed, including analysismethod of seismic response, dynamic properties, strength criteria, parametertesting, failure mechanism& failure location, seismic stability evaluation methods,seismic stability evaluation index &safety standard, earthquake input andcomputation accuracy of seismic stability evaluation index, and concise remarksare made. Then some study problems, which need to be done in future, aresuggested.
    2. Considering obvious weak slip zone occurring within rock slope, thedifferent slip zone analysis methods during the calculation of finite element arebrought forward and the method combining the finite element method with limitequilibrium method used in engineering is presented. The method proposedpresent initial static stress field and safety factor for seismic stability analysis ofrock slope. The method is used to calculate one rock slope. On the basis of this,the effects of material parameters on safety factor of rock slope are studied.
    3. The analysis method truly reflecting characters of earthquake groundmotion transmitting is the basis of concisely describing seismic response ofrock-mass. A new method, explicit wave motion fem, with considering theElastic-viscoplastic dynamic properties of rock-mass, is proposed, and itscomputation theories and details, including constitute model ofelastic-viscoplastic of rock, step-by-step formula of displacement, execution ofmulti-transform formula with both different height, are expounded, then programare coded. As a case of simple rock slope, its seismic responses under onedisplacement pulse and true earthquake record input are analyzed, and the
    correctness of program is verified.4. The calculation method of dynamic safety factor time history of rockslope is present, and based on it, the concept of dynamic safety factor of rockslope is proposed introducing the idea of reliability theory. The computationmethod of dynamic safety factor of rock slope is proposed. It is used to calculateone rock slope, compared with that of pseudo-static method.5. The effects of input ground motion peak and frequency content onstability of rock slope are studied. Then, the relations of pseudo-static safetyfactor and dynamic safety factor of rock slope, input ground motion peak anddynamic safety factor of rock slope are given, which provides a feasible methodfor predicting seismic stability of important rock slopes. In addition the effects ofvertical input ground motion on stability of rock slope are studied.6. The stability of high and steep slope along leading road along DaduheRiver's Ya'an bank Country Road No. 108 directly decides natural running of theroad and Daduhe bridge in Shimian. Based on comprehensively analyzing theregion earthquake seismic activity, earthquake geological structures, potentialearthquake source in the slope region are acquired, and acceleration peak andtarget spectra of the slope site, whose probability of exceedance is 10% in 50years, are computed. Based on these, 3 pieces of man made earthquake waves aregenerated by triangle progression. As the inputs of generated waves, the seismicstability of high and steep slope along, lying at leading road along DaduheRiver's Ya'an bank Country Road No. 108 is computed, using the method ofdynamic safety factor of rock slope.
引文
[1]杨全忠.西藏滑坡地质灾害及防治对策[J].中国地质灾害与防治学报,2002,13(1):94~97.
    [2]李宁,程国栋,谢定义.西部大开发中的岩土力学问题[J].岩土工程学报,2001,23(3):268~272.
    [3]黄理兴,陈奕柏.我国岩石动力学研究状况与发展[J].岩石力学与工程学报,2003,22(11):1881~1886.
    [4]李海波,蒋会军,赵坚,等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887~1891.
    [5]胡聿贤主编.地震安全性评价技术教程[M].北京:地震出版社,1999.
    [6]时振梁,王健,张晓东.中国地震活动性分区特征[J].地震学报,1995,17(1):20~24.
    [7]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动,2001,21(2):116~120.
    [8]陈玲玲,陈敏中,钱胜国.岩质陡高边坡地震动力稳定分析[J].长江科学院院报,2004,21(1):33~35.
    [9]刘春玲,祁生文,童立强,等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730~2733.
    [10]许谨,郑书英.边界元法分析边坡动态稳定性[J].西北建筑工程学院学报(自然科学版),2000,17(4):72~75.
    [11]张建海,范景伟,何江达.用刚体弹簧元求解边坡、坝基动力安全系数[J].岩石力学与工程学报,1999,18(4):387~391.
    [12]刘君,孔宪京.卫生填埋场复合边坡地震稳定性和永久变形分析[J].岩土力学,2004,25(5):778~782.
    [13]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [14]石根华著,裴觉民译.数值流形方法与非连续变形分析.北京:清华大学出版社,1997.
    [15]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2000.
    [16]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [17]陶连金,苏生瑞和张倬元.节理岩体边坡的动力稳定性分析[J].工程地质学报,2001,9(1):32~38.
    [18]黄润秋,许强,陶连金,等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [19]祁生文.边坡动力响应分析及应用研究[D].北京:中国科学院地质与地球物理研究所,2002.
    [20]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977,(4):372~376.
    [21]王存玉.地震条件下二滩水库岸坡稳定性研究[M].岩体工程地质力学问题(七).北京:科学出版社,1987.
    [22]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66~68.
    [23]翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究[J].烟台大学学报(自然科学与工程技术版),1996,(4):67~71.
    [24]张平,吴德伦.动荷载下边坡滑动的试验研究[J].重庆建筑大学学报,1997,19(2):80~86.
    [25]门玉明,彭建兵,李寻昌,等.层状结构岩质边坡动力稳定性试验研究[J].世界地震工程,2004,20(4):131~136.
    [26]郑颖人,沈珠江,龚晓南.广义塑性力学-岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [27]孔亮,王燕昌,郑颖人.土体动本构模型研究评述[J].宁夏大学学报(自然科学版),2002,22(1):17~22.
    [28]李亮,赵成刚.饱和土体动力本构模型研究进展[J].世界地震工程,2004,20(1):138~148.
    [29]袁晓铭,孙锐,孙静,等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程振动,2002,20(4):133~139.
    [30]钱胜国,陆秋蓉.长江三峡船闸高边坡地震稳定性分析[R].武汉:长江科学院科研报告,1991.
    [31]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66~68.
    [32]戚承志,苗启松,钱七虎.考虑强度-应变率依赖性的岩石弹塑性动力模型[J].世界地震工程,2002,18(3):52~56.
    [33]戚承志,钱七虎.关于岩石的剥离破坏过程及混合破坏准则[J].世界地震工程,2002,18(4):55~61.
    [34]戚承志,钱七虎.岩石等脆性材料动力强度依赖应变率的物理机制[J].岩石力学与工程学报,2003,22(2):177~181.
    [35]李宁,陈文玲,张平.动荷作用下裂隙岩体介质的变形性质[J].岩石力学与工程学报,2001,20(1):74~78.
    [36]席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性黏弹性响应[J].地球物理学报,2002,45(1):109~118.
    [37]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581~1585.
    [38]马春德,李夕兵,史雁平.用低周疲劳加载实现中等应变速率下岩石动态破坏的新方法[J].矿业研究与开发,2004,24(1):11~13.
    [39]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [40]薛守义,刘汉东.岩体工程学科性质透视[M].郑州:黄河水利出版社,2002.
    [41]俞茂宏,M.Yoshimine,强洪夫,等.强度理论的发展和展望[J].工程力学,2004,21(6):1~20.
    [42]俞茂宏,吉嶺充俊,范文,等.岩土工程结构强度理论研究[A].中国岩石力学与工程学会第七次学术大会论文集[C].北京:中国科学技术出版社,2002:27~32.
    [43]潘昌实主编.隧道力学数值方法[M].北京:中国铁道出版社,1995.
    [44]俞茂宏,咎月稳,范文等.20世纪岩石强度理论的发展[J].岩石力学与工程学报,2000,19(5):545~550.
    [45]咎月稳,吉嶺充俊,俞茂宏,等.岩石强度理论与岩石强度试验的关系[A].中国岩石力学与工程学会第七次学术大会论文集[C].北京:中国科学技术出版社,2002:117~120.
    [46]戚承志,赵跃堂,郭志昆,等.材料时间性破坏准则及其内在联系[J].世界地震工程,2002,18(2):56~60
    [47]GB/T50269-97,地基动力特性测试规范[S].
    [48]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1993.
    [49]李天池.地震与滑坡的关系及地震滑坡预测的探讨(节录)[A].滑坡文集(第二集)[C].北京:人民铁道出版社,1979:127~132.
    [50]祁生文,伍法权,刘春玲,等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792~2797.
    [51]李守义,吕生龙,张长喜.某工程边坡蠕滑机理与监测资料分析[J].岩石力学与工程学报,1998,17(2):133~139.
    [52]李功伯,谢建清.滑坡稳定性分析与工程治理[M].北京:地震出版社,1997.
    [53]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,24(4):553~556.
    [54]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定性分析[J].岩石力学与工程学报,2004,23(8):1318~1324.
    [55]陈云敏,柯瀚,凌道盛.城市垃圾填埋体的动力特性及地震响应[J].土木工程学报,2002,35(3):66~72.
    [56]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001,20(3):83~88.
    [57]赵明阶,何光春,王多垠.边坡工程处治技术[M].北京:人民交通出版社,2003.
    [58]富凤丽,佴磊,李广杰,等.中里滑坡反分析及强度取值研究[J].长春科技大学学报,2000,30(2):165~169.
    [59]湖南省水利水电勘测设计院.边坡工程地质[M].北京:水利电力出版社, 1983.
    [60]丰土根,刘汉龙,高玉峰,等.加速遗传算法在边坡抗震稳定性分析中的应用[J].水利学报,2002,(9):89~93.
    [61]罗伯特L.威格尔主编.中国地震局工程力学研究所译.地震工程学[M].北京:科学出版社,1978.
    [62]张克绪,谢君斐.土动力学[M]..北京:地震出版社,1989.
    [63]王赞军,江志萍,张家庆,等.滑坡危险性分析中地震动的概率性估算及地震滑坡的危险性评判[J].高原地震,1998,10(1):40~45.
    [64]GB18306-2001,《中国地震动参数区划图》.
    [65]陈蜀俊,党晓英,曾心传,等.奉节长江大桥北岸在地震荷载作用下的稳定性分析[J].岩石力学与工程学报,2004,23(4):657-662.
    [66]SL203-97,《核电站抗震设计规范》.
    [67]顾淦臣.论土石坝的地震液化验算和坝坡抗滑稳定计算[J].岩土工程学报,1981,3(4):33~41.
    [68]曾富宝.地震对土坡稳定的影响[J].苏州城建环保学院学报,1997,10(3):16~20.
    [69]姚爱军,苏永华.复杂岩质边坡锚固工程地震敏感性分析[J].土木工程学报,2003,36(11):34~37.
    [70]周圆π,李守巨,刘迎曦,等.遗传算法在边坡地震稳定性分析中的应用[J].2003,24(Supp):95~98.
    [71]沈珠江,陆培炎.评当前岩土工程实践中的保守倾向[J].岩土工程学报,1997,19(4):115~118.
    [72]王思敬,张菊明.边坡岩体滑动稳定的动力学分析[J].地质科学,1982,(4):162~170.
    [73]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学,1992,(2):177~182.
    [74]张菊明,王思敬.层状边坡岩体滑动稳定的三维动力学分析[J].工程地质学报,1994,2(3):1~12.
    [75]薛守义,王思敬,刘建中.块状岩体边坡地震滑动位移分析[J].工程地质学报,1997,5(2):131~136.
    [76]陈国兴,谢君斐,张克绪.土坝震害和抗震分析评述[J].世界地震工程,1994,(3):24~33.
    [77]黄建梁,王威中,薛宏交.坡体地震稳定性的动态分析[J].地震工程与工程振动,1997,17(4):113~122.
    [78]祁生林,祁生文,伍法权,等.基于剩余推力法的地震滑坡永久位移研究[J].工程地质学报,2004,12(1):63~68.
    [79]刘红帅,薄景山.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,20(1):164~171.
    [80]吴兆营,薄景山,刘红帅,等.岩体边坡地震稳定性动安全系数分析方法[J].防灾减灾工程学报,2004,24(3):228~241.
    [81]邵龙潭,唐洪祥,孔宪京,等.随机地震作用下土石坝边坡的地震稳定性分析[J].水利学报,1999,(11):66~71.
    [82]徐建平,谢伟平,白冰.随机地震作用下土坡的永久变形研究[J].武汉理工大学学报,2002,24(9):55~58.
    [83]黄腾威.地震作用下土坡长期稳定可靠度分析[J].福建建设科技,2003,(2):8~9.
    [84]薛守义.岩体边坡动力稳定性研究[D].北京:中国科学院地质与地球物理研究所,1989.
    [85]刘小丽,周德培.岩土边坡系统稳定性评价初探[J].岩石力学与工程学报,2002,21(9):1378~1382.
    [86]张伯艳,陈厚群,杜修力,等.拱坝坝肩抗震稳定分析[J].水利学报,2000,(11):55~59.
    [87]苏超,李俊宏,任青文.有限单元法在高拱坝坝肩动力稳定分析中的应用[J].河海大学学报(自然科学版),2003,31(2):144~147.
    [88]赵剑明,陈宁,常亚屏.地震作用下土石坝边坡抗滑稳定性分析[A].李永盛,高广运主编.环境岩土工程理论与实践[C].上海:同济大学出版社,2002.239~243.
    [89]薄景山.三峡重庆库区区域滑坡灾害的综合研究报告[R].哈尔滨:中国地震局工程力学研究所,2003年.
    [90]翟长海.最不利设计地震动的研究[D].哈尔滨:中国地震局工程力学研究所,2002.
    [91]王自法.人工边界的比较与研究[D].哈尔滨:中国地震局工程力学研究所,1989.
    [92]周正华.单元几何形状畸变对动力有限元计算精度的影响[R].哈尔滨:中国地震局工程力学研究所,2001.
    [93]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [94]张季如.边坡开挖的有限元模拟和稳定性评价[J].岩石力学与工程学报,2002,21(6):843~847.
    [95]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1~8.
    [96]张鲁渝,时卫民,郑颖人.平面应变下土坡稳定有限元分析[J].岩土工程学报,2002,24(4):487~490.
    [97]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626~628.
    [98]周翠英,刘祚秋,董立国,等.边坡变形破坏过程的大变形有限元分析[J].岩土力学,2003,24(4):644~652.
    [99]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报,2003,22(2):254~260.
    [100]陈云敏,李育超,凌道盛.蒙特卡洛法与有限元结合搜索边坡临界滑动面[J].岩土力学,2004,25(Supp.2):75~80.
    [101]蔡美峰主编.岩石力学与工程[M].北京:科学出版社,2002.
    [102]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [103]佴磊,薄景山,王世梅.岩土工程数值法[M].长春:吉林大学出版社,1994.
    [104]刘红帅,薄景山,耿冬青,等.岩质滑坡稳定性有限元分析[J].岩土力学,2004,25(11):1786-1790.
    [105]刘佑荣,唐辉明.岩体力学[M].北京:中国地质大学出版社,1999.
    [106]姚爱军,易武,王尚庆.杨家岭1#滑坡稳定性影响因素及敏感性分析[J].工程地质学报,2004,12(4):390~395.
    [107]石豫川,冯文凯,刘汉超,等.特大多期复合型滑坡稳定性评价及因素敏感性分析[J].岩土力学,2004,25(6):975~980.
    [108]倪恒,刘佑荣,龙治国.正交设计在滑坡敏感性分析中的应用[J].岩石力学与工程学报,2002,21(7):989~992.
    [109]马照亭,梁海华.Sarma法在四川云阳鸡扒子滑坡稳定性评价中的应用[J].地震地质,2002,24(3):461~468.
    [110]廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    [111]李小军.非线性场地地震反应分析方法的研究[D].哈尔滨:中国地震局工程力学研究所,1993.
    [112]陈学良.挡土墙地震反应的波动模拟分析[D].哈尔滨:中国地震局工程力学研究所,2001.
    [113]孟倾山,汪稔.强夯法处理层状软基的动态响应分析[J].岩土力学,2006,27(1):23-28.
    [114]SmithI.M.,Griffiths D.V.著.王崧,周坚鑫,王来,等译.有限元方法编程[M].北京:电子工业出版社,2003.
    [115]杜修力,陈厚群,侯顺载.拱坝系统三维非线性地震波动分析[J].地震工程与工程振动,1996,16(3):39-47.
    [116]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    [117]杨柏坡.复杂相互作用体系抗震分析方法和软件开发[R].哈尔滨:中国地震局工程力学研究所,2000.
    [118]周正华.地基土介质阻尼和辐射阻尼的数值模拟[D].哈尔滨:中国地震局工程力学研究所,2000.
    [119]丁海平.线性土-结构动力相互作用分析方法的改进[D].哈尔滨:中国地震局工程力学研究所,2000.
    [120]刘晶波.波动的有限元模拟及复杂场地对地震动的影响[D].哈尔滨:中国地震局工 程力学研究所, 1989.
    [121] 卓旭炀. 复杂场地对地震波传播的影响[D]. 哈尔滨: 中国地震局工程力学研究所, 2003.
    [122] 刘小生, 王钟宁, 汪小刚, 等. 面板坝大型振动台模型试验与动力分析[M]. 北京: 中国水利水电出版社, 知识产权出版社, 2005.
    [123] 陈祖煜, 汪小刚, 杨健, 等. 岩质边坡稳定分析-原理·方法·程序[M].北京: 中国水利水电出版社,2005.
    [124] 陈 祖 煜 . 土 质 边 坡 稳 定 分 析 -原 理 ·方 法 ·程 序 [M].北 京 : 中 国 水 利 水 电 出 版社,2003.
    [125] 王伟, 杨敏, 刘德富. 基于经济风险分析的边坡稳定性评价[J]. 同济大学学报(自然科学版), 2004, 32(12): 1603-1607.
    [126] 严春风, 陈飞龙. 基于 Mohr-Coulomb 抗剪强度准则的概率分析[J]. 四川建筑, 21(9): 133-143.
    [127] 薄景山. 国道 108 线石棉大渡河大桥工程场地地震安全性评价报告[R]. 哈尔滨: 中国地震局工程力学研究所, 2004.
    [128] 四川省地质工程勘察院. 国道 108 线石棉大渡河桥雅安岸引道高陡边坡工程地质勘察报告[R], 2002.
    [129] 国道 108 线石棉大渡河大桥引道挖方高边坡加固防护工程施工图设计[R]. 四川省广汉地质工程勘察院, 2003.
    [130] Mario Parise, Randall W Jibson. A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake [J]. Engineering Geology, 2000, 58 (3/4): 251~270.
    [131] Scott A.Ashford, Nicholas Sitar, John Lysmer, et al. Topographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological Society of America, 1997, 87(3): 701~709.
    [132] Zhang Chunhan, O.A.Pekau, Jin Feng, et al. Application of distinct element method in dynamic analysis of high rock slopes and blocky structures[J]. Soil Dynamics and Earthquake Engineering, 1997: 16(6): 385~394.
    [133] Clough R.W. and Chopra A.K. Earthquake stress analysis in earth dams [J]. J. Engrg. Mech., ASCE, 1966, 92(EM2): 197~ 211.
    [134] Cundall P.A.. A computer model for simulating progressive, large scale movement in blocky rock system[A]. Symp. of Int. Society of Rock Meth[C]. Nancy, France, 1971: 11~ 18.
    [135] Bardet J.P., Scott R.F. Seismic stability of fracture rock masses with the distinct element method[A]. 26th U.S. Symp. Rock Mech.[C]. Rapid City, 1985: 139~149.
    [136] Itasca Consulting Group Inc. Flac-3D fast. Lagrangian analysis of continua in 3-dimension version 2.0[R]. USA: Itasca Consulting Group Inc., 1997.
    [137] Wartman. J, Riemer. M.F, Bray. J.D, et al. Newmark analyses of a shaking table slope stability experiment[A]. Proc., Geotechniacl Earthquake Engingineering and Soil Dynamics Ⅲ , ASCE, Geotechnical Special Publication No. 75[C]. Seattle, 1998: 778~ 789.
    [138] Taboada-Urtuzuastegui V.M, Martinez-Ramirez G., Abdoun T. Centrifuge modeling of seismic behavior of a slope in liquefiable soil[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 1043~ 1049.
    [139] Scott A. Ashford, Nicholas Sitar. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff [J]. Bulletin of the Seismological Society of America, 1997, 87(3): 692~ 700.
    [140] Timoshento S P. History of strength of materials [M]. New York: McGraw-Hill, 1953.
    [141] Kramer S.L. Geotechnical Earthquake Engineering [M]. New Jersey: Prentice-Hall Inc., U.S.A, 1996.
    [142] Seed H.B, Martin G. R. The seismic coefficient in earth dam design [J]. J. Soil Mech. Found. Div., ASCE, 92(SM3): 25~ 58.
    [143] IITK-GSDMA-EQ09-V3.0, 《Draft Code Provisions and Commentary for Seismic Design of Earth Dams and Embankments》, USA.
    [144] Leshchinsky D, San. K. Ching. Pseudo-static stability of slopes: Design [J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(9), 1514~ 1532.
    [145] Bray J.D, Repetto P.C. Seismic design considerations for lined solid waste landfills [J]. Geotextiles and Geomembrances, 1994, 13(8) : 497~ 518.
    [146] Ling H.I, Cheng A.D. Rock sliding induced by seismic force [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(6) : 1021~ 1029.
    [147] Siyahi, Bilge G. Pseudo-static stability analysis in normally consolidated soil slopes subjected to earthquake [J]. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 1998, 9(DEC) : 457~ 461.
    [148] Ausilio E, Conte E, Dente G. Seismic stability analysis of reinforced slopes [J]. Soil Dynamics and Earthquake Engineering, 2000, 19(3) : 159~ 172.
    [149] Biondi G, Cascone E, Maugeri M. Flow and deformation of sandy slopes[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(12 ): 1103~ 1114.
    [150] Siad L. Seismic stability analysis of fractured rock slopes by yield design theory [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3) : 203~ 212.
    [151] Ling H.I, Leshchinsky D, Mohri Y. Soil slopes under combined horizontal and vertical seismic accelerations[J]. Earthquake Engineering and Structural Dynamics, 1997, 26(12): 1231~ 1241.
    [152] Newmark N.M. Effects of earthquakes on dams and embankments [J]. Geotechnique, 1965, 15(2) : 139~ 160.
    [153] Kramer S, Smith D. Modified newmark model for seismic displacement of compliant slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(7): 635~ 644.
    [154] Ling H.I. Recent applications of sliding block theory to geotechnical design [J]. Soil Dynamics and Earthquake Engineering, 2001, 21(3): 189~ 197.
    [155] Chen Jian, Yin Jian-hua, Lee C.F. Stability analysis of the permanent shiplock slopes of the TGP under seismic action[A]. 13WCEE[C]. Vancouve, B.C., Canada, Pape r No. 350, 2004.
    [156] Seed H.B, Lee. K.L, Idriss I.M, et al. Analysis of the slides in the San Fernando dams during the earthquake of Feb. 9, 1971[R]. Berkeley: EERC, University of California, 1973.
    [157] Lee K.L. Seismic permanent deformations in earth dams[R]. Los Angeles: School of Engineering and Applied Science, University of California, 1974.
    [158] Serf F.N, Seed H.B, Makdisi F.I, et al. Earthquake-induced deformations of earth dams[R]. Berkeley: EERC, University of California, 1976.
    [159] Finn W.D.L, Yogendrakumar M, Yoshida M, et al. Tara-3: A programme to compute the response of 2-D Embankments and soil-structure interaction systems to seismic loadings[R]. Vancouver: Department of civil engineering, University of British Columbia, 1986.
    [160] Lin J.S, Whitman R. Earthquake induced displacements of sliding blocks [J]. Journal of Geotechnical Engineering, 1986, 112(1): 44~ 59.
    [161] Hisakzu Sakai, Sumio Sawada, Kenzo Toki. Structure Considering Tensile Failure[A]. 12WCEE[C], 2000, Paper NO. 678.
    [162] Ai-Homoud A.S, Tahtamoni W.W. Reliability analysis of three-dimensional dynamic slope stability and earthquake-induced permanent displacement[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(2): 91~ 114.
    [163] Owen D.R.J, Hinton E. Finite Elements In Plasticity[M]. Swansea: Pineridge Press Limited, U.K.,1980.
    [164] Wolf J.P. Dynamic soil-structure interaction[M]. New Jersey: Englewood Cliffs, Inc., Prentice Hall, 1985, U.S.A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700