利用全固态激光技术及光学参量过程产生高功率连续单频激光的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光技术的飞速发展,各种激光光源已经广泛应用在我们生活中的各个领域,如工业领域中采用高功率的脉冲激光用于激光打标、激光焊接、材料切割和表面处理等;军事领域中用于激光测距、激光武器、激光制导和激光雷达等;在医疗方面用于激光美容、激光照射治疗以及激光切割肿瘤等。以上的这些应用中,用到的主要是激光的高能量密度这个特性。而在基础科学研究中,我们对激光的模式提出了更高的要求——连续单频激光。高功率连续单频激光光源在非线性光学、量子光学、量子信息、高分辨率光谱学以及冷原子的俘获等方面的研究工作中有着重要的应用,并且随着科研工作的进展,人们对连续单频激光光源的各个性能参数如长期功率稳定性、频率稳定性、光束质量以及输出功率等提出了越来越高的要求。
     在本文中我们分别开展了1.06μm、532nm和1.5μm三种不同波长的高功率连续单频激光光源的研制工作。高功率全固态连续单频1.06μm激光器是整个研究工作的基础内容;然后通过内腔倍频过程,研制532nm的全固态连续单频绿光激光器;最后,采用1.06μm激光器作为泵浦源泵浦单共振光学参量振荡器(SRO),获取1.5μm的连续单频激光光源。本文对这三种不同波长的激光光源的研究工作做了详细的阐述,取得了如下的研究成果:
     1、研制了一台激光二极管(LD)双端面泵浦的全固态连续单频1.06μm Nd:YVO4激光器。在激光器的设计中详细研究了激光晶体的热效应,分析了双端面较单端面泵浦方式的优势。通过双端面泵浦方式,减小了激光晶体的热效应。优化选取实验参数,在LD泵浦功率为44.9W时,获得了18.5W的连续单频1.06μm激光输出,相应的光光转化效率达41.2%;在3小时内激光器的功率稳定性优于±0.4%;输出激光的光束质量M2<1.05;激光的强度噪声和相位噪声在分析频率4MHz处达到散粒噪声基准。
     2、研制了一台880nm直接泵浦的高功率全固态连续单频Nd:YVO4/LBO绿光激光器。文中详细阐述了直接泵浦技术及其优势,直接泵浦方式大大减小了激光晶体的热效应,有利于提高激光输出功率和改善激光光束质量。实验在全固态连续单频1.06μm激光器的基础上,选用LBO为倍频晶体,通过进一步选取合适的激光谐振腔腔长,获得了高效内腔倍频。在LD泵浦功率为52W时,获得了11.6W的连续单频绿光激光输出,光光转换效率22.3%;在5小时内激光的功率稳定性优于±0.5%;测得的激光光束质量因了M2<1.05;激光的强度噪声在分析频率4MHz处达到散粒噪声极限,相位噪声在2-20MHz范围内都高于散粒噪声1.36dB左右。
     3、采用内腔SRO,获得了连续单频的1.5μm激光光源。从理论上详细分析了内腔SRO的运转性质;实验设计并优化激光谐振腔和SRO腔长,使得两个谐振腔达到较好的匹配,以获得较高的非线性转换效率。在LD泵浦功率为18W时,实验获得了300mW的连续单频1.5μm信号光输出。
     4、采用外腔SRO,实验获得了高功率的连续单频1.5μm激光光源。理论上,详细分析了SRO的阈值和输入输出特性;从量子郎之万方程出发,分析了SRO产生的信号光的噪声特性,信号光的噪声要稍高于泵浦光的噪声。实验上,采用连续单频1.06μm Nd:YVO4激光器为泵浦源,泵浦由PPLN晶体构成的SRO,在泵浦功率为6W时,获得了1.02W的连续单频1.5μm激光输出。在信号光输出功率为0.75W的情况下,监视了信号光的功率稳定性,30分钟内的功率波动优于±1.5%,同时没有模式跳变现象;改变PPLN晶体温度40℃,输出信号光波长连续调谐23nm;获得的1.5μm激光的噪声较低,其强度噪声在分析频率4MHz处达到散粒噪声基准,相位噪声在10-20MHz的分析频率范围内高于散粒噪声基准约1dB。
     在上述的研究工作中,属于创新性的内容有以下几方面:
     1、详细分析了通过双端面泵浦和直接泵浦的方式来减小激光晶体的热效应,并实验验证了这两个泵浦方式确实改善了晶体的热效应:双端面泵浦相对于单端面泵浦,激光晶体的热透镜效应减小了约40%;直接泵浦时,激光晶体的热效应是传统泵浦方式时的一半。
     2、首次将直接泵浦技术应用在全固态连续单频激光器中,并且采用偏振光双端面泵浦的方式,改善了直接泵浦技术中Nd:YVO4激光晶体在径向吸收不均匀的问题和吸收效率低的问题。实验研制了一台880nm直接泵浦的全固态连续单频绿光激光器,输出11.6W的连续单频绿光激光,光光转换效率22.3%;激光器在5小时内的功率稳定性优于±0.5%;输出激光的光束质量M2<1.05。
     3、实验采用内腔SRO获得了300mW的1.5μm波段的连续单频激光光源。
     4、理论详细分析了外腔SRO输出的信号光的噪声特性;实验采用外腔SRO获得了1.02W的连续单频1.5μm激光光源,SRO能够稳定地长期运转;实验测量了信号光的噪声,实验结果与理论分析的结果一致。
With the development of laser technology, lasers have been widely used in every aspect of our lives, such as laser marking, laser welding, material cutting and surface treatment; laser ranging, laser weapon, laser guidance and laser radar; and laser hairdressing, laser radiation therapy, laser cutting tumors, etc. These applications are using the feature of high density of lasers. But in the scientific research, there have higher requirements for the performance parameters of the laser:continuous-wave (cw) single-frequency laser. High power cw single-frequency lasers have been widely used in experiments of quantum optics, quantum information, high resolution spectroscopy and cold atom, and with the progress of research, scientists put forward more and more demands of the laser, such as long-term power stability, good frequency stability, high beam quality and high output power.
     In this thesis, we start the investigation of high power cw single-frequency laser with wavelength of 1.06μm,532 nm and 1.5μm, respectively. The investigation of the all-solid-state cw single-frequency 1.06μm laser is the basic study; then through the second harmonic process, developing the all-solid-state cw single-frequency intracavity frequency doubled green laser; finally, by the optical parametric process, we obtain the cw single-frequency 1.5μm laser. We carried out a series of research results as follows.
     (1) We have demonstrated a cw single-frequency Nd:YVO4 laser at 1.06μm by LD dual-end pumped at 808nm. A dual-end pumping scheme was employed to realizes homogeneous absorption along the length of laser crystal, so that the defects such as serious thermal aberration, bulging of the entrance faces, and stress fracture risks that are encountered in the one-end pumping configuration were decreased. The measured maximum output was 18.5 W with a conversion efficiency of 41.2%. The stability of the output power was better than±0.4% in three hours. The beam quality was measured of M2<1.05. The noise characteristics of the laser were also investigated. The intensity noise and the phase noise reached the shot noise limit (SNL) at analysis frequency of 4 MHz.
     (2) Based on a polarized and dual-end pumping scheme, a stable, high power and high beam quality cw single-frequency Nd:YVO4/LBO green laser by directly pumped at 880nm has been fabricated. A single-polarization direction for the pump beams was selected to solve the problem of different absorption coefficients of orthogonal polarizations in the Nd:YV04 crystal. A measured maximum output power of 11.6W at 532 nm was obtained with a conversion efficiency of 22.3%. The stability of the green output was better than±0.5% and no mode hopping was observed over a period of five hours. The beam quality parameters were measured to be Mx2=1.03 and My2=1.02. The intensity noise of the green laser was reduced to the SNL at an analysis frequency of 3.5 MHz and phase noise was 1.3 dB above the SNL in the range of 2 to 20MHz.
     (3) We present a 1.5μm cw single-frequency intracavity singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO is placed inside the ring cavity of a single-frequency 1.06μm Nd:YVO4 laser pumped by a LD. The device delivers a maximum single-frequency output power of 300 mW at the LD pump power of 18W, and the measured signal wavelength is 1.57μm.
     (4) We report a cw single-frequency 1.5μm laser source obtained by extracavity SRO based on PPLN. The SRO was pumped by a cw single-frequency Nd:YVO4 laser at 1.06μm.1.02 W of single-frequency signal light at 1.5μm was obtained at pump power of 6W. At the output power of around 0.75W, the power stability was better than±1.5% in 30 minutes and no mode hopping was observed, and the frequency stability was better than 8.56 MHz in one minute. The signal wavelength could be tuned from 1.569 to 1.592μm by varying the PPLN temperature. And the 1.5μm laser exhibits low noise characteristics, the intensity noise of the laser reaches SNL at analysis frequency of 4 MHz, and phase noise is about 1 dB above the SNL for frequency from 10 to 20 MHz.
     The creative works are as follows:
     (1) Analyzed the advantages of dual-end pumping and direct pumping scheme, which was employed to reduce the thermal effects in the laser crystal, and experimentally verified these advantages:compared to the one-end pumping configuration, thermal lens effect reduced about 40% in the dual-end pumping scheme; in direct pumping scheme, the thermal effects are accounted for 50% of traditional pumping method.
     (2) A stable, high power and high beam quality cw single-frequency Nd:YVO4/LBO green laser has been fabricated by directly pumped at 880nm. A single-polarization direction for the pump beams was selected to solve the problem of different absorption coefficients of orthogonal polarizations in the Nd:YVO4 crystal. A measured maximum output power of 11.6W at 532 nm was obtained with a conversion efficiency of 22.3%. The stability of the green output was better than±0.5% over a period of five hours.
     (3) A cw single-frequency 1.5μm laser source was obtained by intracavity SRO. The device delivers a maximum single-frequency output of 300 mW at the LD pump power of 18W.
     (4) Theoretically analyzed the noise characteristics of the signal generated by extracavity SRO. In our experiment, a 1.02 W of cw single-frequency signal at 1.5μm was obtained by an extracavity SRO. We measured the intensity noise and phase noise of the signal; the experimental results are good agreement with the theoretical analysis.
引文
[1.1]T. H. Maiman, Stimulated optical radiation in ruby, Nature,1960,187,493-494
    [1.2]R. Newman, Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs, J. Appl. Phys.1963,34,437-437
    [1.3]R. J. Keyes, and T. M. Quist, Injection Luminescent Pumping of CaF2:U3+ with GaAs Diode Lasers, Appl. Phys. Lett.1964,4.50-52
    [1.4]M. Ross, YAG laser operation by semiconductor laser pumping, Proc. IEEE,1960, 56,196-197
    [1.5]F. W. Ostermayer, GaAsP diode pumped YAG:Nd lasers, Appl. Phys. Lett.1971,18, 93-96
    [1.6]L. C. Conant, and C. W. Reno, GaAs laser diode pumped Nd:YAG laser, Appl. Opt. 1974,13,2457-2458
    [1.7]K. Kubodera, and K. Otsuka, Efficient LiNdP4O12 lasers pumped with a laser diode, Appl. Opt.1979,18,3882-3883
    [1.8]J. Berger, D. F. Welch, D. R. Scifres, W. Streifer, and P. S. Cross.370mW,1.06μm, CW TEMoo output from an Nd:YAG laser rod end-pumped by a monolithic diode array, IEEE.1987,23,669-670
    [1.9]S. C. Tidwell, J. F. Seamans, C. E. Hamilton, C. H. Muller, and D. D. Lowenthal, Efficient,15W output power, diode-end-pumped Nd:YAG laser, Opt. Lett.1991.16, 584-586
    [1.10]S. C. Tidwell, J. F. Seamans, and M. S. Bowers, Highly efficient 60W TEMoo cw diode-end-pumped Nd:YAG laser, Opt. Lett.1993,18,116-118
    [1.11]S. Lee, M. Yun, B. H. Cha, C. J. Kim. S. Suk, and H. S. Kim, Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770W output power, Appl. Opt.2002,41,5625-5631
    [1.12]T. H. Maiman, Stimulated optical radiation in ruby, Nature,1960,187,493-494
    [1.13]K. I. Martin, W. A. Clarkson, and D. C. Hanna,3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser, Opt. Lett.1996,21,875-877
    [1.14]S. T. Yang, R. C. Eckardt, and R. L. Byer, Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG lasery, Nature,1993,18,971-973
    [1.15]F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, Continuous-wave, singly resonant,intracavity parametric oscillator, Opt. Lett.1997,22,75-77
    [1.16]G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT, Opt. Lett.2007,32,400-402
    [1.17]S. C. Kumar, R. Das, G.K. Samanta, M. Ebrahim-Zadeh, Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator, Appl. Phys. B, Lasers and optics,2010, DOI:10.1007/s00340-010-4092-9
    [1.18]Yongmin Li, Sujing Zhang, Jianli Liu, and Kuanshou Zhang, Quantum correlation between fundamental and second-harmonic fields via second-harmonic generation, J. Opt. Soc. Am. B,2007,24,660-663
    [1.19]H. Vahlbruch, Mo. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. GoBler, K. Danzmann, and R. Schnabel, Observation of Squeezed Light with 10-dB Quantum-Noise Reduction, Phys. Rev. Lett.2008,100,003602 1-4
    [1.20]E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, and A. Peters, High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator, Opt. Lett.2001,26,1430-1432
    [1.21]F. Muller, A. Popp, and F. Kuhnemann, Transportable, highly sensitive photoacoustic spectrometer based on a continuous-wave dualcavity optical parametric oscillator, Opt. Express,2003,11,2820-2825
    [1.22]K.-K. Ni, S. Ospelkaus, D. Wang, G. Quemener, B. Neyenhuis, M. H. G. de Miranda. J. L. Bohn, J. Ye, and D. S. Jin, Dipolar collisions of polar molecules in the quantum regime, Nature,2010,464,1324-1328
    [1.23]K. Jimenez-Garcia, R. L. Compton, Y.-J. Lin, W. D. Phillips, J.V. Porto, and I. B. Spielman, Phases of a Two-Dimensional Bose Gas in an Optical Lattice, Phys. Rev. Lett. 2010,105,1104011-4
    [1.24]Laser Zentrum Hannover e. V., http://www.lzh.de/en/departments/laserdevelopment /singlefrequency lasers
    [1.25]G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh,1.59W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT, Opt. Lett.2007,32, 2623-2625
    [1.26]J. M. Melkonian, T. H My, F. Bretenaker, and C. Drag, High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red, Opt. Lett.2007,32,518-520
    [1.27]T. H. My, C. Drag, and F. Bretenaker, Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator, Opt. Lett.2008,33,1455-1457
    [1.28]A. Yoshizawa, R. Kaji, and H. Tsuchida, Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides, Elec. Lett.2003,39,621
    [1.29]J. X. Feng, Y. M. Li, X. T. Tian, J. L. Liu, and K. S. Zhang, Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56μm and the second harmonic generation output at 780nm, Opt. Express,2008,16,11871-11877
    [1.30]J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3, Appl. Phys. Lett.2008,92,2211021-3
    [1.31]M. Mehmet, S. Steinlechner, T. Eberle, H. Vahlbruch, A. Thuring, Ka. Danzmann, and R. Schnabel, Observation of cw squeezed light at 1550 nm, Nature,2009, Opt. Lett. 34,1060-1062
    [1.32]彭堃墀,李瑞宁,黄茂全,刘晶,靳少征,李军,稳频环行Nd:YAG激光器,中国激光,1989,16,449-451
    [1.33]张宽收,张云,谢常德,彭堃墀,全固化非平面单频Nd:YAG环行激光器,光学学报,1996,16,1041-1044
    [1.34]S. K. Wang, Y. M Li, Z. H. Zhai, J. R. Gao, High power single-frequency Nd: YVO4 laser, SPIE,2002,4914,156
    [1.35]W. Q. Xi, J. Y. Zhao, K. S. Zhang, A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation, Chin. Phys. Lett.2005,22, 1144-1147
    [1.36]郜江瑞,张小虎,李军,彭塑墀,蒋德华,连续Nd:YAG稳频倍频激光器,中国激光,1991,18,721-725
    [1.37]J. R. Gao, H. Wang, M. Q. Huang, C. D. Xie, K. C. Peng, Z. G. Yu, C. Q. Ma, and X. N. Wang, Intracavity frequency-doubled and stabilized cw ring Nd:YAG laser with a pair of KTP crystals, Appl. Opt,1995,34,1519-1522
    [1.38]张靖,张宽收,王润林,郭蕊香,彭堃墀,全固化单频Nd:YV04环行激光器,2000,27,694-696
    [1.39]王海波,马艳,翟泽辉,郜江瑞,彭堃墀,LD端面抽运1.5W单频稳频绿光激光器,中国激光,2002,29,119-122
    [1.40]Y. H. Zheng, H. D. Lu, F.Q. Li, K. S. Zhang, and K. C. Peng, Four watt long-term stable intracavity frequency-doubling Nd:YVO4 laser of single-frequency operation pumped by a fiber-coupled laser diode, Appl. Opt.2007,46,5336-5339
    [1.41]Y. H. Zheng, F.Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter, Opt. Comm.2010,283,309-312
    [1.42]X. Y. Li, Q. Pan, J. T. Jin, C. D. Xie, and K. C. Peng, LD pumped intracavity frequency-doubled and frequency-stabilized Nd:YAP/KTP laser with 1.1W output, Opt. Comm.2002,201,165-171
    [1.43]郑耀辉,张宽收,LD端面抽运的全固化单频蓝光激光器,量子光学学报,2004,10.42-46
    [1.44]王垚廷,周倩倩,李渊骥,刘建丽,张宽收,输出770mW的全固态连续单频蓝光激光器,中国激光,2009,36,1714-1718
    [1.45]Y. T. Wang, J. L. Liu, Q. Liu, Y. J. Li, and K. S. Zhang, Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion, Opt. Express,2010,18,12044-12051
    [1.46]刘侠,王宇,常冬霞,贾晓军,彭塑墀,LD泵浦Nd:YVO4/LBO单频671 nm激光器,量了光学学报,2007,13,138-140
    [1.47]常冬霞,刘侠,王宇,葛青,贾晓军,彭堑墀,连续波Nd:YVO4/LBO稳频倍频红光全固态激光器,中国激光,2008.35.323-327
    [1.48]刘国宏,李永民,王垚廷,李渊骥,张宽收,全固态高功率连续单频稳频1053nmNd:YLF激光器,中国激光,2009,36,1732-1734
    [1.49]X. M. Guo, X. Y. Wang, Y. M. Li, and K. S. Zhang, Quantum noise limited tunable single-frequency Nd:YLF/LBO laser at 526.5nm, Appl. Opt.2009,48,6475-6478
    [1.50]P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. D Jiang, and J. Y. Wang, Optimization of Er, Yb:YCOB for CW Laser Operation, IEEE,2004, QE-40,1575
    [1.51]B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J.E. Hellstrom, G. Karlsson, and F. Laurell, Luminescent and laser properties of Yb-Er:GdCa4O(BO3)3:a new crystal for eye-safe 1.5-μm lasers, Appl. Phys.B,2004,79, 577-581
    [1.52]N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, Efficient 1W continuous-wave diode pumped Er,Yb:YAl3(BO3)4 laser, Opt. Lett.2007,32,3233-3235
    [1.53]J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals, Opt. Lett.1995,20,1017-1019
    [1.54]A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, and A. I. Ferguson. Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-μm spectral region by use of a KGd(WO4)2 crystal. Opt. Lett.2005,30,421-423
    [1.55]E. V. Raevsky, A. V. Gulin; N. S. Ustimenko, V. L. Pavlovitch, Laser oscillation of Nd:KGd(WO4)2 in the 1.538μm eye-safe range, Proc. of SPIE,2000,4035,362-366
    [1.56]M. Ebrahimzadeh. G. A. Turnbull, T. J. Edwards, D. J. M. Stothard, I. D. Lindsay, and M. H. Dunn, Intracavity continuous-wave singly resonant optical parametric oscillators, JOSAB,1999.16,1499-1511
    [1.57]T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, Continuous-wave, singly-resonant, optical parametric oscillator based on periodically poled KTiOPO4, Opt. Express,2000,6,58-63
    [1.58]A. Carleton, D. J. M. Stothard, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, Compact, continuous-wave, singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4 in a Nd:YVO4 laser. Opt. Lett.2003,28,555-557
    [1.59]X. Ding, S. M. Zhang, H. M. Ma, M. Pang, J. Q. Yao, and Z. Li,Continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate, Chin. Phys. B,2008,17,211-216
    [1.60]H. Abitan, and P. Buchhave, Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser, Appl. Opt.2003,42,6630-6635
    [1.61]U. Stroβner, J. P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, and J. Mlynek, Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm, JOSAB,2002,19,1419-1424
    [1.62]M. van Herpen and S. te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren, Wide single-mode tuning of a 3.0-3.8-μm,700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate, Opt. Lett.2002,27, 640-642
    [1.63]M. M. J. W. van Herpen, S. E. Bisson, and F. J. M. Harren, Continuous-wave operation of a single-frequency optical parametric oscillator at 4-5 μm based on periodically poled LiNbO3, Opt. Lett.2003,28,2497-2499
    [1.64]A. Henderson, and R. Stafford, Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source. Opt. Express,2006,14,767-772
    [1.65]A. Henderson, and R. Stafford, Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator, Opt. Lett.2007,32, 1281-1283
    [1.66]G. K. Samanta, and M. E. Zadeh, Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling, Opt. Express,2008,16.6883-6888
    [1.67]M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Singly resonant cw OPO with simple wavelength tuning. Opt. Express,2008,16,11141-11146
    [1.68]S. T. Lin, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and J. T. Shy, Observation of thermal-induced optical guiding and bistability in a mid-IR continuouswave, singly resonant optical parametric oscillator, Opt. Lett.2008,33,2338-2340
    [2.1]福建华科激光晶体参数:http://www.u-oplaz.com/crystals/ciystals20-1.htm
    [2.2]福建华科激光晶体参数:http://www.u-oplaz.com/crystals/crystals21.htm
    [2.3]H. J. Zhang, J. H. Liu, J. Y. Wang, C. Q. Wang, L. Zhu, Z. S. Shao, X. L. Meng, X. B. Hu, and M. H. Jiang, Characterization of the laser crystal Nd:GdVO4, J. Opt. Soc. Am. B,2002,19.18-27
    [2.4]T. Jensen, V. G. Ostroumov, J. P. Meyn t, G. Huber, A. I. Zagumennyi, I. A. Shcherbakov, Spectroscopic Characterization and Laser Performance of Diode-Laser-Pumped Nd:GdVO4, Appl. Phys. B,1994,58,373-379
    [2.5]W.克希耐尔著,孙文、江泽文、程国祥译,固体激光工程,科学出版社,2002,356
    [2.6]P. J. Hardman, W. A. Clarkson, D. C. Hanna, High-power diode-bar-pumped intracavity-frequency-doubled Nd:YLF laser, Opt. Commu.1998,156,49-52
    [2.7]M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, Thermal modeling of continuous-wave end-pumped solid-state lasers, Appl. Phys. Lett.1990,56,1831-1833
    [2.8]Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, Optimization in scaling fiber-coupled laser-diode end-pumped laser to higher power:influence of thermal effect, IEEE,1997, QE-33,1424-1429
    [2.9]X. Y Peng, L. Xu, and A. Asundi, Power scaling of diode-pumped Nd:YVOa lasers, IEEE,2002, QE-38,1291-1299
    [2.10]郑加安,赵圣之,王青圃,张行愚,陈磊,晶体热效应对LD端面泵浦固体激光器优化设计的影响,光子学报,2001,30,724-729
    [2.11]赵晶云,LD双端端面泵浦的高功率连续单频Nd:YV04激光器,硕士毕业论文,2004,17
    [2.12]Born M, and Wolf E, Principle of optics, Pergamon Press, fifth edition,1975
    [2.13]X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, J. Q:Yao, High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm, Opt. Commu. 2009,282,981-984
    [2.14]M. J. F. Digonnet, and C. J. Gacta, Theoretical analysis of optical fiber laser amplifiers and oscillators, Appl. Opt.1985,24,239-342
    [2.15]T. Y. Fan, and R. L. Byer, Diode laser-pumped solid-state lasers, IEEE,1988, QE-24,895-910
    [2.16]T. Y. Fan, and A. Sanchez, Pump source requirements for end-pumped-lasers, IEEE, 1990, QE-26,311-316
    [2.17]P. Laporta, and M, Brussard, Design criteria for mode size optimization in diode-pumped solid-state lasers, IEEE,1991, QE-27,2319-2326
    [2.18]H. A. Bachorn, and T. C. Ralph, A Guide to Experiments in Quantum Optics, betz-druck GmbH, Darmstadt,2003,102
    [2.19]周倩倩,用于量子光学实验的宽带低噪声探测器研制及应用,硕士毕业论文,山西大学,2010
    [2.20]张云,张天才,李廷鱼,谢常德,法布里-珀罗腔对相位噪声测量的影响,光学学报,2000,20,465-471
    [2.21]张天才,半导体激光器量了噪声及其非经典效应的理论与实验研究,博士毕业论文,山西大学,1995,155-160
    [2.22]相干公司产品说明http://lasers.coherent.com/search?p=KK&srid=S2%2d3 &lbc=coherent&ts=moby&pw=verdi%20IR25&uid=689038183&isort=score&ts=moby& w=ir25&rk=4
    [3.1]J. T. Verdeyen, Laser Electronics, Prentice-Hall,1989,232
    [3.2]R. Newman, Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs, J. Appl. Phys.1963,34,437
    [3.3]M. Ross, YAG laser operation by semiconductor laser pumping, Proc. IEEE,1968, 56,196-197
    [3.4]X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, J. Q. Yao, High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm, Opt. Commu. 2009,282,981-984
    [3.5]柳强,巩马理,潘圆圆,李晨,边缘抽运复合Yb:YAG/YAG薄片激光器设计与功率扩展,物理学报,2004,53,2159-2164
    [3.6]R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level, Appl. Opt.1999,38,7382-7385
    [3.7]V. Lupeia, N. Pavela, and T. Tairab, Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level, Opt. Commu.2002, 201.431-435
    [3.8]Y. Sato. T. Tairaa, N. Pavel, and V. Lupei, Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level, Appl. Phys. Lett.2003,82,844-846
    [3.9]S. Goldring, R. Lavi, A. Tal, E. Lebiush, Y. Tzuk, and S. Jackel, Characterization of radiative and nonradiative Processes in Nd:YAG lasers by comparing direct and band pumping, IEEE,2004. QE-40.384-389
    [3.10]L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, High-efficiency 60W TEMoo Nd:YVO4 oscillator pumped at 888 nm, Opt. Lett.2006,31,3297-3299
    [3.11]P. Zhu, D. J. Li, P. X. Hu, A. Schell, P. Shi, C. R. Haas, N. Wu, and K. M. Du, High efficiency 165 W near-diffraction-limited Nd:YVO4 slab oscillator pumped at 880 nm, Opt. Lett.2008,33,1930-1932
    [3.12]D. Sangla, M. Castaing, F. Balembois, and P. Georges, Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm, Opt. Lett.2009,34,2159-2161
    [3.13]V. Lupeia, N. Pavel, and T. Taira, Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the 1 μm continuous-wave Nd:Y3Al5O12 laser emission, Appl. Phys. Lett.2003,83,3653-3655
    [3.14]N. Pavel, and T. Taira, High-Power Continuous-Wave Intracavity Frequency-Doubled Nd:GdVO4-LBO Laser Under Diode Pumping Into the Emitting Level, IEEE, 2005, QE-11,631-637
    [3.15]L. McDonagh, and R. Wallenstein, Low-noise 62W CW intracavity-doubled TEMoo Nd:YVO4 green laser pumped at 888 nm, Opt. Lett.2007,32,802-804
    [3.16]Y. F. Lu, X. H. Zhang, J. Xia, X. D. Yin, A. F. Zhang, L. Bao, and W. Lu, High-efficiency direct-pumped Nd:YVO4-LBO laser operating at 671 nm, Optics & laser Technology,2010,42,522-525
    [3.17]Y. F. Lu, X. D. Yin, J. Xia, R. G. Wang, and D. Wang, Efficient continuous-wave intracavity frequency-doubled Nd:YAG-LBO blue laser at 473 nm under diode pumping directly into the emitting level, Laser Phys. Lett.2010,7,25-28
    [3.18]W.克希耐尔著,孙文,江泽文,程国祥译,固体激光工程,科学出版社,2002,522
    [3.19]KTP晶体参数http://www.u-oplaz.com/crystals/crystals04.htm
    [3.20]BBO晶体参数http://www.u-oplaz.com/crystals/crystals02.htm
    [3.21]LBO晶体参数http://www.u-oplaz.com/crystals/crystals03.htm
    [3.22]钱士雄,王恭明编著,非线性光学——原理与进展,复旦大学出版社,2002,73
    [3.23]郑耀辉,高功率全固态连续单频激光器的理论和实验研究,博士毕业论文,2009,48
    [3.24]Coherent Inc.2009-2010 product catalogue
    [3.25]http://www.docin.com/p-15708067.html
    [4.1]R.Lavi, A Englander, and R. Lallouz, Highly efficient low-threshold tunable all-solid-state intracavity optical parametric oscillator, Opt. Lett.1996,21,800-802
    [4.2]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interactions between Light Waves in a Nonlinear Dielectric, Phys. Rev.1962,127,1918-1939
    [4.3]H. K. Kong, J. Y. Wang, H. J. Zhang, X. Yin, S. J. Zhang, Y. G. Liu, X. F. Cheng, L Gao, X. B. Hu, and M. H. Jiang, Growth, properties and application as an electrooptic Q-switeh of langasite crystal, J. of Cryst. Growth,2003,254,360-367
    [4.4]N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, Efficient optical parametric oscillation based on Periodieally Poled 1.0 mol% MgO-doped stoiehiometric LiTaO3, Appl. Phys. Lett.2004,85, 5134-5136
    [4.5]L. Neagu, C. Ungureanu, R. Dabu, A. Stratan, C. Fenic, and L. Rusen, Compact eye-safe laser sources based on OPOs with KTP or PPKTP crystals, Opt. Laser Tech.2007. 39,973-979
    [4.6]刘兆军,高效非线性光学频率变换研究,博士学位论文,2008,21
    [4.7]林洪沂,准相位匹配PPMgLN光学参量振荡器的研究,博士学位论文,2010,37
    [4.8]M. K. Oshman, and S. E. Harris, Theory of optical parametric oscillation internal to the laser cavity, IEEE J. Quantum Electron.1968,4,491-502
    [4.9]R. G. Smith, and J. V. Parker, Experimental observation of and comments on optical parametric oscillation internal to the laser cavity, J. Appl. Phys.1970,41,3401-3408
    [4.10]G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, Continuous-wave, intracavity optical parametric oscillators:an analysis of power characteristics, Appl. Phys. B,1998, 66,701-710
    [4.11]F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, Continuous-wave, singly resonant, intracavity parametric oscillator, Opt. Lett.1997,22,75-77
    [4.12]T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4, Opt. Lett.1998,23,837-839
    [4.13]G. A. Turnbull, D. J. M. Stothard, M.Ebrahimzadeh, Transient dynamics of CW intracavity singly resonant optical parametric oscillators, IEEE J. Quantum Electron.1999, 35,1666-1671
    [4.14]T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, Continuous-wave, singly-resonant, optical parametric oscillator based on periodically poled KTiOPO4, Opt. Express,2000,6,58-63
    [4.15]A. Carleton, D. J. M. Stothard, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, Compact, continuous-wave, singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4 in a Nd:YVO4 laser, Opt. Lett.2003,28,555-557
    [4.16]D. H. Jundt, Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, Opt. Lett.1997,22,1553-1555
    [5.1]A. Henderson, and R. Stafford, Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator, Opt. Lett.2007,32, 1281-1283
    [5.2]J. M. Melkonian, T. H My, F. Bretenaker, and C. Drag, High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red, Opt. Lett.2007,32,518-520
    [5.3]G. K. Samanta, and M. E. Zadeh, Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling, Opt. Express,2008,16,6883-6888
    [5.4]M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Singly resonant cw OPO with simple wavelength tuning, Opt. Express,2008,16,11141-11146
    [5.5]S. C. Kumar, R. Das, G. K. Samanta. and M. Ebrahim-Zadeh, Optimally-output-coupled,17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator, Appl. Phys. B,2010, DOI:10.1007/s00340-010-4092-9
    [5.6]J. Cousin, W. Chen, D. Bigourd, M. Fourmentin, and S. Kassi, Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm, Appl. Phys. B,2009,97,919-929
    [5.7]A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis, Appl. Phys. B,2010, DOI:10.1007/s00340-010-3996-8
    [5.8]S. Zaske, D.-H. Lee, and C. Becher, Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance. Appl. Phys. B,2010,98,729-735
    [5.9]E. Rosencher, and C. Fabre, Oscillation characteristics of continuous-wave optical parametric oscillators:beyond the mean-field approximation, J. Opt. Soc. Am. B,2002,19, 1107-1116
    [5.10]C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L Lugiato, Transverse effects and mode couplings in OPOs, Appl. Phys. B,1998,66, 685-699
    [5.11]S. Schiller, K. Schneider, and J. Mlynek, Theory of an optical parametric oscillator with resonant pump and signal, J. Opt. Soc. Am. B,1999,16,1512-1524
    [5.12]钱士雄,王恭明编著,非线性光学——原理与进展,复旦大学出版社,2002,55-57
    [5.13]C. Fabre, E. Gicobino, A. Heidmann, Noise characteristics of a non-degenerate Optical Parametric Oscillator Application to quantum noise reduction, J. Phys. France, 1989,50,1209-1225
    [5.14]F. E. Harrison, and D. F. Walls, QND measurement of intensity difference fluctuations, Opt. Commu.1996,123,331-343
    [5.15]R. Sowade, I. Breunig, J. Kiessling, and K. Buse, Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators, Appl. Phys. B,2009,96,25-28
    [5.16]钱士雄,王恭明编著,非线性光学——原理与进展,复旦大学出版社,2002,97-98
    [5.17]Y. Zhang, K. Kasai, and K. Hayasaka, Single-beam noise characteristics of quantum-correlated twin beams, J. Opt. Soc. Am. B,2004,21,1044-1049
    [5.18]S. Bahbah, F. Bretenaker, and C. Drag, Single-frequency quasi-continuous red radiation generated by a green-pumped singly resonant optical parametric oscillator, Opt. Lett.2006,31,1283-1285
    [5.19]G. K. Samanta. G. R. Fayaz, and M. Ebrahim-Zadeh,1.59W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT, Opt. Lett.2007,32, 2623-2625
    [5.20]D. H. Jundt, Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, Opt. Lett.1997,22,1553-1555
    [5.21]http://www.rp-photonics.com/phasenoise.html
    [5.22]A Porzio, C Altucci, P Aniello, A Chiummo, C de Lisio, and S Solimeno, Spectral properties of the single beams generated by an optical parametric oscillator, J. Opt. B: Quantum Semiclass. Opt.2002,4, S313-S317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700