框架结构填充墙影响及强梁弱柱成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构抗震设计的基本原则之一是保证“强柱弱梁”,期望在强烈地震中,梁先于柱破坏,消耗地震能量,避免结构倒塌。然而实际震害表明,RC框架结构并未实现预期的“强柱弱梁”破坏模式,更多的表现为“强梁弱柱”破坏。研究表明,影响形成“强柱弱梁”的因素较多,主要可归结为楼板的作用、填充墙的影响、梁承载力超强以及钢筋超配等。另外,设计中将填充墙作为非结构构件考虑,不参与结构抗震计算,然而大量震害实例表明,其对结构抗震性能有较大影响。
     本文针对填充墙影响和“强梁弱柱”形成机制问题进行了研究,主要工作和成果如下:
     1.表明填充墙是结构耗能的主体并改变了框架结构的内力分布。对填充墙框架和空框架结构进行了多遇及罕遇地震下的时程反应分析,通过耗能机制分析,表明了填充墙是结构非弹性耗能的主要构件,在结构耗能中起着积极的作用;并通过内力分析,指出填充墙与框架结构的相互作用改变了框架结构的内力分布,并增大了柱端分担的弯矩及轴力,造成设计中对柱内力估计的偏差。
     2.揭示了计算模型误差是产生“强梁弱柱”的原因之一。结合精细有限元模型,分析了目前广泛使用的简化有限元模型误差产生的原因,并通过不同荷载工况下两种计算模型内力分布的比较,指出简化有限元模型不能很好地反映楼板的实际参与作用,导致低估了框架柱承担的弯矩,造成地震中柱先于梁发生破坏。
     3.提出了板壳耦合梁板模型。针对简化有限元模型不能合理考虑楼板影响的不足,本文对现有的刚臂耦合梁板模型进行了改进,提出了板壳耦合梁板模型,通过不同荷载工况下内力分布的比较,表明该模型的计算精度较简化有限元模型有较大的改善,而在相同精度的前提下,则比刚臂耦合梁板模型更具有计算上的优势。
     4.楼板能显著提高梁端负弯矩承载力并影响“强柱弱梁”的形成。将梁和板简化为不同有效翼缘宽度的T型梁,通过静力和动力作用下的反应分析,讨论了不同有效宽度楼板对梁端弯矩承载力及屈服机制的影响,指出板筋参与比例是重要参数,并通过耗能机制分析进一步说明了由于楼板的影响,柱子成为主要的耗能构件,在地震中破坏相对较重。
'Strong column and weak beam' is one of fundamental design principlesfor earthquake-resistant structures. It is expected that seismic energy isdissipated by the damage of beams prior to columns, thus structures cannot gofar as to collapse in strong earthquake. However, investigations of earthquakedamage have shown that more RC structures are damaged in ‘strong columnand weak beam' pattern, rather than ‘strong beam and weak column’ pattern.
     The formation of ‘strong column and weak beam’ pattern is influencedby many factors, mainly as follows: the contribution of floors, the influence ofinfill walls, the strong beams and overreinforced beams, etc. Moreover, infillwalls are usually treated as non-structural components in seismic design, notinvolved in the seismic analysis However, a large number of earthquakedamage of structures have reveals that the contribution of infill walls cannotbe ignored for seismic performance of structures.
     In this paper, the influences of infill walls and the mechanism of ‘strongbeam and weak column’ pattern are studied, and the main work and results areas follows:
     1. Infill walls play an important role in energy dissipation and theredistribution of internal force for frame structures. Many time historyresponses of infill wall frame and bare frame structures are analyzed underfrequent and rare earthquake excitation. In light of energy dissipationmechanism analysis, it shows that infill wall is the main non-elastic energydissipative component for the frame structure; And the interaction betweeninfill walls and frame structure results in the redistribution of the internalforce in frame structures, namely, the distributed moment and axial force ofthe column increased, which is responsible for the estimation deviation of theinternal of force columns in structure design.
     2. The deviation of the analysis model is one of the causes for the ‘strongbeam and weak column’ pattern. Combined with the fine finite element model,the sources of the deviation of the simplified finite element model, which iswidely used nowadays, are analyzed. Meanwhile, through the internal forcedistribution comparison between the two models under different loads, it isrevealed that the contribution of floor slab is fully considered in the simplifiedfinite element model, thus the bearing moment of the columns is underestimated, leading to the columns damage prior to beams in earthquakes.
     3. The girder-slab coupled shells model is proposed. To improve thesimplified finite element model, which underestimates the contribution of thefloor slab, and the girder-slab coupled shells model are proposed based on thegirder-slab coupled rigid arm model. By comparing the internal forcedistribution under different loads, it is demonstrated that the new model ismore accurate than the simplified finite element model; moreover, with thesame computational accuracy requirement, the new model is more efficientthan the girder-slab coupled rigid arm model.
     4. The floor slab can significantly improve the bearing negative momentof beam ends, and promote the ‘strong column and weak beam’. Bysimplifying both beam and slab into T-shape beams with different effectiveflange width, with the static and dynamic analysis of the two T-shape beams,the influence of different effective width on the bearing moment of beam andyield mechanism is discussed, and the participating ratio of steel bars in slabis an important parameter. With energy dissipation mechanism analysis, itfurther indicate that columns have become the main energy dissipativecomponents due to the contribution of floor, therefore, the column usuallydamage more severely in earthquakes.
引文
[1]陈韬.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆大学博士学位论文,2003
    [2]曹万林,王光远,吴建有,等.轻质填充墙异型柱框架结构层刚度及其衰减过程的研究[J].建筑结构学报,1995,(5):20-31.
    [3]陈慧发, A.F.萨里普.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004
    [4]戴国安,王亚勇.房屋建筑抗震设计[M].北京:中国建筑工业出版社,2005.
    [5]丁圣果,郑涛,肖常健等.现浇框架结构梁、板、柱协同工作体系的有限元方法及其内力特征[J].贵州工业大学学报,2003,32(6):82-87.
    [6]丰定国.工程结构抗震[M].北京:地震出版社,2002
    [7]高小旺,卜庆顺.多层钢筋砼框架房屋周期折减系数和层间弹性位移修正系数的取值[J].建筑结构,1993,2:42-46
    [8]管民生,杜宏彪.现浇楼板参与工作后框架结构的Pushover分析研究[J].地震工程与工程振动,2005,25(05):117-123.
    [9]何少溪,田传谦,夏晓东.框架节点刚域长度的试验研究[J].武汉水利电力学院学报,1986,(5):51-60.
    [10]姬守中,江欢成,等.双轴反复荷载作用下钢筋混凝土空间框架结构滞回全过程分析[J].力学季刊,2002,23(4):455-462.
    [11]江见鲸.关于钢筋混凝土数值分析中的本构关系[J].力学进展,1994,24(1):117~123
    [12]姜锐.钢筋混凝土框架结构在设防烈度和罕遇地震下的抗震设计及抗震性能研究
    [D].同济大学,2008
    [13]蒋永生,陈忠范,周绪平,等.整浇楼板的框架节点抗震研究[J].建筑结构学报,1994,15(6):11-16.
    [14]建筑抗震设计规范GB50011-2001[S].北京:中国建筑工业出版社,2001.
    [15]建筑抗震设计规范GB50011-2010[S].北京:中国建筑工业出版社,2010.
    [16]李振宝,刘春阳,高等利,等.钢筋混凝土梁板柱空间节点抗震性能试验研究[J].世界地震工程,2011,27(2):16-20.
    [17]林旭川,潘鹏,叶列平.汶川地震中典型RC框架的震害与仿真分析[R].北京:中国建筑工业出版社,2008:253-262.
    [18]刘玉姝,李国强.带填充墙钢框架结构抗侧力性能试验及理论研究[J].建筑结构学报,2005,26,(3):78-84.
    [19]马千里,叶列平,陆新征,等.现浇楼板对框架结构柱梁强度比的影响研究[R].北京:中国建筑工业出版社,2008:263-271.
    [20] Park R., Paulay T.著,秦文钺译.钢筋混凝土结构[M].重庆:重庆大学出版社,1985
    [21]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[R].清华大学抗震抗暴工程研究室科学研究报告集(3),1981:54-71
    [22]孙景江,唐玉红,孙忠贤,等.汶川地震VIII度和VII度区城市房屋震害及若干典型震害讨论[J].地震工程与工程振动,200929(6):11-13.
    [23]石宏彬,孙景江.计算模型对框架结构梁柱内力影响研究[J].地震工程与工程振动,2012,32(2):90-97.
    [24]唐九如.钢筋混凝土节点抗震[M].南京:东南大学出版社,1989
    [25]滕军,曹冬雪,李祚华,等.框架结构强柱弱梁地震破坏模式形成探讨[J].建筑结构,2011,41(S1):285-290.
    [26]王素裹,韩小雷,季静.现浇楼板对RC框架结构破坏形式的影响分析[J].土木建筑与环境工程,2009,31(1):66-71.
    [27]王亚勇,白雪霜.台湾921地震中钢筋混凝土结构震害特征[J].工程抗震,2001,1:3-7.
    [28]王亚勇.汶川地震建筑震害启示—抗震概念设计[J].建筑结构学报,2008,29(4):20-25.
    [29]吴绮芸,田家骅,徐显毅.砖墙填充框架在单向及反复水平荷载作用下的性能研究[J],建筑结构学报,1980,4
    [30]吴勇,雷汲川,杨红,等.板筋参与梁端负弯矩承载力问题的探讨[J].重庆建筑大学学报,2002,24(3):33-37.
    [31]杨伟军,施楚贤.砌体受压本构关系研究成果的述评[J].四川建筑科学研究,1999,3:52-55.
    [32]叶列平,曲哲,马千里,等.从汶川地震框架结构震害谈“强柱弱梁”屈服机制的实现[J].建筑结构,2008,38(11):52-59.
    [33]尹之潜,李树桢,程志萍,等.一座七层框架结构的模拟地震试验[J].地震工程与工程振动,1984,4:22-34.
    [34]曾晓明,杨伟军,施楚贤.砌体受压本构关系模型的研究[J].四川建筑科学研究,2001,27:8-10.
    [35]翟长海,李爽,孙扬,等.楼板对钢筋混凝土框架结构受力性能影响[J].灾害学,2010,25(S0):105-110.
    [36]张慧,孙德杰,李连勇.填充墙对框架结构体系抗震性能影响的研究[J].河南大学学报,2006,36(2):112-114.
    [37]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.
    [38]张志飞.节点刚域设置对钢筋混凝土框架结构抗震性能的影响[J].合肥工业大学学报,2010,33(12):1847-1850.
    [39]郑士举,蒋利学,张伟平,等.现浇混凝土框架梁截面有效翼缘宽度的试验研究与分析[J].结构工程师,2009,25(2):134-140.
    [40]中国建筑科学研究院主编.高层建筑结构设计[M].北京:科学出版社,1988
    [41]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1995
    [42]朱镜清.结构抗震分析原理[M].北京:地震出版社,2002
    [43]朱荣华,沈聚敏.砖填充墙钢筋混凝土框架拟动力地震反应试验及理论分析[J].建筑结构报,1996,17(4):27-34.
    [44]邹昀.带砌体填充墙的钢筋混凝土框架受力性能分析[J].江南大学学报,2002,1(1):76-81.
    [45] Ahmad J. Durrani,A. M. ASCE, and Hikmat E. Zerbe.Seismic resistance of R/Cexterior connetions with floor slab[J]. Journal of Structural Engineering,1987,113(8):1850-1864.
    [46] Andreas J Kappos and Frederick Ellul.Seismic design and performance assessment ofmasonry infilled R/C frames[C].12thWCEE,2000.
    [47] Armin B. Mehrabi, P. Benson Shing and Michael P. Schuller, Experimentalevaluation of masonry-infilled rc frames[J].Journal of Structural Engineering,1996,3:228-237.
    [48] Asteris P. G., ASCE M. Lateral stiffness of brick masonry infilled plane frames[J].Journal of Structural Engineering.2003:1071-1079
    [49] Benjamin J.R. and Williams H.J.The behaviour of one story brick shearwalls[J].Journal of the Structural Division, ASCE,1958,84:1723-1730.
    [50] Bertno V. V.and Popov. E. P. Seismic behavior of ductile moment-resistingreinforced concrete frames-reinforced concrete structures in seismic zones[R].ACISP-53,1977:247-292.
    [51] Building Code Requirements for Structural Concrete[S]. ACI318-08
    [52] Buonopane S.G. and White R.N. Pseudo dynamic testing of masonry infilledreinforced concrete frame[J]. Journal of Structural Engineering,1999,125(6):578-589.
    [53] Carr A.J. Dynamic Nonlinear Analysis[R].Department of CivilEngineering,University of Canterbury,New Zealand,1996.
    [54] Chaker A A and Cherifati A. Influence of masonry infill panels on the vibration andstiffness characteristics of R/C frame buildings[J].Earthquake Engineering andStructural Dynamics,1999,28(9):1061-1065.
    [55] Crisafulli F. J. and Carr A, J. Proposed macro-model for the analysis of infilled framestructures[J]. Bulletin of the New Zealand Society for Earthquake Engineering,2007,40(2):69-77.
    [56] Dawe J. L. and Seah C. K. Behavior of masonry infilled steel frames[J].Can. J. Civ.Eng.1989,16:865–876.
    [57] Dawe J.I. and Young T.C. An investigation of factors in fluencing the behaviour ofmasonry infills in the steel frames subjected to in-plane shear[R]. Proc.7thInt. BriskMasonry Conference, Melbourne, Australia,1985.
    [58] Dawe M. and D. Deniman. Comparing full-text and metadata search[C]. the5thEuropean Conference on Research and Advanced Technology for Digital Libraries,2001.
    [59] Decanini L.D. and Fantin G. E. Modelos simplificados de la mampostería incluida enporticos. Características de rigidez y resistencia lateral en astado límite[J].JornadasArgentinas de Ingeniería Estructural,1987,2:817-836.
    [60] Diptesh Das, C.V.R. Murty. Brick masonry infills in seismic design of RC framebuildings: Part2-Behaviour[J]. The Indian Concrete Journal,2004,78(4):31-38
    [61] Durrani A. J. and Luo Y. H. Seismic retrofit of flat-slab buildings with masonryinfills[R]. Proc. NCEER workshop on seismic response of masonry infills,1994
    [62] Durrani A.J. and Zerbe H.E. Seismic resistance of RC exterior connections with floorslab[J]. Journal of Structural Engineering,1987,113(8):1850-1864.
    [63] Ehsani M. R.and Wight J. K. Exterior reinforced concrete beanHo-columnconnections subjected to earthquake-type loading[J]. ACI Struct.J., l985,82(4):492-499.
    [64] Ehsani. M. R.. and Wight. J. K. Behavior of external reinforced concrete beam tocolumn connections subjected to earthquake-type loading[R]. Rep. UMEE82R5.Dept. of Civ. Engrg.,University of Michigan. Ann Arbor. Mich.1982.
    [65] Ehsani. M. R.and Wight. J. K. Effect of transverse beams and slab on behavior ofreinforced concrete beam-to-column connections[J]. ACI Struct.J.,1985,82(2):188-195.
    [66] El-Dakhakhni Wale W, Mohamed Elgaaly, Ahmad A Hamid. Three-struss model forconcrete masonry-infilled steel frames[J].Journal of Structural Engineering,2003,129(2):177-185.
    [67] Ellis B.R. An assessment of the accuracy of predicting fundamental naturalfrequencies of buildings and the implications concerning the dynamic analysis ofstructures[J]. Proceedings of the Institution of Civil Engineers,1980,69(2):763-776.
    [68] Eurocode8.Design Guidelines for Reinforced Concrete Buildings,1998
    [69] FEMA274: NEHRP commentary on the guidelines for the seismic rehabilitations ofbuildings[S].1997.
    [70] Flanagan R. D. and Bennett R. M. In-plane analysis of masonry infill materials[J].ASCE,2001,6(4):176-182.
    [71] Flanagan R. D. and Bennett R. M. In-plane behaviour of structural clay tile infilledframes[J]. J. Struct. Engrg., ASCE,1999,125(6):590-599.
    [72] French C W, Boroojerdi A. Contribution of RC floor slabs in resisting lateral loads[J].Journal of Structural Engineering,1989,115(1):1-18.
    [73] French C.W. and Moehle J.P. Effect of floor slab on behavior of slab-beam-columnconnections[R].ACI SP-123,1991:225-258.
    [74] Goutam Mondal, Sudhir K. Jain, M. EERI. Lateral stiffness of masonry infilledreinforced concrete (RC) frames with central opening[J]. Earthquake Spectra,2008,24(3):701–723
    [75] Hamburger R. O. Methodology for seismic capacity evaluation of steel-framebuildings with infill unreinforced masonry[C]. Proceedings of1993NationalEarthquake Conference,1993,2:173-191.
    [76] Holmes M. Steel frames with brickwork and concrete infilling[J]. Proceedings ofInstitute of Civil Engineers,1961,2(19):473-478.
    [77] Hossein Mostafaei and Toshimi Kabeyasawa. Effect of infill masonry walls on theseismic response of reinforced concrete buildings [J]. Bull. Earthq. Res. Inst. univ.2004,79:133-156.
    [78] Kitayama K.,Otani S. and Aoyama H. Development of design criteria for RC interiorbeam-column joints[R]. ACI SP-123,1991:97-123.
    [79] Krstevska Lidija and Danilo Ristic. Seismic response of RC infilled frames micro-model for nonlinear numerical simulation[C].13thWCEE,2004
    [80] LaFave J.M. and Wight J.K., Reinforced concrete exterior wide beam-column-slabconnections subjected to lateral earthquake loading[J], ACI Struct. J.,1999,96(4):577-586.
    [81] Liauw T.C. and Kwan K. H. Nonlinear behaviour of non-integral infilled frames[J].Comp. and Struct.,1984,18:551-560.
    [82] Liauw T.C.Test on multi-storey infilled frames subjected to dynamic lateral loading[J]. ACI,1979,76(4):551-564.
    [83] Liauw T.C.and Lee S.W. On the behaviour and the analysis of multistorey infilledframes subjected to lateral loading[J].Institute of Civil Engineers,1977,63:641-656.
    [84] Ma.S.M.Bertero and Popov. E. P. Experimental and analytical studies on thehysteretic behavior of reinforced concrete rectangular and T-beams[R]. EERC Rep.No.76-2. Earthquake Engrg. Res. Or.University of California. Berkeley. Calif.,1976.
    [85] Madan A., Reihom A.M. and Mander J.B. Modeling of masonry infill panels forstrutural analysis[J].Journal Of Structural Engineering,1997,123:1295-1302.
    [86] Mainstone R. J. and Weeks G. A. The influence of bounding frame on the rackingstiffness and strength of brick walls[C]. Proceedings of the2ndInternational BrickMasonry Conference,1970:165-171
    [87] Mainstone R. J. On the stiffnesses and strengths of infilled frames[J]. Proc.Instn.Civ.Engrs.,1971,4:57-90.
    [88] Mallick D V and Seven R T. The behaviour of infilled frames under staticloading[J].Proceedings of the Institution of Civil Engineers,1968,66(5):639-657.
    [89] Mallick D.V. and Garg R.P. Effect of openings on the lateral stiffness of infilledframes[J].Proceedings of the Institution of Civil Engineers,1971,49:193–209.
    [90] Mander J. B., Priestley M. J. N., and Park R. Theoretical stress-strain model forconfined concrete[J]. J. Struct. Engrg., ASCE,1988,114(8),1804-1826.
    [91] Moghaddam H.A. and Dowling P.J. The state-of-art in infilled frames[R]. ESEEResearch,Report,Imperial College of Science and Technology, Civil EngineeringDepartment, London.1987
    [92] Mohebkhah A.,Tasnimi A.A.and Moghaddam H.A. Nonlinear analysis ofmasonry-infilled steel frames using discrete element method[J]. J. Construct. SteelRes.2008,64(12):1463-1472.
    [93] Muty C.V.R. and Jain S.K. Beneficial influence of masonry infills on seismicperformance of RC buildings[C].12thWCEE,2000.
    [94] NEHRP Guidelines for the seismic rehabilitation of buildings. Federal EmergencyManagement Agency,1997
    [95] NZS3101-1Concrete Structures Standard[S].2006
    [96] Pantazopoulou S J,Moehle J P and Shahrooz B M. Simple analytical model forT-beams in flexure[J]. J. Struct.Engrg.,ASCE,1988,114(7):1507-1523.
    [97] Pantazopoulou S J,Moehle J P.Truss model for3-D behavior of RC exteriorconnections[J].Journal of Structural Engineering,1990,116(2):298-315.
    [98] Paulay T. and Pristley M. J. N. Seismic design of reinforced concrete and masonrybuildings[M].2009
    [99] Paulay, Thomas. Deterministic seismic design procedures for reinforced concretebuildings. Engineering Structures,1983,5(1):79-86.
    [100] Polyakov S.V. On the intereaction between masonry filler walls and enclosing framewhen loaded in plane of the wall[J].Translations in Earthquake Engineering,1960:36-42.
    [101] Rathbun.J. C. Wind forces on a tall building [J].Proceedings of American Society ofCivil Engineers,1938,64:1335-1375.
    [102] Reflak and Fajfar. Elastic analysis of infilled frames using substructures[C]. Proc.6thCanadian Conf. on Earthquake Engineering,1991:285-292.
    [103] Saneinejad A., and Hobbs B. Inelastic design of infilled frames[J]. J. Struct. Engrg.,ASCE,1995,121(4):634-650.
    [104] Shing B. and Mhrabi A. B. Behaviour and analysis of masonry-infilled frames[J].Structural Engineering Materials,2002,4:320-331.
    [105] Smith B. S. Lateral stiffness of infilled frames[J]. J. Struct. Div.,ASCE,1962,88(6):183-199.
    [106] Sun Jingjiang, Wang Tao and Qi Hu. Structural health monitoring of long-spansuspension bridges using wavelet packet analysis[J]. Earthquake Engineering andEngineering Vibration,2007,6(3):281-288.
    [107] Syrmakezis C. A. and Vratsanou V. Y. Influence of infill walls to RC framesresponse[C]. Proceedings of the8thEuropean Conference on Earthquake Engineer-ing, Lisbon,1986,3:47-53
    [108] Tassios T. P. Masonry infill and RC walls[R]. The3thInternational Symposium onWall Structures,1984
    [109] Thiruvengandam V. On the natural frequencies of infilled frames[J]. EarthquakeEngineering and Structure Dynamics,1985,13(3):401-419.
    [110] Wale W. El-Dakhakhni, Mohamed Elgaaly, Ahmad A. Hamid. Three-strut model forconcrete masonry-infilled steel frames[J].Journal of Structural Engineering,2003,129(2):177-185.
    [111] Yoshimura M. and Kurose Y. Inelastic behavior of the building[R].ACI SP-84,1985:163-201.
    [112] Zerbe H E and Durrani A J. Seismic response of connections in two-bay reinforcedconcrete frame subassemblies with a floor slab[J].ACI Struct.J.,1990,87(4):406-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700