大庆外围扶杨油层渗流机理及开发对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆外围扶杨油层属于低、特低渗透油层,孔隙不均匀、喉道细小、渗流阻力大,驱油效率较低,产量递减快,有效开发难度大。为此,本文通过铸体薄片恒速压汞和核磁共振等手段,分析了扶杨油层的微观孔隙结构特征,喉道形状,岩石颗粒大小、以及这些因素对渗流规律的影响。采用野外露头、岩芯观察、测井等手段,结合开发实际研究了大庆外围扶杨油层的裂缝发育类型、规模、分布特点、以及裂缝对注水开发的影响。把室内渗流物理实验和矿场开发试验有机结合起来,深入研究扶杨油层非达西渗流机理和渗流规律,明确了单相渗流产生非达西的空气渗透率界限,油水两相共渗时拟启动压力梯度与含水饱和度的关系曲线。根据非达西渗流规律,建立了特低渗透基质—裂缝流体定常、非定常流动模型,基质—裂缝耦合系统的两相非定常流动数学模型,提高了特低渗透储层开发指标预测精度和开发方案的编制水平,拓展了油藏工程的研究方法。应用研究成果,从改变储层流体流动状态和建立有效驱动两个方面考虑,提出了井网优化和压裂措施相结合的有效开发对策,解决了部分难采储量的有效动用问题,在开发实践中取得了很好的应用效果。
The low and ultra-low permeability Fuyang oil layers in Daqing marginal oilfields are mainly developed by waterflooding. The uneven porosity, tiny throat, strong molecular force and capillary pressure on solid-liquid interface of Fuyang oil layers have caused large filtrational resistance, low displacement efficiency, rapid production decline and big difficulty in effective development. Therefore, based on the effect of microscopic pore structure on filtering flow in reservoirs and the influence of reservoir fractures on waterflooding effect, this paper makes deep study on non-Darcy flow mechanism and law in combination of physical experiments and field tests. The effective development strategy for Fuyang oil layers in Daqing marginal oilfields is put forward in this paper, and pretty good application results have been obtained by taking this measure. The major study content and results are showed as following:
     1. The microscopic pore structure characteristics, throat figures, rock particles sizes and their effects on filtering flow in Fuyang oil layers are analyzed by means of cast iron slice, electron microscope scan, constant rate mercury penetration and nuclear magnetic resonance. Fuyang oil layers are featured by deep buried depth, tiny and closely arrayed rock particles and high clay content. Its porosity type and throat type is dominated by reduced intergranular pore as well as laminar, curved lamellar and bundled tubes, respectively. Secondary growth of quartz and feldspar, along with filling of epigenetic calcite and carbonate saline minerals, both cause the further reduction of porosity, more complex distribution of throat and poor connectivity, where the filtering flow in the reservoir does not follow the conventional Darcy law while is feature by non-Darcy flow. As result, the conventional parameters including reservoir porosity, permeability, grading factor and uniformity coefficient can not precisely describe the inherent features of ultra-low permeability reservoirs in Daqing marginal oilfields, also it could not meet the needs of development. The throat characteristics are the parameters that with critical effect on fluid flow law, in which the size of throat radius and its distribution are deciding factors, especially.
     2. The development type, growth scale, distribution characteristics of fissures and their effect on waterflooding development are studied by means of field outcrop, core observation and well logging. Natural fractures are generally developed in Fuyang oil layers, where tectoclase mainly developed in tectonic axis, near faults and on big curvature structures. Explicit fractures are dominant by high dip angle shear stitches. The eastern fractures are mainly in approximately latitudinal trending, and the western fractures in approximate EN trending, but differences exist in different oilfields and blocks. Some minerals and matrix are sliced in micro-fractures, most of which have been filled by calcites wholly or partially. The existence of micro-fractures has double influences on oilfield development. On one hand, it increases reservoir percolation capacity and reduces water intake threshold pressure; on the other hand, explicit fractures increase intrastratal heterogeneity and interlayer contradiction. The open of fractures has sharp directivity, and the open order is relevant to injection pressure. The fracture system belongs to high-speed non-Darcy flow. Therefore, much attention should be paid on fractures and ground stress during waterflooding and effective measurements should be adopted based on relevant study
     3. The fluid flow mechanism of low permeability reservoir is studied through seepage experiment. Single phase fluid flow experiment of oil and gas further determines the air permeability limit for formation of non-Darcy single phase fluid flow. The air permeability limit for non-Darcy aqueous phase fluid flow and oil phase fluid flow is 1×10-3μm2 and 5×10-3μm2, respectively. Single phase flow experiments with different fluid viscosities show fluid viscosity is an important factor for non-Darcy flow in addition to pore throat features. The higher fluid viscosity is, the larger quasi-threshold pressure gradient will be. Stable-state oil-water seepage tests for rock samples with different permeability show that quasi-threshold pressure gradient for two-phase simultaneous flow is much higher than that of single phase fluid flow. The connection between quasi-threshold pressure gradient and water saturation assumes a parabolic shape. Water flooding experiments show that producing indexes will continuously reduce along with the advance of water displacement front to the producers. The period with low or medium water cut is featured by high degree of reserve recovery and injection efficient as well, and it is the main production period of the oilfield. Once water breakthrough exists in oil wells, the water cut will be very high and the producing indexes may sharply reduce, hence increasing the difficulty of boosting flowing back so as to maintain a stable production.
     4. Based on non-Darcy filtering flow theories and reservoir engineering fundamentals, the stationary and non-stationary flow models for fluids in ultra-low permeability matrix-fissure and the non-stationary 2 phase flowing mathematic models for matrix-fissure coupled system are built. In the former research method, it is assumed that the fluids flow in the fissures is accordant with the Darcy flow, while according to the new model, it is assumed that the flow in the fissures is high velocity non-Darcy flow, which is more accordant with the actual flow state. Moreover, with the considerations of field application, the matrix-fissure coupled flow potential models under different development well patterns are established. Foi the first time, the model can systematically demonstrate the combination and coupling relations between the fracturing well pattern mode and fissure system, provides the development well pattern optimization, development fracturing design and flow potentia prediction with theoretical basis, increases the accuracy of development indexes prediction foi ultra-low permeability reservoirs and the establishment of development plans, and improves the research methods for oil reservoir engineering.
     5. According to the research on the filtering flow mechanisms of ultra-low permeability reservoirs and considering both form the change of the flow regime of the fluids in the reservoirs and the establishment of effective driving, the effective development strategy combining well pattern optimization with the fracturing for development, is proposed, namely enlarging the well spacing, reducing the well line distance, enlarging fracturing scale anc optimizing the fissures parameters for the development design of rectangular pattern, and this becomes the most important and effective development technique in the development o Fuyang oil layers in Daqing marginal oilfields. With the application of this technique, a new design method for well pattern optimization is set up, changing the invariable inverted 9-spo pattern water flooding mode existed for many years and effectively employing most part o reserves difficult to be produced before.
引文
[1]Alvaro Prada, Faruk Civan. Modifieationof Darey'law for The threshold Pressure gradient [J]. Journal of Petroleum science and Engineering.1999,22 (4).
    [2]阎庆来.单相均质液体低速渗流机理及流动规律[D].第二界全国渗流力学学术会议论文集:北京,科学出版社,1997.
    [3]李道品.我国低渗透油田开发探讨[J].低渗透油气田,1983.3(3).
    [4]孔祥言.高等渗流力学[M].合肥:中国科技大学出版社,1999.
    [5]黄延章等.低渗透油层渗流机理[M].北京:石油工业出版社,1998.
    [6][苏]马尔哈辛著,马尔哈辛著,李殿文译,油层物理化学机理.北京:石油工业出版社,1987年1月.
    [7]苑莲菊,李振栓,武胜忠等,工程渗流力学及应用[]]北京:中国建材工业出版社,2001.
    [8]C E Neuzil. Groundwater flow in low-permeability environments [J], Water Resources Research.1986,22(8):1163-1195.
    [9]Bolt G H, P H Groenevelt, Coupling phenomenaof as a possible cause of: "non-darcian" behavior of water in soil[J].Bulletin of the International Association of Scientific Hydrology,1969,2.
    [10]贾振岐等,大庆东部低渗透油藏单相流体低速非达西渗流特征.大庆石油学院学报,1999,23(2):82-84.
    [11]刘建军等,低渗透储层流固藕合渗流规律研究.低渗透油气田,20005(2):37-41
    [12]傅春华,葛家理等.低渗透油藏的非线性渗流理论探讨.新疆石油地质.2002,23(4).
    [13]殷代印,翟云芳,张雁.裂缝性砂岩油藏周期注水数学模型及注水效果的影响因素.大庆石油学院学报[J],2000,24(1).
    [14]傅秀娟,闫存章.不同驱油动力下裂缝油藏水驱方向与驱油效率的关系.大庆石油地质与开发[J],1997,16(4).
    [15]Raymond J Miller, PhiliP F Low. Threshold gradient for water flow in clay systems [J]. Soil Science Society of America Proceeding,1963,27(6):605~ 609.
    [16]Miller. R. J. etal. Threshold gradient for water flow in clay system, Proc. soil.Sci.soc Am 1963,27:606~609.
    [17]Dale Swartzendruber. Modification of Darcy's law for the flow of water in soils [J]. soils Scienee.1962,93:22-29.
    [18]Dale swartzendruber. Non-Darcy behavior and the flow of Water in unsaturated soils [J].Soil Science society of America Proceedings.1963, 27(5):491-495.
    [19]Alvaro Prada, Faruk Civan. Modification of Darcy's law for the threshold Pressure gradient. [J] Journal of Petroleum Science and Engineering. in 1999,22(4):237-240
    [20]Raghavan R.& Miller F.C., An Investigation by Numerical Method soft the Effect of Pressure Dependent Rock and Fluid Properties on Well Flow, Tests, SPE2671 (1969)
    [21]SamaniegoV. F. etal, An Investigation of Transient Flow of Reservoir Fluids Considering Pressure Dependent Rock and Fluids Properties, SPEJ(April 1977):140-50.
    [22]SamaniegoV. F. Cineo-Ley. H, Production Rate Decline in Pressure-Sensitive Reservoirs, JCPT(July1980):75-86.
    [23]SamaniegoV. F. Cineo-Lev. H., on the Determination of the Pressure-Dependent Characteristics of a Reservoir Through Transient Pressure Testing, Paper SPE19774 (1989).
    [24]Pedrosa.0. A. Jr., Pressure Transient Response in Stress-Sensitive Formations, Paper SPE 15115 (1986)
    [25]Kikani. J.&Pedrosa.0. A. Jr., Perturbation Analysis of Stress-Sensitive Reservoirs SPRFE(Sept1991):379-86
    [26]ZhangM. Y.etal., New Insights in Pressure Transient Analysis for Stress-Sensitive Reservoirs, Paper SPE28420(1994)
    [27]戈尔布诺夫著,张树宝译,异常油田开发.北京:石油工业出版社,1987.5.
    [28]诺曼.R.莫罗(墨),石油开采中的界面现象.北京:石油工业出版社,1994年
    [29]刘慈群,有起始压降固结问题的近似解.岩土工程学报,1982,4(3):107-109
    [30]冯文光,葛家理,单一介质、双重介质中非定常非达西低速渗流问题.石油勘探与开发,1985,12(1):56-62
    [31]冯文光,葛家理,单一介质、双重介质非达西低速渗流的压力曲线动态特征.石油勘探与开发,1986(5)
    [32]冯文光,葛家理,单一介质低速非达西渗流续流和表皮效应的影响.大庆石油地质与开发,19887(2):45-50
    [33]阎庆来等,低渗透油层中单相液体渗流特征的实验研究.西安石油学院学报报,1990,5(2):1-6.
    [34]阎庆来,何秋轩等,低渗透储层中油水渗流规律的研究,低渗透油气藏勘探开发技术.北京:石油工业出版社,1993.
    [35]阎庆来等,低渗透油层渗流机理研究,低渗透油田开发技术.北京:石油工业出版社,1994,6.
    [36]邓英尔,刘慈群,低渗多孔介质单相非定常渗流数值模拟低渗透油气田,19984(3)
    [37]邓英尔等,分形低渗透油藏非线性渗流压力分析.试采技术,200223(4):4-7
    [38]邓英尔等,具有启动压力梯度的油水两相渗流理论与开发指标计算方法,石油勘探与开发,1998年12月
    [39]邓英尔等,垂直裂缝井两相非达西椭圆渗流特征线解、差分解及开发指标计算方法.石油勘探与开发,2000年2月
    [40]邓英尔,刘慈群,启动压力梯度对低渗透油田注水开发的影响.低渗透油气田开发与实践(续一),北京:石油工业出版社,1999年
    [41]宋付权,刘慈群,低渗油藏水驱油两相渗流分析.低渗透油气藏,1999(2)
    [42]邓英尔,刘慈群,低渗油藏非线性渗流规律数学模型及其应用.石油学报,2001,22(4)
    [43]贾振岐等,大庆东部低渗透油藏单相流体低速非达西渗流特征.大庆石油学院学报,1999,23(2):82~84
    [44]姚约东,葛家理,低渗非达西渗流规律的研究.新疆石油地质,2000(3)
    [45]姚约东,葛家理,石油非达西渗流的新模式.石油钻采工艺,200325(5),40-44
    [46]宋付权,刘慈群,变形介质油藏试井分析方法.油气井测试,1998(2)
    [47]宋付权,刘慈群,刘雄明,低渗透油藏中径向定常渗流的特征,低渗透油气田开发与实践(续一),北京:石油工业出版社
    [48]宋付权,刘慈群,变形介质油藏压力产量分析方法.石油勘探与开发,200027(1):57-59
    [49]秦积舜,变围压条件下低渗透砂岩储层渗透率变化规律研究.西安石油学院学报(自然科学版)2002 17(4):28-31
    [50]秦积舜,变应力条件下低渗透储层近井地带渗流模型.石油钻采工艺200123(5):41-44
    [51]阮敏,何秋轩.低渗透非达西渗流临界点及临界参数判别法,西安石学院学报.1999,14(3):9-10,58
    [52]李中峰,何顺利,低渗透储层边界层流对渗流规律的影响.大庆石油地质与开发.2004,4
    [53]邓英尔,阎庆来等,表面分子对低渗多孔介质中液体渗流特征的影响[A).渗流力学进展[C],北京:石油工业出版社,1996年9月
    [54]邓英尔,界面分子力作用与渗透率的关系及其对渗流的影响.石油勘探与开发,199825(2):46-49
    [55]吴景春,袁满,张继成等.大庆东部低渗透油藏单相流体低速非Darcy渗流特征[J]大庆石油学院学报.1999,23(2):82-85.
    [56]肖鲁川,甄力,郑岩等.特低渗透储层非达西渗流特征研究[J].大庆石油地质与开发.2000,19(5):27-30.
    [57]李莉,韩德金,周锡生.大庆外围低渗透油田开发技术研究[J].大庆石油地质与开发.2004,23(5):85-87.
    [58]林玉保,史晓波.特低渗透储层油水相对渗透率实验研究[J].大庆石油地质与开发.2000,19(2):30-33.
    [59]周锡生,李艳华,徐启.低渗透油藏井网合理加密方式研究.大庆石油地质与开发[J],2000,19(5).
    [60]邓明胜,汪福成,迟田立等.朝阳沟裂缝性低渗透油田井网适应性研究.大庆石油地质与开发[J],2003,22(6).
    [61]石京平,低渗透油田油水两相低速非达西渗流规律研究.成都理工大学博士学位论文,2006年.
    [62]石京平,向阳,张丽萍等.榆树林油田低渗透储层微观孔隙结构特征及渗流特征研究.沉积与特提斯地质[J],2003,23(1).
    [63]王学武,杨正明,刘霞霞等.榆树林油田特低渗透储层微观孔隙结构特征.石油天然气学报[J],2008,33(2).
    [64]刘建军,刘先贵.有效应力对低渗透多孔介质孔隙度、渗透率的影响。地质力学学报[J],2001.7(1):41-44
    [65]黄延章.低渗透油层非线性渗流特征.特种油气藏[J],1997(1).
    [66]李道品等编.低渗透砂岩油藏开发[M].北京:石油工业出版社,1997.
    [67]葛家理宁正福刘月田等编著.现代油藏渗流力学原理[M].北京:石油工业出版社,2001.
    [68]贾振岐,赵辉,汶锋刚.低渗透油藏极限井距的确定.大庆石油学院学报[J],2006,30(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700