东部矿区深部土结构力学性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东部矿区深部土以第三系土为主,该土层含水量低、致密、呈饱和坚硬或半坚硬状态,为一种土向软岩过渡的特殊土。近年来深井土层地压、渗漏问题日益突出,要彻底解决这一技术工程难题,必须深入研究深部土地质成因、结构、力学性、渗透性等工程地质性质。因此研究深部土结构力学性具有重要理论意义和实用价值。
     论文以东部矿区埋深300m以下深部土为研究对象,以室内试验、理论分析为主要研究手段,对深部土的微观结构特征、高压三轴卸载结构力学性以及高压K0固结等进行了较为深入、系统的研究。
     对深部土微观结构进行SEM探测,并且探索出一种简易可行的、大众化的影像图分析处理方法,提取了土体微观结构各结构要素信息;应用数理统计分析,对微观结构各单因素指标进行综合量化,得到了一个相对比较合理的反映深部粘土微观结构的综合量化参数S,结合密度ρ、含水量ω,建立了三者间的关系式。
     考虑近似模拟深部粘土天然和建井作用受力状态,利用MTS815电液伺服试验系统,进行深部原状土和重塑土高压三轴卸载试验研究,分析了土样经历从高压密实结构状态卸载到一较松散结构状态的应力-应变特征。
     应用GE8800CT机进行高压三轴卸载土体内部结构的CT探测,研究表明:土样初始状态时颗粒及孔隙排列定向性不明显;各向等压加压过程中,土颗粒明显密集,孔隙减少,且颗粒及孔隙排列趋于有序;轴压不变,围压卸载时砂土样横断面上土颗粒密度减小,孔隙增大,粘土样土颗粒密度基本保持不变,土样破坏时对横断面上土颗粒及孔隙定向性排列稍有影响。
     设计加工了固结压力可达18MPa的高压K0固结装置,进行了一土多样不同高压载荷K0固结试验,研究表明深部土体的特性与浅部土体明显不同,随着固结压力的增加,土样微观结构排列的各向异性逐步增加,当固结压力达到一定时,微观结构的各向异性增长幅度很小,说明土体内颗粒排列的方向性基本不再变化,颗粒高度定向,在宏观上表现则是K0值基本保持不变。
     三轴加载渗透试验表明:深部粘土原状土样渗透性存在明显的各向异性,同等轴向应力下垂直方向渗透系数kT小于水平方向渗透系数kH,突变前(即各自均未达到临界应力段)kH/kT大约在1.1-1.3之间,其原因主要是:扁平状的粘粒在垂直方向和水平方向不同应力环境下定向沉积,造成孔隙的水平方向导通性普遍优于垂直方向。
     利用高压K0计算公式分析水平地压对井壁稳定性的影响,较好的模拟实际工程状况,对井筒建设具有一定的指导意义。
     该论文有图48幅,表34个,参考文献195篇。
The deep soils of mine area in eastern China are dominated by Tertiary soil layer, which contains low water content, is compact and appears in a saturated hard or half-hard condition, and is a type of special soil transitioning from soil to soft rock. In recent years the problems of earth pressure and permeation of deep well soil layer are outstanding, whereas it is required to look into the mechanical properties of engineering geology such as geological formation, structure, mechanics, permeability etc. of the deep soils in order to thoroughly solve such technical engineering difficulty. Therefore, the study the structural mechanics of deep soils has important theoretical significance and practical value.
     In this paper the soils buried below 300m in the mine area are taken, on the basis of indoor tests and theoretical analysis, and the micro-structural features, high Pressure triaxial unloading mechanical properties and K0 consolidation of the deep soils are studied deeply and systematically.
     Firstly, the microstructure of deep soils is detected by SEM, and a simple and feasible image map processing methods which can be extracted various micro-structural elements in deep soils are explored.Mathematical statistics is adopted for determining the weight of each single-factor index of the microstructure.And a relatively reasonable composite quantification parameter S that reflects the microstructure of deep clay is established. The densityρ, water contentωand composite quantification parameter S is , tcombined and he relationship among the parameters is established.
     Under the condition that considers approximate simulation of natural and well-building acting stress of deep clay,MTS815 servo test apparatus are introduced to carry out high Pressure triaxial unloading tests of undisturbed and remodeling soils, And the stress - strain characteristics through the state from high Pressure unloading dense structure to a more loose structure are analyzed.
     GE8800CT is introduced to detect high Pressure triaxial unloading soils. It is showed that: the initial state, the densities of different soil layers are close, and the arrangement of particles and pores inside the soil layer is not uniform; under the condition of equal pressure in all directions, the particle density of each soil layer increases, the pores decrease, the arrangement of the soil particles and pores tend to be uniform with the increase of pressure.When the confining pressure unloading is carried out and the axial pressure is kept unchanged, the particle density decreases and the porosity increasesof the sandy soil on the lateral section.But the particle density of the clay on the lateral section is basically kept unchanged.The directionality of particles and pores of the soil on the lateral section will be slightly influenced.
     A high Pressure K0 consolidation Apparatus which consolidation pressure up to 18MPa is designed.After K0 consolidation tests.We obtained that the remarkable difference between characteristic of deep soils mass and shallow soil mass. With the increase of consolidation pressure, soil samples ordered microstructure anisotropy gradually increasing,when the consolidation pressure to reach certain values, the microstructure anisotropic growth rate is small, indicating the direction of arrangement of soil particles does not change, the basic particles highly directional, and K0 value remained unchanged.
     Triaxial permeability tests showed that: there is remarkable anisotropy in the permeability of undisturbed soil sample of deep clay, the permeability coefficient kT in vertical direction under equal axial stress is less than permeability coefficient kH in horizontal direction, before sudden change (i.e. they have not reached the critical stress sections, respectively).The kH/kT ranges roughly between 1.1 and 1.3, the main reason lies in that: the flat clay particles settle directionally in vertical and horizontal direction in the environment of different stresses, resulting in tat the continuity of the pores in horizontal direction is generally better than that in vertical direction.
     The effect of horizontal earth pressure on the stability of well wall of the shaft under construction is calculated by the high Pressure K0 so as to simulate the actual conditions better, so has certain signification for guiding construction of the pit shaft.
     The paper have 48 maps, 34 tables, 195 references.
引文
[1]胡瑞林,王思敬等. 21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质,1999,(4): 5-8.
    [2]沈珠江.现代土力学的基本问题[J].力学与实践,1998,(6):1-6
    [3]胡瑞林,李向全,官国琳等.土体微结构力学-概念·观点·核心[J].地球学报, 1999,(2): 150-156.
    [4]龚晓南,熊传祥,项可祥等.粘土结构性对力学性质的影响及形成原因分析[J].水利学报, 2000,(10): 43-47.
    [5]齐吉琳,谢定义,石玉成.土结构性的研究方法与现状[J].西北地震学报, 2001,23(1):99-103.
    [6]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形-强度的关系[J].水利学报, 1999,(10):1-6.
    [7]胡瑞林,李向全.粘性土微结构定量模型及其工程地质特征研究[M].地质出版社, 1995.3.
    [8]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报, 1996.18(1): 95-97.
    [9]殷宗泽.土力学学科发展的现状与展望[J].河海大学学报, 1999,27(1):1-5.
    [10]蒋彭年.土的本构关系[M].北京:科学出版社1982.11.
    [11]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报, 1999,21(6):651-656.
    [12]张永双,曲永新.硬土/软岩(岩土间新类型)的确认及其判别分类的探讨[J].工程地质学报,2000(增刊): 309-313.
    [13]张永双,曲永新.鲁西南地区上第三系硬粘土的工程特性及其工程环境效应研究[J].岩土工程学报,2000,(4): 446-449.
    [14]周健,王浩,蔡宏英等.软土卸载孔压特性的试验与理论计算分析[J].岩土工程学报,2002,24(5):556-559.
    [15]魏汝龙.开挖卸载与被动土压力计算[J].岩土工程学报,1997,(6):88-92.
    [16]王钊,黄杰,咸付生等.土的卸载试验和在万家寨引水隧洞变形分析中的应用[J].岩土工程学报,2002,(4):525-527.
    [17]李广信,武世锋.土的卸载体缩的试验研究及其机理探讨[J].岩土工程学报,2002,24(1):47-50.
    [18]李广信,郭瑞平.土的卸载体缩与可恢复剪胀[J].岩土工程学报, 2000,22(2):158-161.
    [19]覃海婴,杨晓贞.考虑卸载扰动与土流变特性的基坑性状分析[J].福州大学学报(自然科学版),2001,(1):78-82.
    [20]周萃英.土体微观结构研究与土力学的发展方向[J].地球科学,2000,25(4) :215-220.
    [21]雷华阳.土的本构模型研究现状及发展趋势[J].世界地质, 2000,19(3):271-276.
    [22]洪伯潜.巨野煤田开发条件及井筒施工关键技术[J].中国煤炭,2002,28(4): 5-7.
    [23]钟辉虹.软土结构性及蠕变特性理论研究[D].博士学位论文.上海:同济大学:2003.
    [24] Brewer, R., Sleeman, J.R. Soil Structure and Fabric[J].CSIRO Publishing, 1988: 6-66 .
    [25] Hartge, K.H., Stewart, B.A. Soil Structure: Its Development and Function[M].Lewis Publishers, 1995: 1-415.
    [26]沈珠江.土体结构性数学模型[J].岩土工程学报,1996, 18(1):95-97.
    [27]施斌.粘性土微观结构SEM图像的定量研究[J].中国科学, 1995,(6): 538-541.
    [28]王清,王剑平.土孔隙的分形几何研究[J].岩土工程学报, 2000,(4): 496-498.
    [29]蒋明镜,沈珠江.结构性粘土剪切带的微观分析(英文) [J].岩土工程学报, 1998(2): 102-108.
    [30]吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报, 1991,Vol.23: 143-150.
    [31]张诚厚.两种结构性粘土的土工特性[J].水利水运科学研究, 1983(4): 65-71.
    [32]龚晓南.原状土的结构性及其对抗剪强度的影响[J].地基处理, 1999(1): 61-62.
    [33]谢永涛,张鸿儒.关于“土体结构性及其定量化参数研究的新途径”的讨论[J].岩土工程学报,2000,22 (4): 512-513.
    [34]王常明,肖树芳,夏玉斌等.海积软土的固结蠕变形状[J].长春科技大学学报, 2000,(1): 57-60.
    [35]李文平.饱水粘性土高压密实过程中孔压及体应变变化试验研究[J].岩土工程学报, 1999,(6): 666-669.
    [36]王宝军,施斌,刘志彬等.基于GIS的黏性土微观结构的分形研究[J].岩土工程学报,2004,26(2):244-247.
    [37]施斌,姜洪涛.在外力作用下土体内部裂隙发育过程的CT研究[J].岩土工程学报,2000,22(5):537-541.
    [38] Wong, R.C.K. Shear Deformation of Locked Sand in Triaxial Compression[J]. Geotechnical Testing Journal, 2000(2): 158-170 .
    [39] Djavid,M.,Transactions. Particle orientation and velocity equations of clay in a plane-strain condition[J].Journal of Applied Mechanics. 1995,62(1): 126-130.
    [40] Dean,E.T.R.Patterns,fabric,anisotropy,and soil elasto-plasticity[J].International Journal of Plasticity , 2005,21: 513–571.
    [41]施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型[J].岩土工程学报,1997,(3): 7-13.
    [42]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报, 1993,(3): 1-6.
    [43]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报, 2000(4): 35-41.
    [44]袁志英王伍军等.对贵州红粘土物理力学指标统计分布规律的初步研究贵州科学1997.15(3):37-42
    [45]施斌.粘性土微观结构定向性的定量研究[J].地质学报,1997,71(1):36-44.
    [46] Shi B.,Murakami,Y.,Wu Z. Orientation of aggregation of fine-grained soil: quantification and application[J].Engineering Geology,1998,50: 59-70.
    [47]谢和平著.分形—岩石力学导论[M].北京:科学出版社,1996.
    [48]王俊超,贾永刚,史文君等.差异水动力导致黄河口粉质土微结构分形特征变化实例研究[J].海洋科学进展,2004,22(2): 177-183.
    [49]袁聚云,杨熙章,赵锡宏等.上海软土各向异性形状的试验研究[J].大坝观测与土工测试,1996,20(2):10-14.
    [50]王洪瑾,张国平,周克骥.固有和诱发各向异性对击实粘性土强度和变形特性的影响[J].岩土工程学报,1996,18(3):1-10.
    [51]矫德全,陈愈炯.土的各向异性和卸载体缩[J].岩土工程学报,1994,16(4):9-16.
    [52] Anandarajah, Kuganenthira, N. Some aspects of fabric anisotropy of soil[J].Geotechnique, 1995,45(1): 69-81.
    [53] Wong, R.C.K., Wang, E.Z. Three-dimensional anisotropic swelling model for clay shale- a fabric approach[J].Int.J.Rock Mech. Min. Sci. , 1997, 34(27): 187-198.
    [54] Sivakumar,V., Doran ,I.G., Graham, J. Particle orientation and its influence on the mechanical behaviour of isotropically consolidated reconstituted clay[J].Engineering Geology , 2002,66: 197–209.
    [55] Sato,H.,Suzuki, S. Fundamental study on the effect of an orientation of clay particles on diffusion pathway in compacted bentonite[J].Applied Clay Science, 2003 ,23 : 51– 60.
    [56] Prikryl,R., Ryndova, T., Bohac, J.et al. Microstructures and physical properties of backfill clays: comparison of residual and sedimentary montmorillonite clays[J]. Applied Clay Science 2003, 23: 149– 156.
    [57] Galgali, G., Agarwal, S., Lele, A. Effect of clay orientation on the tensile modulus of polypropylene–nanoclay composites[J].Polymer , 2004, 45 : 6059–6069.
    [58] Cetin, H. Soil-particle and pore orientations during consolidation of cohesive soils[J].Engineering Geology, 2004,73: 1-11.
    [59] R.Q.Huang, X.N.Wang, L.S.Chan. Triaxial Unloading Test of Rocks and Its Implication for Rock Burst[J].Bull. Eng. Geol. Env., 2001(1): 37-41.
    [60]胡瑞林,官国琳,李向东等.黄土压缩变形的微结构效应[J]水文地质工程地质, 1998,(3 ):37-42.
    [61] YAO Yang-ping, LUO Ting etc .A single 3-D constitutive model for both clay and sand[J].岩土工程学报,2002.24(2):240-246.
    [62]李文平.深厚表土中煤矿立井破裂工程地质研究[M].徐州,中国矿业大学出版社,2000.
    [63]李文平,王维理,孙如华等.大埋深粘土三轴高压卸载变形与强度特征[J].工程地质学报,2004,12(30):307-311.
    [64]李文平,王维理,孙如华等.山东巨野矿区深部土工程地质性质及建井意义[J].工程地质学报,2004,12(增刊):102-107.
    [65]李文平,张志勇,孙如华等.深部粘土高压K0蠕变试验及其微观结构各向异性特点[J].岩土工程学报, 2006,28(10): 1185-1190
    [66]李文平,于双忠.徐淮矿区深部土体工程地质特性及失水变形机理[J].煤炭学报,199(4):355-360.
    [67]孙如华.深部粘性土工程地质性质及微观结构性研究[D].硕士学位论文.徐州:中国矿业大学,2003.5.
    [68]梁双华,孙如华,李文平.基于Mapinfo和PhotoShop的粘性土扫描图像处理[J].河南科技大学学报,2005,25(1):55-58.
    [69]孙如华,李文平.鲁西南深埋粘性土物理力学指标多元统计研究[J].水文地质工程地质,2004,31(2):37-40.
    [70]孙如华,李文平,梁双华.鲁西南地区大埋深粘性土力学指标统计分布规律研究[J].煤田地质与勘探,2004,32(3):30-32.
    [71]谭罗荣,孔令伟.膨胀土的强度特性研究[J].岩土力学,2005,26(7):1009-1013.
    [72]谭罗荣,孔令伟.膨胀土膨胀特性的变化规律研究[J].岩土力学,2004.25(10):1555-1559.
    [73]谭罗荣,张梅英.灾害性膨胀土的微结构特征及其工程性质[J].岩土工程学报,1994,16(2):48-57.
    [74]高国瑞等.黄土显微结构与湿陷性[J].中国科学,1980,(12):1203-1208.
    [75]高国瑞,韩爱民.论中国区域性土的分布和岩土性质的形成[J].岩土工程学报,2005,27(5):511-515.
    [76]高国瑞.黄土温陷变形的结构理论[J].岩土工程学报,1990,12(4):1-10.
    [77]沙爱民陈开圣压实黄土的湿陷性与微观结构的关系[J].长安大学学报,2006,26(4):1-4
    [78]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000.21(1):1-4.
    [79]苗天德,王正贵.考虑微结构失稳的湿陷性黄土变形机理[ J ].中国科学( B辑),1990,(1):48-57.
    [80] Pierre Delage,Mratine A,Cui Y J,et al.Microstructure of compactedsilt[J].Canada Geotechnical Journal,1996,33:150-158.
    [81] Nagaraj T S,Pandian N S,Narasimha Raju PSR.Compressibility behavior of soft cemented soil.Geotechnique 1998,48(2):281-287.
    [82]张诚厚,袁文明,戴济军.软粘土与结构性及其对沉降的影响[J]..岩土工程学报, 1995,17(5): 25-32.
    [83]程鉴基,邝健政.软弱地基中水泥类化学灌浆机理初探[J].岩土工程学报,1993,15(3):81-86.
    [84] W.Burke, J.Bouma, D.Gabriels. Soil Structure Assessment[J].Ashgate Publishing Company, 1986: 1-28.
    [85] R.Brewer, J.R.Sleeman. Soil Structure and Fabric[M].CSIRO Publishing, 1988: 6-66.
    [86] K.H.Hartge, B.A.Stewart. Soil Structure: Its Development and Function[M]. Lewis Publishers, 1995: 1-415.
    [87]沈珠江.应变软化材料的广义孔隙压力模型[J].岩土工程学报,1997,19(3):14-21.
    [88]胡再强,沈珠江,谢定义.结构性黄土吸力的试验研究[J].煤田地质与勘探,2004,32(3):43-45.
    [89]卢再华,陈正汉,孙树国.南阳膨胀土变形与强度特性的三轴试验研究[J].岩石力学与工程学报,2002.21(5):717-723.
    [90]谢红强,何江达,许进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报:2003.2(3): 336-338.
    [91]尤明庆,苏承东,徐涛.岩石试样的加载卸载过程及杨氏模量[J].岩土工程学报,2001.23(5): 588-592
    [92]程相华.卸荷土体的强度特征[J].佳木斯大学学报(自然科学版),2000.18(3) :234-238.
    [93]刘国彬,侯学渊.软土的卸载模量[J].岩土工程学报,1996,18(6):18-23.
    [94]王英.土体卸载与加载的差异性[J].佳木斯大学学报(自然科学版),2001.19(1): 81-83.
    [95]师旭超,汪稔,韩阳.卸载作用下淤泥变形规律的试验研究[J].岩土力学,2004,25(8): 1259-1262.
    [96]屈智炯,刘开明,肖晓军.粗粒土卸载-再加载变形特性的研究[J].水电站设计,1994.10(3): 24-31.
    [97]王衍森,崔广心,杨维好.深部土的高压K0固结试验研究展望[J].岩土力学,2003,第24卷增刊:687-690.
    [98]李生林,秦素娟,薄遵昭等.中国膨胀土工程地质研究[M].南京:江苏科学技术出版社,1992.171-177.
    [99]姜朴等.K0固结三轴仪的研制与试验研究[J].岩土工程学报,1991.13(3):43-52.
    [100]杨熙章编著.土工试验与原理[M].上海:同济大学出版社,1993.
    [101]维亚洛夫.土力学的流变原理[M].北京:科学技术出版社,1987.
    [102]黄文熙.土的工程性质[M].北京:水利电力出版社,1988.
    [103]陈丽华等.扫描电镜在地质上的应用[M].北京:科学技术出版社.1986.2.
    [104] N.Senesi, Jacques Buffle, P.M.Huang. Structure and Surface Reations of Soil Particles[J].Wiley, 1998,(Vol.4): 41-77.
    [105]李晓军.分层击实重塑土压缩过程中微裂纹产生的机制探讨[J].岩土工程技术,2000,(3): 139-142.
    [106]马金荣,姜振泉,李文平等.淮河大堤老应段土体蠕变特性研究及工程应用[J].工程地质学报,1997(3): 53-58.
    [107]蒋彭年.土的本构关系[M.北京:科学出版社,1982.11.
    [108]董邑宁饱和粘土渗透特性的试验研究[J].青海大学学报(自然科学版), 1999,17(1):6-11.
    [109]刘元雪岩土本构理论的几个基本问题研究[J].岩土工程学报,2001.23 (1):45-48.
    [110]刘莹,王清.吹填土沉积后微观结构特征定量化研究[J].水文地质工程地质,2006,(3):124-128.
    [111]周宇泉,胡昕,洪宝宁等.从微细结构方面解释某黏性土压缩特性的差异[J].水利水电科技进展,2006,26(1):31-36.
    [112]邓若宇,王靖涛.粘土本构关系的神经网络模型[J].土工基础,1999,13(1):28-32.
    [113]王秀艳.深层坚硬粘性土渗透变形特性的研究[D].博士学位论文.吉林:吉林大学,2003.
    [114]付茂林,熊正为,邹喜洋等.土壤渗透系数的理论分析[J].湖南城市建设高等专科学校学报,2002,11(3):19-20.
    [115]宿青山,侯杰,段淑娟.对饱和粘性土渗透规律的新认识及其应用[J].长春地质学院学报,1994.第24卷第1期:50-56.
    [116] Mitchell J K. Foundamentals of Soil Behaviour[M].JohnWiley&SonsInc.1979.
    [117]周宇泉加载过程中粘性土微细结构变化规律的定量试验研究[D].硕士学位论文.南京:河海大学2005,6.
    [118]冯晓腊、沈孝宇,饱和粘性土的渗透固结特性及其微观机制的研究[J].水文地质工程地质1991年.第18卷.第一期.6-12.
    [119]钱征.饱和软粘土中不同形态水的划分-天津软土地基[M],天津科技出版社,1987.
    [120]徐洪,马云东.各向异性土体中渗透系数的讨论[J].矿山压力与顶板管理,2005,(1):104-108.
    [121] Yoshikuni,H.,Moriwaki,T.,lkegami.S.,and Xo.T.,1995, Direct Determination of Permeability of Clayfrom Constant Rate of Strain Consolidation Test[C].Proceedings of the International Symposium on Compression and Consolidation of Clayey Soil,Vol.l,pp.609-614.
    [122] Takeo Moriwaki and Ken Umehara, Method for Determining the Coefficient of Permeability of Clays[J].Geotechnical Testing Journal, March 2003,Vol.26,NO.1.
    [123] Peck R B y y Rabbage R M(1969).Design performance of an osmotic tensiometer for measuring capillary potential[J].Proccdings of Soil Society of America.33:196-202.
    [124] Me Kee C R Bumb A C. The importance of unsaturated flow parameters in designing a monitoring system for a hazardous wastes environmental emergencies[C].Hazardous Materials Control Research Institute National Conference. Houston, TX,March, 1984:50-58.
    [125] Tyler S W Wheatcraft S W.Fractal processese in soil water retention[J]. Water Resour.Res. 1990,26:1047-1054.
    [126]孔令伟,郭爱国,吕海波等.典型红粘土的基本特性与微观结构特征[J].岩石力学与工程学报, 2001,20(1):973-977.
    [127]施斌,姜洪涛.粘性土的微观结构分析技术研究[J].岩石力学与工程学报,2001,20(6): 864-869.
    [128]施斌.DIPIX图像处理系统在土微结构定量研究中的应用[J].南京大学学报,1996,32(2): 275-279.
    [129]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996.4(1) :39-44.
    [130] Tovey N.K.,Krinsley D.H. mapping of the orientation of fine-grained minerals in soils and sediments[J]. Bulletin of LAEG,1992,46:92-101.
    [131] Tovey N.K.,adigital computer technique for orientation analysis of micrographs of soil fabric[J].J of Microcopy,1990,120:303-315.
    [132]杨雪强,朱志政,韩高升等.不同应力路径下土体的变形特性与破坏特性[J].岩土力学, 2006,27(12):2182-2185.
    [133]吴义祥等.土体微观结构的研究现况评述[J].地质论评,1992,38(3):250-259.
    [134]李文平,于双忠等.淮南潘集矿区深部土体失水变形及诱发的环境地质问题研究[R] ,1994,12.
    [135]李文平,于双忠,米金科.巨厚冲积层底含失水土体变形机理研究[R].煤炭科学基金报告,1997.10.
    [136]李文平,于双忠,王柏荣等.煤矿区深部粘性土吸附结合水含量测定及其意义[J].水文地质工程地质,1995(3) :31-34.
    [137] Wenping Li.Study on the mechanism of dewater deformation of deep soil masses[C]. 30th International Geological Congress, Beijing, China,1996.
    [138]李文平,米金科,于双忠.潘集矿区深部土层工程地质性质及失水变形机理初探[C].第五届全国工程地质大会文集,地震出版社,1996.
    [139]李文平.深部土层失水变形及诱发井筒破裂的机理研究[D].博士学位论文.徐州:中国矿业大学,1995.
    [140]李文平,都平平等.大埋深土与井壁相互作用力学参数试验研究[J].中国矿业大学学报,1995(4):104-108.
    [141]李文平.深部土层失水变形时土与井壁相互作用试验与理论研究[J].岩土工程学报, 2000,22(4):475-480.
    [142] Wenping Li,Shuangzhong Yu,Pingping Du. Study on the mechanism of the interaction between soil and shaft wall in thick deep soils due to the bottom aquifer losing water[C]. International symposium on New Development of Rock Mechanics Engineering,October 10-12,Shenyang,China-NDRM 1994:616-622.
    [143] Wenping Li,Shuangzhong Yu,Huanjie Liu.Engineering geological study of the mechanism of non-mining ruptures of the shaft in coal mine[J]. Mining Science and Technology, A.A.Balkman,1994.
    [144] Wenping Li .Study on the formation mechanism of non-mining rupture of coal mine shaft in east China[C]. 30th International Geo-logical Congress,Beijing,China,1996.
    [145] Hounsfield G N.Computerized transverse axial scanning (tomogrphy) [J]. British J Radiology,1973,46:1016-1022.
    [146] G T赫尔曼著.由投影重建图像CT的理论基础[M].北京:科学出版社,1985.
    [147]吴紫汪,蒲毅彬,马巍等.冻土蠕变过程组构体积变化的C T分析[J].冰川冻土.1995,17(5): 41-46.
    [148]马巍,吴紫汪,蒲毅彬等.冻土单轴蠕变过程中的结构变化的CT动态监测[J].冰川冻土, 1996,18(4): 306-311.
    [149]马巍,吴紫汪,蒲毅彬等.冻土三轴蠕变过程中结构变化的CT动态监测[J].冰川冻土,1997,(1):52-58.
    [150]蒲毅彬.CT在岩土实验中的数值分析[J].CT理论与应用研究,1994,3(3):8-12.
    [151]蒲毅彬,吴紫汪,马巍等.冻土CT实验中的数学方程[J].冰川冻土,1995,17(5):135-139.
    [152]叶为民杨林德黄雨等.上海软土微观空隙各向异性特征及其成因分析[J].工程地质学报,2008,(12):84-87.
    [153]李晓军,张登良. CT技术在土体结构性分析中的应用初探[J].岩土力学,1999,(6):62-67.
    [154]崔广心,杨维好,吕恒林.深厚表土层中的冻结壁和井壁[M].徐州:中国矿业大学出版社.1998.10.
    [155]张敏江,阎婧,初红霞.结构性软土微观结构定量化参数的研究[J].沈阳建筑大学学报(自然科学版),2005,21(5):455-459.
    [156]何开胜,沈珠江.结构性土的微观变形和机理研究[J].河海大学学报, 2003,31(2):161-165.
    [157]马金荣.深层土的力学特性研究[D].博士学位论文.徐州:中国矿业大学,1998,10.
    [158]周中,傅鹤林,刘宝琛.土石混合体渗透性能的试验研究[J]湖南大学学报,2006,33(6):25-28
    [159]高彦斌,徐超,汤竞.一个考虑土的各向异性的孔压公式及其应用[J]岩土力学, 2005,26(1):1349-1355.
    [160]魏汝龙.软粘土的强度和变形[M].北京:人民交通出版社,1991.
    [161]龚晓南,叶黔元,徐日庆.工程材料本构方程[M].北京:中国建筑工业出版社,1995.
    [162]刘元雪,蒋树屏,赵燕明原状欠固结土的力学特性试验研究[J].岩石力学与工程学报, 2004,23增1:4409-4413.
    [163] Chaudharg SK,Kawano J,Hashimoto S,et al Efectsofinitialfabrican d shearing direction on cyclic deform ation characteristics ofsands[J].Soils and Foundations,2002,42(1):147-157.
    [164]殷宗泽,徐志伟.土体的各向异性及近似模拟[J].岩土工程学报.2002.24(5):547-551.
    [165]王清,王凤艳.粘性土的变形、强度特征的定量微观表现[J].长春科技大学学报,1999,29(增刊):148-152.
    [166]孙星亮.冻结粉质粘土细观变形机理及其各向异性损伤模型研究[D].博士学位论文.武汉:中国科学院武汉岩土力学研究所,2004.
    [167]刘松玉,方磊.试论粘性土粒度分布的分形结构[J].工程勘察,1992(2):16-20.
    [168]张凌,王宝军,施斌.土粒度分维的确定方法探讨[J].水文地质工程地质,1999,(5):43-45.
    [169]许延春.临涣矿区地层非采动沉降及其对井筒作用影响的研究[D].煤炭科学研究总院北京开采所硕士论文,1992,6.
    [170]王祯伟.论孔隙含水层的沉积特征与水文地质条件的关联机理[J].煤炭学报,1993(2): 81-88.
    [171]孔德坊.工程岩土学[M].北京:地质出版社,1992.7.
    [172]张向霞,杨林德,邓检良.各向异性土体强度表述方法的研究[J].科学技术与工程2005,5(18):1248-1251.
    [173] Lo K Y. Stability of slopes in anisotropic soils[J]. Joumal of the Soil Mechanics and Foundations Division,1965;19(SM4): (American Society of Civil Engineers-Proceedings.405:85-l06.
    [174] Abelev AVa.Lade PV.Characterization of failure in cross-anisotropic soils[J].Journal of Engineering Mechanics,2004;130(5):599- 606.
    [175]张坤勇,殷宗泽,梅国雄.土体两种各向异性的区别与联系[J].岩石力学与工程学报, 2005, 24(9):1599-1604.
    [176] Hansen,J.B&Gibson,R.E.,Undrained shear strength of anisotropically consolidated clays[J].Geotechnique,1949, Vol.1(3):189-204.
    [177] Scoott,R.F.,and Ko,H.Y,”Stress-Deformation and strength characteristics(1)”[C].Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering,1969,1-49.
    [178] Bjerrum,S.R, Hardness law for inelastic deformation[J].International Journal of Engineering Science,1978,16(3),221-230.
    [179]龚晓南.软粘土地基各向异性初步探讨[J].浙江大学学报.1986,(4):21-26.
    [180]赵锡宏、肖仁成.上海软粘土的横观各向异性性质的试验研究[J].勘察科学技术,1987,(2)12-16.
    [181]袁聚云.软土各向异性性状的试验研究及其在工程的应用[D].博士学位论文.上海:同济大学,1995.
    [182]商翔宇.不同应力水平深部粘土力学特性研究[D].博士学位论文.徐州:中国矿业大学,2006.
    [183]张阿根,李洪然,叶为民.上海深部硬土渗透特性试验研究[J].工程地质学报. 2008, 16(5): 630-633.
    [184]程晋源,王博,钟贵荣深厚表土水平地压计算方法分析与探讨[J].山东煤炭科技,2009,(2):101-102.
    [185]杨凌云,王晓谋,刘军等.非饱和重塑压实粘土的三轴剪切试验[J].长安大学学报(自然科学版) ,2009,29(5):30-34.
    [186]马金荣,秦勇等.黏土的高压三轴剪切特性研究[J].中国矿业大学学报,2008, 37(2): 176-179.
    [187]赵晓东,周国庆等.深部重塑土高压应力路径试验研究[J]中国矿业大学学报,2009,38(4): 471-475.
    [188]许延春.深部饱和黏土的力学性质特征[J].煤炭学报,2004,29(1):26-30.
    [189]王宝军,施斌,蔡奕等.基于GIS的黏性土SEM图像三维可视化与孔隙度计算[J].岩土力学2008,29(1):251-255.
    [190]王宝军,施斌,刘志彬等.基于GIS的黏性土微观结构的分形研究[J].岩土工程学报,2004,26(2):244-247.
    [191]孙法文.土的蠕变与土坝稳定[J].西北地质,1999.32(2):55-56.
    [192]曹芳,马保国,李友国.混凝土的渗透性能及测试方法的对比分析[J].混凝土, 2005,10:15-17.
    [193]经来旺,刘飞,高全臣等.表土沉降阶段煤矿立井井壁破裂应力分析[J]岩石力学与工程学报, 2004,23(19):3274-3280.
    [194]洪伯潜.钻井井壁局部破坏原因分析[J].煤炭科学技术,1992(2):38-41.
    [195]毕思文徐淮地区煤矿竖井变形破坏机理及防治对策的研究[J]建井技术.I996.17(3):26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700