冠状动脉粥样硬化64层螺旋CT和MR血管成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分冠状动脉粥样硬化钙化斑块对管腔影响的CTA与CAG对比研究
     目的:通过冠状动脉CTA和CAG对钙化斑块局部管腔狭窄程度的点对点对照研究,评价钙化斑块的大小、形态及钙化积分与冠状动脉狭窄的关系,提高冠状动脉CTA诊断钙化斑块局部管腔狭窄程度的准确性。
     材料与方法:经冠状动脉CTA检查发现冠状动脉钙化斑块的患者43例(男37例,女6例,年龄36~84岁,平均66.9±11.7岁)。所有患者均于CTA检查后两周内行CAG检查。采用Siemens 64层螺旋CT行冠状动脉CTA检查,成像参数:120kV,900mAs,空间分辨率0.4×0.4×0.4mm,330ms/周,层厚0.75mm,间隔0.5mm,造影剂注射流率5ml/s(优维显370mgI/ml)。进行钙化积分、最大密度投影(MIP),多平面重建(MPR)及提取冠脉树等图像后处理。计算每位患者冠状动脉钙化的数目和总钙化积分。共117个感兴趣钙化斑块(位于直径>1.5mm的冠状动脉节段,并可测量其大小)行CTA和CAG点对点评价,评价钙化斑块局部管腔狭窄与患者冠心病危险因素的相关性;观察感兴趣钙化斑块的形态、分布特点;于CTA上测定钙化斑块的长径、宽径、体积、钙化积分及局部管腔狭窄程度。对应CTA上感兴趣钙化斑块的空间位置,于CAG上行点对点测定对应冠状动脉节段的管腔狭窄程度。冠状动脉管腔狭窄程度>50%定义为显著性狭窄。采用相关分析、卡方检验和t检验进行统计学分析。
     结果:CAG证实,117个钙化斑块中共有29个斑块局部管腔显著性狭窄。钙化局部管腔狭窄狭窄程度与患者是否有高胆固醇血症相关(p<0.05)。CTA显示的钙化斑块局部管腔狭窄程度明显大于CAG(57%±23.1%vs.26%±28.9%,p<0.05)。CTA诊断钙化斑块局部管腔显著性狭窄的敏感度、特异度、阳性预测值、阴性预测值、准确性分别为86.2%、44.3%、33.8%、90.7%、54.7%。血管横断面观察,弧形或环状钙化局部管腔显著性狭窄几率明显高于点状钙化(58.3%vs.16.1%,p<0.05)。局部管腔显著性狭窄的钙化斑块其长径、宽径、体积明显大于狭窄程度<50%的钙化斑块(p<0.05)。钙化斑块局部管腔狭窄程度与斑块的分布无关。患者钙化局部管腔显著性狭窄的血管节段数与钙化斑块的数目、体积及钙化积分均无关(p>0.05)。
     结论:冠状动脉钙化斑块局部管腔狭窄程度与患者是否有高胆固醇血症呈正相关。血管横断面观察弧形或环状钙化易导致管腔显著性狭窄。钙化斑块的长径、宽径及体积越大,局部管腔显著性狭窄的几率越高。CTA高估钙化斑块局部管腔狭窄程度,诊断钙化斑块局部管腔狭窄程度的敏感度和阴性预测值较高,特异度和阳性预测值和准确性均较低。
     第二部分64层螺旋CT和MR血管成像评价冠状动脉粥样硬化钙化斑块所致管腔狭窄的对比研究
     目的:比较CMRA与64层CTA在评价冠状动脉粥样硬化钙化斑块所致管腔狭窄的准确性。
     材料和方法:经CTA检查发现冠状动脉粥样硬化钙化斑块的患者24例,进行CMRA检查,所有患者均于CTA和CMRA检查后两周内行CAG检查。采用Siemens Sensation Cardiac 64螺旋CT行冠状动脉CTA检查,成像参数:120kV,900mAs,空间分辨率0.4×0.4×0.4mm,重建层厚0.75mm,重建间隔0.5mm,造影剂注射流率5ml/s(优维显370mgI/ml)。进行最大密度投影(MIP),多平面重建(MPR)等图像后处理。CMRA应用GE Signa 1.5T HD成像仪采用呼吸导航三维FIASTA序列进行血管成像,采用T2 PREP准备脉冲抑制背景信号,成像参数:TR4.7ms,TE2.3ms,FOV 28×28cm,采集矩阵256×256,空间分辨率1.1×1.1mm(平面内)。冠状动脉CTA和CMRA检查患者心率范围控制在70次/分以下。主要评价直径大于≥1.5mm的冠状动脉节段管腔的狭窄程度,以管腔狭窄程度>50%为显著性狭窄。由两名放射科医生分别评价图像。并以CAG为诊断金标准,分别计算CTA和CMRA对管腔狭窄程度诊断的敏感度、特异度、准确性,并进行统计学检验。
     结果:24个患者CTA上于85个血管节段检出感兴趣钙化斑块155个,其中CTA判断118个钙化斑块局部管腔显著性狭窄,经CAG证实仅有63处显著性狭窄,CTA诊断的敏感度、特异度、准确性分别为89%、33%、55%。感兴趣钙化斑块对应血管节段CMRA共检出62处显著性狭窄,其中52处为CAG证实,CMRA诊断的敏感度、特异度、准确性分别为83%、89%、86%。CTA和CMRA诊断冠状动脉钙化斑块所致管腔狭窄程度均具有较高的敏感度(p>0.05),CMRA的特异度和准确性明显高于CTA(p<0.05)。
     结论:CMRA评价粥样硬化钙化斑块所致管腔狭窄具有较高的准确性和敏感度,明显优于冠状动脉CTA;两者均具有较高的特异度;CMRA在诊断冠状动脉钙化斑块所致管腔狭窄方面对CTA具有互补作用。
     第三部分对比增强与非增强MR血管成像评价冠状动脉粥样硬化斑块及管腔狭窄的对比研究
     目的:通过对比增强提高CMRA的信噪比和对比噪声比,比较对比增强与非增强CMRA对冠状动脉粥样硬化斑块及管腔狭窄诊断的准确性。
     材料和方法:对健康志愿者14例(男8例,女6例,平均年龄44.1岁)和冠心病患者20例(男14例,女6例,平均年龄57.3岁)分别行非增强与对比增强CMRA检查,所有患者CMRA均于CTA检查后一周内进行。应用Siemens Sensation Cardiac-64螺旋CT行冠状动脉CTA检查。应用GE Signa 1.5T MR成像仪,采用呼吸导航回波触发三维FIASTA序列,成像参数为:TR 4.7ms,TE 2.3ms(增强扫描TR 4.9ms,TE 2.1ms),FOV 28cm×28cm,矩阵256×256(增强扫描矩阵320×256),采样层厚2mm×16层,图像空间分辨率1.1×1.1mm(增强扫描0.9×1.1mm),T2准备脉冲抑制心肌信号。增强扫描采用静脉注射造影剂马根维显(Gd-DTPA)30ml,注药流率1.5ml/s。所有志愿者和患者心率控制在70次/分以下。比较增强前、后健康志愿者和患者CMRA图像的SNR和CNR。感兴趣斑块为粥样硬化非钙化及以非钙化成分为主的混合型斑块。比较非增强和对比增强CMRA对粥样硬化斑块及管腔狭窄的检出率和斑块与血管周围结缔组织和血管腔的CNR。比较非增强与对比增强CMRA对粥样硬化管腔狭窄检出率,并检验两者诊断粥样硬化管腔狭窄程度的一致性。由两位心血管系统方面有诊断经验的放射科医生阅读CTA和MRA影像。采用SPSS11.5统计学软件进行统计学分析。
     结果:对比增强CMRA图像的SNR和CNR明显高于非增强CMRA(p<0.05);非增强和对比增强CMRA上斑块检出率分别为32.3%、96.8%,后者明显高于前者(p<0.05);与非增强CMRA相比,对比增强CMRA明显提高粥样硬化斑块与血管周围结缔组织和血管腔的CNR(5.62±6.61 vs.9.81±4.69,8.79±6.63 vs.12.54±5.5,p<0.05);非增强与对比增强CMRA对管腔狭窄性病变的检出率分别为77.4%、100%;非增强与对比增强CMRA对粥样硬化斑块所致管腔狭窄诊断的符合率为0.742(P<0.05)。
     结论:对比增强CMRA明显提高冠状动脉图像的SNR和CNR,明显提高粥样硬化斑块与血管周围结缔组织和血管腔的CNR,能够提高对冠状动脉粥样硬化非钙化斑块和管腔狭窄的检出率,但并未提高对冠状动脉狭窄程度诊断的准确性。
Part One Evaluating Coronary Artery Lumen with Calcified Plaque on CTA: Comparison with Coronary Angiography
    Objective: To evaluate the relationship between Coronary artery stenosis and the size, shape and the calcium score of coronary calcified plaques detected by CTA comparing with CAG lesion to lesion, to improve diagnostic accuracy for coronary stenosis caused by calcified plaque on CTA.
    Materials and Methods: 43 consecutive patients (37 men; age 66.9±11.7 years) with coronary calcified plaques detected on CTA were included in the study. CTA was performed on Siemens sensation cardiac 64 spiral CT scanner with 0.33s/r, 120kV, eff.900 mAs, slice collimation 64×0.6mm, pitch 0.2, thickness 0.75mm, increment 0.5mm. Contrast media (Ultruvist 370mgI/ml) was injected with 5.0ml/s rate. The image postprocessing included MIP, MPR, coronary tree VR and calcium score. The numbers and the total calcium score of coronary calcified plaques of every patient were calculated. 117 calcified plaques (located in the coronary segment > 1.5mm in diameter and the size can be measured) were studied comparing with CAG lesion to lesion. To evaluate the correlation between the coronary stenosis with calcified plaque and the risk factors of coronary artery disease. To evaluate the shape and the distribution of calcified plaques. The length, width, volume, calcium score and the coronary stenosis with calcified plaque were measured on CTA. The diagnostic accuracy for coronary stenosis with calcified plaque on CTA was calculated. All the patients were performed CAG within two weeks after CTA. The stenosis (>50 % was defined significant stenosis) was also evaluated on CAG lesion to lesion. Statistic analysis included correlation analysis,
    chi-square test and t test.
    Results: 29 (of 117) calcified plaques caused significant coronary stenosis on CAG. There was correlation between coronary stenosis with calcified plaque and hypercholesteremia (p<0.05). The coronary stenosis with calcified plaque on CTA was more severe than that on CAG (57%±23.1% vs. 26%±28.9%, p<0.05). The sensitivity, specificity, positive predictive value, negative predictive value and the accuracy of diagnosis of significant coronary stenosis with calcified plaque on CTA was 86.2 % 、 44.3 % 、 33.8 % 、 90.7 % and 54.7% respectively. The frequency of coronary significant stenosis in group of arch or circular calcified plaques was higher than that in group of spotted plaques from cross section image on CTA (58.3% vs. 16.1%, p<0.05). The length, width and the volume of calcified plaque in group of significant stenosis were more than that in group of <50% stenosis (p<0.05). There was no correlation between coronary stenosis with calcified plaque and the distribution of calcified plaque. There was no correlation between The numbers of significant coronary stenosis with calcified plaques and the numbers, volume and total calcium score of the calcified plaques ( p>0.05).
    Conclusions: There was correlation between coronary stenosis with calcified plaque and hypercholesteremia. The frequency of coronary significant stenosis in group of arch or circular calcified plaques was higher than that in group of spotted plaques from cross section image on CTA. Significant coronary artery stenosis is more frequent in those patients with multiple lesions, large volume and high calcium score of coronary calcified plaque. Calcified plaque with large size may cause significant coronary artery stenosis. CTA overestimates the coronary stenosis with calcified plaque. CTA showed high sensitivity and negative predictive value and low specificity, positive predictive value and accuracy of diagnosis of significant coronary stenosis with calcified plaque.
    Part Two Evaluating Coronary Artery stenosis with Calcified Plaque on
    64-slice Spiral CT and Coronary MR Angiography
    Objective: To compare the diagnostic accuracy of CMRA with 64-slice spiral CT for coronary stenosis with calcified plaque.
    Materials and Methods: Consecutive 24 patients with various extent calcified atherosclerotic plaques on CTA were included in the CMRA study. CAG was performed within 1 week after CTA and CMRA. Siemens Sensation Cardiac 64 CT scanner was used with 120kV, 900mAs, 0.4 × 0.4 × 0.4mm spatial resolution, 0.75mm thickness and 0.5mm increment. The contrast media was injected at a rate of 5ml/s (Ultravist 370mgl/ml). The image post processing included MIP, MPR and coronary tree VR. The CMRA was acquired with GE Signa 1.5T HD scanner using navigator-gated 3D-SSFP sequence with a slab of 16-partition and a resolution of 1.1 × 1.1 × 2mm. T2-preparation was applied to suppress the myocardium. The coronary tree was visualized in multiple target slabs. During CTA and CMRA, the heart rate was controlled to be <70bpm. The CTA and CMRA data were graded for the presence of greater than 50% stenosis in vessels larger than 1.5 mm in diameter, and the images were reviewed by two radiologists. The diagnostic accuracies of the two modalities were evaluated with reference to quantitative CAG using the chi square test.
    Results: Totally 155 calcified atherosclerotic plaques could be detected on 85 segments. 118 calcified plaques ( of 155 ) were judged as significant stenosis. But on CAG, only 63 of the 118 plaques caused significant stenosis. Compared to CAG, the sensitivity, specificity and accuracy of CTA detecting significant stenosis with calcified plaque was 89%, 33%, 55%, respectively. On CMRA, 62 (of 155) calcified plaques corresponding coronary segments were judged significant stenosis and 52 (of 62) were consistent with CAG The sensitivity, specificity and accuracy of CMRA detecting significant stenosis with calcified
    plaque was 83%, 89%, 86%, respectively. On diagnosing coronary stenosis with calcified plaque, both CTA and CMRA had high sensitivities (p>0.05), the specificity of CMRA was significantly higher than that of CTA (P<0.05). The overall diagnostic accuracy of CMRA for coronary significant stenosis with calcified plaque was significantly higher than that of CTA (P<0.05).
    Conclusions: CMRA had significantly higher specificity than CTA for diagnosing coronary artery stenosis with calcified plaque, and both of the two modalities had high sensitivities for detection of significant stenosis with calcified plaque. The overall diagnostic accuracy of CMRA was significantly higher than that of CTA.
    Part Three
    Evaluating Coronary Atherosclerotic Plaque and Stenosis on Coronary
    MR Angiography with and without Contrast Application
    Objective: To improve the SNR and CNR of coronary artery angiography images by contrast enhancement. To compare the diagnostic accuracy of CMRA with and without contrast enhancement for coronary atherosclerotic plaques and stenosis.
    Materials and Methods: 14 healthy human volunteers(mean age 44.1, 8 males) and 20 consecutive patients (mean age 57.3, 14males) with coronary non-calcified plaque detected by CTA were enrolled in pre- and post contrast CMRA studies. CMRA was performed within one week after CTA. Pre- and post-contrast CMRA were performed with navigator-gated 3D-SSFP sequence with TR 4.7ms, TE 2.3ms(post-contrast CMRA, TR 4.9ms, TE 2.1ms), Flip angle 65, FOV 28cm×28cm, Matrix 256×256 (post-contrast CMRA, 320×256), thickness 2mm, a slab of 16-partition and a resolution in-plane of 1.1×1.1mm(post-contrast CMRA, 0.9×1.1mm). T2-preparation was applied to suppress the myocardium. Gadolinium-DTPA 20ml was intravenously injected (Magnevist, a injection rate of 1.5ml/s ) using automatic injector. The coronary tree was visualized in multiple target slabs. During CMRA, the heart rate was controlled to be <70bpm. CMRA images were graded the significant stenosis in coronary stenosis>50% in segments > 1.5mm in diameter. SNR and CNR (blood versus thoracic muscle) of pre- and post-contrast CMRA were measured and compared both in healthy human volunteers and in patients with coronary artery disease. The noncalcified plaques and the mixed type plaques with main noncalcified component were included in the study. To compare the detection rates of atherosclerotic plaques and coronary stenosis between pre- and post-contrast CMRA, and the CNRs between the plaque and the surrounding connective tissue and the coronary lumen were also compared. The coordination between the diagnostic accuracy for coronary stenosis of pre- and post-contrast CMRA was analysed with reference standard of
    CTA. SPSS11.5 soft ware was used to statistic analyze. MRA data were double-blind reviewed by two radiologists.
    Results: The mean SNR of blood and the CNRof post-contrast CMRA showed significantly higher than that of pre-contrast CMRA both in healthy volunteers and patients. The detection rate for atherosclerotic plaque of post-contrast CMRA was significant higher than that of pre-contrast CMRA (96.8% vs. 32.3%, p < 0.05). Comparison with pre-contrast CMRA, post-contrast CMRA improved the CNRs between the plaque and the surrounding connective tissue and the coronary lumen (9.81±4.6 vs. 95.62±6.61, 12.54±5.5 vs 8.79±6.63, p < 0.05). The detection rate for coronary stenosis of post-contrast CMRA was higher than that of pre-contrast CMRA (100%, 77.4%). The coincidence of diagnosing significant coronary stenosis on pre- and post-contrast MRA was 0.742 (P<0.05).
    Conclusions: Post-contrast CMRA improving the SNR and CNR of coronary artery images, and improving the CNRs between the plaque and the surrounding connective tissue and the coronary lumen. Post-contrast CMRA improved the detection rate of atherosclerotic plaques and coronary stenosis, but didn't improve the diagnostic accuracy of coronary artery significant stenosis.
引文
1. Leber AW, Becker A, Knez A, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system. J Am Coll Cardiol, 2006,47(3):672-677
    
    2. Bormann JL, Stanford W, Stenberg RG, et al. Ultrafast tomographic detection of coronary artery calcification as an indicator of stenosis. Am J Card Imaging, 1992, 6(3):191-196
    
    3. Kuettner A, Kopp AF, Schroeder S, et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol, 2004,43(5):831-839
    
    4. Kuettner A, Burgstahler C, Beck T, et al. Coronary vessel visualization using true 16-row multi-slice computed tomography technology. Int J Cardiovasc Imaging, 2005, 21(2-3): 331-337
    
    5. Virmani R, Kolodgie FD, Burke AP et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol, 2000, 20(5): 1262-1275
    
    6. Fuster V. Lewis A. Connor Memorial Lecture—Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation, 1994, 90(4):2126-2146
    
    7. Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet, 1989, 2(8669): 941-944
    
    8. Cheng GC, Loree HM, Kamm RD, et al. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation, 1993, 87(4): 1179-1187
    
    9. Demer LL. Effect of calcification on in vivo mechanical response of rabbit arteries to balloon dilation. Circulation, 1991, 83(6):2083-2093
    
    10. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. Circulation, 1996, 94(5): 1175-1192
    
    11. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med, 1987, 316(22): 1371-1375
    
    12. Mautner SL, Mautner GC, Froehlich J, et al. Coronary artery disease: prediction with in vitro electron beam CT. Radiology, 1994, 192(3):625-630
    
    13. Budhoff MJ, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation, 1996,93(5):898-904
    
    14. Hoffmann U, Moselewski F, Cury RC, et al. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patientversus segment-based analysis. Circulation, 2004, 110(17):2638-2643
    
    15. Musto C, Simon P, Nicol E, et al. 64-multislice computed tomography in consecutive patients with suspected or proven coronary artery disease: Initial single center experience. International Journal of Cardiology, 2007, 114(1);90-97
    16. Ong TK, Chin S P, Liew CK, et al. Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: Influence of calcification. Am Heart J, 2006, 151(6):1323.el-21323.e6
    
    17. Rumberger JA, Simons DB, Fitzpatrick LA, et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlative study. Circulation, 1995, 92(8):2157-2162
    
    18. Stary HC. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J, 1990, 11(suppl E):3-19
    1. Burgstahler C, Reimann A, Beck T, et al. Influence of a lipid-lowering therapy on calcified and noncalcified coronary plaques monitored by multislice detector computed tomography: results of the new age ii pilot study. Invest Radiol, 2007, 42(3): 189-195
    
    2. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and non-calcified coronary atherosclerotic plaque by contrast-enhanced, sub-millimeter multi-detector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation, 2004,109(1):14-17
    
    3. Van Buuren F, Mannebach H, Horstkotte D. 20th report of performance data from heart catheterization laboratories in Germany. 2003 results of a collaborative survey by the Committee of Clinical Cardiology and the Interventional Cardiology (for ECS) and Angiology Study Groups of the German Society of Cardiology. Cardiovascular Research. Z Kardiol, 2005, 94(3):212-215
    
    4. Nikolaou K, Knez A, Rist C, et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. Am J Roentgenol, 2006, 187(1):111-117
    
    5. Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. European Heart Journal, 2005, 26(15):1482-1487
    
    6. Pugliese F, Mollet NRA, Runza G, et al. Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol, 2006, 16(3): 575-582
    
    7. Musto C, Simon P, Nicol E, et al. 64-multislice computed tomography in consecutive patients with suspected or proven coronary artery disease: Initial single center experience. International Journal of Cardiology, 2007, 114(1):90-97
    
    8. Scheffel H, Alkadhi H, Plass A, et al. Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol, 2006, 16(12):2739-2747
    
    9. Busch S, Nikolaou K, Johnson T, et al. Quantification of coronary artery stenoses : comparison of 64-slice and dual source CT angiography with cardiac catheterization. Radiologe, 2007,47(4):295-300
    10. Ong TK, Chin SP, Liew CK, et al. Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J, 2006, 151(6):1323.e1-1323.e6
    11. Gerber BL, Coche E, Pasquet A, et al. Coronary artery stenosis: direct comparison of four-section multi--detector row CT and 3D navigator MR imaging for detection—initial results. Radiology, 2005, 234(1):98-108
    12. Kefer J, Coche E, Legros G, et al. Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol, 2005, 46(1):92-100
    13. Dewey M, Teige F, Schnapauff D, et al. Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med, 2006, 145(6):407-415
    14.刘新,蔡祖龙,蔡幼铨等.多层螺旋CT和三维屏气MR冠状动脉成像的对比研究.中华放射学杂志,2006,40(6):597-602
    1. Foo TK, Ho VB, Marcos HB, et al. MR angiography using steady-state free precession. Magn Reson Med, 2002 ,48(4):699-706
    
    2. Regenfus M, Ropers D, Achenbach S, et al. Comparison of contrast-enhanced breath-hold and free-breathing respiratory-gated imaging in three-dimensional magnetic resonance coronary angiography. Am J Cardiol, 2002, 90(7):725-730
    
    3. Kessler W, Laub G, Achenbach S, et al. Coronary arteries: MR angiography with fast contrast-enhanced three-dimensional breath-hold imaging-initial experience. Radiology, 1999, 210(2):566-572
    
    4. Li D, Carr JC, Shea SM, et al. Coronary arteries: magnetization-prepared contrast-enhanced three-dimensional volume-targeted breath-hold MR angiography. Radiology, 2001, 219(1):270-277
    
    5. Johansson LO, Fischer SE, Lorenz CH. Benefit of T1 reduction for magnetic resonance coronary angiography: a numerical simulation and phantom study. J Magn Reson Imaging, 1999, 9(4):552-556
    
    6. Nikolaou K, Becker CR, Muders M et al. Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis, 2004, 174(2);243-252
    
    7. Yang CW, Carr JC, Francois CJ, et al. Coronary magnetic resonance angiography using magnetization-prepared contrast-enhanced breath-hold volume-targeted imaging (MPCE-VCATS). Invest Radiol, 2006, 41(8): 639-644
    
    8. Zagrosek A, Noeske R, Abdel-Aty H, et al. MR coronary angiography using 3D-SSFP with and without contrast application. J Cardiovasc Magn Reson, 2005, 7(5):809-814
    
    9. Zheng J, Li D, Maggioni F, et al. Single-session magnetic resonance coronary angiography and myocardial perfusion imaging using the new blood pool compound B-22956 (gadocoletic acid): initial experience in a porcine model of coronary artery disease. Invest Radiol, 2005, 40(9):604-613
    10. Huber ME, Paetsch I, Schnackenburg B, et al. Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA. Magn Reson Med, 2003, 49(1):115-121
    
    11.Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE. Sensitivity encoding for fast MRI. Magn Reson Med, 1999, 42(5):952-962
    
    12. Xu Y, Haacke E. Partial Fourier imaging in multi-dimensions: a means to save a full factor of two in time. J Magn Reson Imaging, 2001, 14(5):628-635
    
    13. Singh R, Deshpande V, Haacke E, et al. Coronary artery imaging using three-dimensional breath-hold steady-state free precession with two dimensional iterative partial fourier reconstruction. J Magn Reson Imaging, 2004, 19(5):645-649
    
    14. Peters D, Korosec F, Grist T, et al. Undersampled projection reconstruction applied to MR angiography. Magn Reson Med, 2000, 43(1):91 -101
    
    15. Larson A, Simonetti O, Li D. Coronary MRA with 3D undersampled projection reconstruction True FISP. Magn Reson Med, 2002, 48(4):594-601
    1. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med, 1987, 316(22):1371-1375
    2. Ward MR, Pasterkamp G, Yeung AC, et al. Arterial remodeling. Mechanisms and clinical implications. Circulation, 2000, 102(10):1186-1191
    3. Yuan C, Lin E, Millard J, et al. Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images. Magn Reson Imaging, 1999, 17(2):257-266
    4. Fuster V, Corti R, Fayad ZA, et al. Integration of vascular biology and magnetic resonance imaging in the understanding of atherothrombosis and acute coronary syndromes. J Thromb Haemost, 2003, 1(7):1410-1421
    5. Kuroda K, Oshio K, Mulkern RV, et al. Optimization of chemical shift selective suppression of fat. Magn Reson Med, 1998, 40(4):505-510
    6. Fayad ZA, Fuster V, Fallon JT et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation, 2000, 102(5);506-510
    7. Botnar RM, Kim WY, Bornert P et al. 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magnetic Resonance in Medicine, 2001,46(5): 848-854
    
    8. Zheng J, Naqa IE, Rowold FE et al. Quantitative assessment of coronary artery plaque vulnerability by high-resolution magnetic resonance imaging and computational biomechanics: a pilot study ex vivo. Magnetic Resonance in Medicine, 2005, 54(6): 1360-1368
    
    9. Kramer CM. Magnetic resonance imaging to identify the high-risk plaque. Am J Cardiol, 2002, 90(10C):15L-17L
    
    10. Worthley SG, Helft G, Fuster V et al. Non-invasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation, 2000, 101(25):2956-2961
    
    11. Worthley SG, Helft G, Fuster V et al. High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis, 2000, 150(2);321-329
    
    12. Desai MY, Lai SG, Barmet C et al. Reproducibility of 3D free-breathing magnetic resonance coronary vessel wall imaging. European Heart Journal, 2005, 26(21):2320-2324
    
    13. Koktzoglou I, Simonetti O, Li D. Coronary Artery Wall Imaging: Initial Experience at 3 Tesla. J. Magn. Reson. Imaging, 2005, 21(2): 128-132
    
    14. Schneiderman J, Wilensky RL, Weiss A et al. Diagnosis of thin-cap fibroatheromas by a self-contained intravascular magnetic resonance imaging probe in ex vivo human aortas and in situ coronary arteries. J Am Coll Cardiol, 2005, 45(12):1961-1969
    
    15. Nikolaou K, Becker CR, Muders M et al. Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis, 2004, 174(2);243-252
    
    16. Leber AW, Knez A, Becker A, et al. Visualizing noncalcified coronary plaques by CT. Int J Cardiovasc Imaging, 2005,21(1);55-61
    
    17. Rasheed Q, Nair R, Sheehan H, et al. Correlation of intracoronary ultrasound plaque characteristics in atherosclerotic coronary artery disease patients with clinical variables. Am J Cardiol, 1994, 73(11):753-758
    
    18. Di Mario C, Madretsma S, Linker D, et al. The angle of incidence of the ultrasonic beam: a critical factor for the image quality in intravascular ultrasonography. Am Heart J, 1993, 125(2 Pt 1):442-448
    
    19. Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation, 2005,111(12):1551-1555
    
    20. Ruehm SG, Corot C, Vogt P et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation, 2001, 103(3):415-422
    
    21. Spuentrup E, Buecker A, Katoh M et al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation, 2005,111(11):1377-1382
    
    22. Barkhausen J, Ebert W, Heyer C et al. Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation, 2003, 108(5):605-609
    
    23. Jaffer FA, Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ Res, 2004, 94(4):433-445
    
    24. Libby P. Inflammation in atherosclerosis. Nature, 2002, 420(6917):868-874
    
    25. McConnell MV, Aikawa M, Maier SE et al. MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. Atherosclerosis Thromb Vasc Biol, 1999, 19(8): 1956-1959
    
    26. Corti R, Fayad ZA, Fuster V, et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesion: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation, 2001,104(3):249-252
    1. Mollet NR, Cademartiri F, Van Mieghem CA, et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation, 2005, 112(15): 2318-2323
    2. Alkadhi H, Leschka S, Hurlimann D, et al. Fibroelastoma of the aortic valve. Evaluation with echocardiography and 64-Slice CT. Herz., 2005, 30(5):438
    3. Plein S, Smith WH, Riddway JP, et al. Measurments of left ventricular dimensions using real-time acquisition in cardiac magnetic resonance imaging comparision with conventional gradient echo imaging. MAGMA, 2001, 13(2): 101-108
    4. Koch K, Oellig F, Oberholzer K, et al. Assessment of right ventricular function by 16-detector-row CT: comparison with magnetic resonance imaging. Eur Radiol, 2005, 15(2):312-318
    5. Hundt W, Siebert K, et al. Assessment of global left ventricular function comparision of cardiac multidetector-row computed tomography with anglography. J Comput Assist Tomongr, 2005, 29(3):373-381
    6. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation, 2001, 103(21): 2535-2538
    7. Kopp AF, Schroeder S, Kuettner A, et al. Non-invasive coronary angiography with high resolution multidetector-row computed tomography. Results in 102 patients. Eur Heart J, 2002, 23(21):1714-1725
    
    8. Nieman K, Oudkerk M, Rensing BJ, et al. Coronary angiography with multi-slice computed tomography. Lancet, 2001, 357(9256):599-603
    
    9. Achenbach S, Ulzheimer S, Baum U, et al. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation, 2000, 102(23):2823-2828
    
    10. Becker CR, Knez A, Leber A, et al. Detection of coronary artery stenoses with multislice helical CT angiography. J Comput Assist Tomogr, 2002, 26(5):750-755
    
    11. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation, 2001, 103(21):2535-2538
    
    12. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation, 2003, 107(5):664-666
    
    13. Mollet NR, Cademartiri F, Nieman K et al. Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol, 2004,43(12):2265-2270
    
    14. Martuscelli E, Romagnoli A, D'Eliseo A, et al. Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J, 2004,25(12):1043-1048
    
    15. Nieman K, Cademartiri F, Lemos PA, et al. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation, 2002, 106(16):2051-2054
    
    16. Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J, 2005, 26(15):1482-1487
    
    17. Mollet NR, Cademartiri F, van Mieghem CA, et al. High-Resolution Spiral Computed Tomography Coronary Angiography in Patients Referred for Diagnostic Conventional Coronary Angiography. Circulation, 2005, 112(15): 2318-2323
    
    18. Trabold T, Buchgeister M, Kuttner A, et al. Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo, 2003, 175(8):1051-1055
    
    19. Schroeder S, Kuettner A, Leitritz M, et al. Reliability of differentiationg human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography-a comparison with histology. J Comput Assist Tomogr, 2004, 28(4);449-454
    
    20. Becker CR, Nikolaou K, Muders M et al. Ex vivo coronary atheroscleroticplaque characterization withmulti-detectorrow CT. EurRadiol,2003,13(9): 2094-2098
    
    21. Leber AW, Knez A, Becker A, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atheroscleroticplaques:acomparativestudywithintracoronaryultrasound.J Am Coll Cardiol, 2004, 43(7): 1241-1247
    
    22. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, ubmillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation, 2004, 109(1): 14-17
    
    23. Suzuki S, Furui S, Kaminaga T, et al. Evaluation of coronary stents in vitro with CT angiography effect of stent diameter, convolution kernel, and vessel orientation to the z-axis. Circ J, 2005, 69(9): 1124-1131
    
    24. Maintz D, Seifarth H, Flohr T, et al. Improved Coronary Artery Stent Visualization and In-Stent Stenosis Detection Using 16-Slice Computed Tomography and Dedicated Image Reconstruction Technique. Invest Radiol, 2003, 38:790-795
    25. Ohnuki K, Yoshida S, Ohta M, et al. New diagnostic technique in multi-slice computed tomography for in-stent restenosis: Pixel count method. Int J Cardiol, 2006, 108(2):251-258
    
    26. Nikolaou K, Knez A, Sagmeister S, et al. Assessment of myocardial infarctions using multirow-detector computed tomography. J Comput Assist Tomogr, 2004, 28(2):286-292
    
    27. Nikolaou K, Sanz J, Poon M, et al. Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol, 2005,15: 864-871
    
    28. White CS, Kuo D, Kelemen M, et al. Chest pain evaluation in the emergency department: can MDCT provide a comprehensive evaluation? AJR Am J Roentgenol, 2005, 185(2):533-540
    1. Cardiac MR (2000) Spectroscopy. In: Pohost GM (ed) Imaging in cardiovascular disease. Lippincott, Philadelphia, PA; Williams & Wilkins, Baltimore
    
    2. Bittl JA, Ingwall JS. Intracellular high-energy phosphate transfer in normal and hypertrophied myocardium. Circulation, 1987, 75 (1Pt 2):I96-101
    
    3. Kozerke S, Schar M, Lamb HJ, et al. Volume tracking cardiac 31P Spectroscopy. Magn Reson Med, 2002, 48(2):380-384
    
    4. Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. Am Coll Cardiol, 2002, 40(7):1267-1274
    
    5. Hu Q, Wang X, Lee J, et al. Profound bioenergetic abnormalities in peri-infarct myocardial regions. Am J Physiol Heart Circ Physiol, 2006, 291(2):H648-H657
    
    6. Beer M, Viehrig M, Seyfarth T, et al. Cardiac energy metabolism in heart valve diseases with 31P MR spectroscopy. Radiologe, 2000, 40(2); 162-167
    
    7. Beyerbacht HP, Lamb HJ, van Der Laarse A, et al. Aortic valve replacement in patients with aortic valve stenosis improves myocardial metabolism and diastolic function. Radiology, 2001, 219(3):637-643
    
    8. Steinboeck P, Metzler B, Schocke MF, et al. Detection of a silent myocardial infarction with phosphor-31 two-dimensional chemical shift imaging (31P 2-D CSI). Herz, 2003, 28(5):461-465
    
    9. Najjar SS, Bottomley PA, Schulman SP, et al. Effects of a pharmacologically-induced shift of hemoglobin-oxygen dissociation on myocardial energetics during ischemia in patients with coronary artery disease. J Cardiovasc Magn Reson, 2005, 7(4):657-666
    
    10. Thomson LE, Kim RJ, Judd RM. Magnetic resonance imaging for the assessment of myocardial viability. J Magn Reson Imaging, 2004, 19(6):771- 788
    
    11. Yabe T, Mitsunami K, Inubushi T, et al. Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by ~(31)P magnetic resonance spectroscopy. Circulation, 1995, 92(1): 15-23
    
    12. Caus T, Kober F, Marin P, et al. Non-invasive diagnostic of cardiac allograft vasculopathy by 31P magnetic resonance chemical shift imaging. Eur J Cardiothorac Surg, 2006, 29(1):45-49
    
    13. Evanochko WT, Buchthal SD, den Hollander JA, et al. Cardiac transplant patients response to the (31)P MRS stress test. J Heart Lung Transplant. 2002, 21(5):522-529
    
    14. Jansen MA, Van Emous JG, Nederhoff MG, et al. Assessment of myocardial viability by intracellular 23Na magnetic resonance imaging. Circulation, 2004, 110(22):3457-3464
    
    15. Chen J, Liu W, Zhang H, et al. Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol, 2005, 289(5): H1898-H1907
    
    16. Xu CY, Prince JL. Snakes, shapes and gradient vector flow. IEEE Trans. Image Process, 1998;7(3):359-369
    
    17. Geertsl, Bovendeerd P, Icolay K, et al. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol, 2002, 283(1): H139-H145
    
    18. Scollan DF, Holmes A, Zhang J, et al. Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging. Ann Biomed Eng, 2000, 28(8):934-944
    
    19. Chen JJ, Song SK, Liu W, et al. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am J Physiol Heart Circ Physiol, 2003, 285(3):H946-H954
    
    20. Helm P, Beg MF, Miller MI, et al. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann N Y Acad Sci, 2005, 1047:296-307
    21. Walker JC, Ratcliffe MB, Zhang P, et al. MRI-based finite-clement analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol, 2005, 289(2): H692-H700
    22. Krause MH, Kwong KK, Xiong J. MRI of blood volume with MS 325 in experimental choroidal melanoma. Magn Reson Imaging, 2003, 21(7):725-732
    23. La Noce A, Stoelben S, Scheffler K, et al. B22956/1, a new intravascular contrast agent for MRI: first administration to humans~*/preliminary results. Acad Radiol, 2002, 2(9):S404-S406
    24. Weinmann HJ, Ebert W, Missclwitz B, et al. Tissue-specific MR contrast agents. Eur J Radiol, 2003, 46(1):33-44
    25. Kroft LJ, de Roos A, et al. Blood pool contrast agents for cardiovascular MR imaging. J Magn Reson Imaging, 1999, 10(3):395-403
    26. Schmitz SA, Coupland SE, Gust R, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol, 2000, 35(8):460-471
    27. Spuentrup E, Buecker A, Katoh M, et al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation, 2005, 111(11):1377-1382
    1.赵锡海,蔡祖龙.冠状动脉粥样硬化斑块磁共振成像研究进展.中国医学影像技术,2007,23(3):460-462
    2.赵锡海,蔡祖龙.64层螺旋CT心脏检查应用进展.解放军保健医学杂志,2005,7(4):241-244
    3.赵锡海,程流泉,蔡祖龙.心脏磁共振分子影像学研究进展.国外医学临床放射学分册,已修回待发表

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700