Cry1Ah蛋白杀虫特异性分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌因其对多种害虫具有杀虫活性,不污染环境,对人畜无害,因而在害虫的生物防治中得到了广泛的应用。cry1Ah1基因是本实验室分离克隆的具有自主知识产权的杀虫基因,由于其编码的Cry1Ah蛋白对多种鳞翅目害虫具有较高的杀虫活性,目前cry1Ah1基因被应用于转基因玉米和水稻的研究中。
     为了评价cry1Ah1基因对非靶标昆虫的安全性,本文首先对Cry1Ah蛋白对鳞翅目中重要的经济昆虫家蚕(Bombyxmori)进行了活性测定,结果表明:Cry1Ah蛋白对家蚕的致死中浓度(LC50)大于500μg/mL。这不仅明确了对棉铃虫(Helicoverpaarmigera)等害虫高毒力的Cry1Ah蛋白(LC50=7.04μg/g)对非靶标昆虫(家蚕)是安全低毒(LC50>500μg/mL),更重要的是为cry1Ah1基因的推广及应用提供了理论依据。
     Cry1Ah的这种特性恰恰与本实验室分离克隆的另一个拥有自主知识产权杀虫基因cry1Ai相反,Cry1Ai蛋白对家蚕表现出很高的毒力(LC50=5.25μg/mL),但对棉铃虫则表现出较低的活性(LC50>500μg/g),而两者的氨基酸相似性为84%,并且拥有相似的三维结构。基于这种发现,本研究旨在揭示Cry1Ah蛋白对棉铃虫等农业害虫高毒力、对经济昆虫家蚕相对安全低毒的分子机制。
     本文以Cry1Ah蛋白为研究重点,以Cry1Ai蛋白为对照材料,一方面通过构建定点突变体、截短片段以及Loop突变体,明确Cry1Ah蛋白杀虫活性相关位点、Cry1Ai蛋白的杀虫活性区域,以及两者与杀虫特异性相关的Loop区域。另一方面,利用配体垂钓平台分别分析Cry1Ah蛋白和Cry1Ai蛋白在棉铃虫和家蚕刷状缘膜微囊泡(BrushBorderMembraneVesicles,简称BBMVs)上的特异性结合蛋白。主要研究结果如下:
     (1)利用定点突变的方法构建了Cry1Ah蛋白DomainⅠ和DomainⅡ上7个突变体,对比Cry1Ah蛋白对棉铃虫的生物活性发现,Cry1Ah蛋白DomainⅠ中α-6螺旋上第206位氨基酸突变为丙氨酸时,其对棉铃虫的杀虫活性略有降低,而在DomainⅡ上Loop3的第463位添加多个天冬酰胺时,能够降低其对棉铃虫的杀虫活性。
     (2)构建了26个Cry1Ai蛋白的截短片段,通过对小菜蛾的生物活性测定,将Cry1Ai蛋白对小菜蛾(Plutellaxylostella)的最小活性区域精准定位为第36I到605I氨基酸残基。
     (3)通过分析比较Cry1Ah/Cry1Ai毒素在棉铃虫和家蚕中肠BBMVs上的结合蛋白,探寻结合蛋白与杀虫特异性的关系。研究发现,Cry1Ah蛋白与棉铃虫BBMVs上的氨肽酶N(AminopeptidaseN,简称APN)能够特异的结合,而在家蚕的BBMVs上没有检测到这种高亲和力的结合,这可能是Cry1Ah蛋白对棉铃虫杀虫特异性的原因。而Cry1Ai蛋白在家蚕的BBMVs上也存在一些特异的结合蛋白,但这些结合蛋白仍需进一步验证。
     (4)为了进一步确定Cry1Ah蛋白与棉铃虫APN特异性结合的原因,本研究分析比较Cry1Ah蛋白和Cry1Ai蛋白的氨基酸序列和三维结构,研究发现,两者在受体结合区域的主要差别在DomainⅡ的Loop2和Loop3上,通过构建Loop互换突变体,以及比较突变体的生物活性,发现Cry1Ah和Cry1Ai蛋白Loop2的互换使得Cry1Ai蛋白获得了对棉铃虫的杀虫活性(Cry1Ai-hloop2:LC50=64.23μg/g),而Cry1Ah蛋白则失去了对棉铃虫的杀虫活性(Cry1Ah-iloop2:LC50>500μg/g);但Loop2的互换并没有改变两种蛋白对家蚕原有活性(Cry1Ai-hloop2:LC50=11.60μg/mL;Cry1Ah-iloop2:LC50>500μg/mL),这说明DomainⅡ的Loop2与棉铃虫杀虫特异性密切相关。而两个蛋白Loop3互换时,不但没有使Cry1Ai蛋白没有获得对棉铃虫的杀虫活性(Cry1Ai-hloop3:LC50>500μg/g),反而导致Cry1Ah蛋白失去了对棉铃虫的杀虫活性(Cry1Ah-iloop3:LC50>500μg/g),这说明Loop3对Cry1Ah和Cry1Ai蛋白保持原有的对棉铃虫的杀虫活性比较重要。
     Cry1Ah蛋白对非靶标昆虫(家蚕)安全性的明确,将有利于cry1Ah1基因的推广应用,同时也为新型cry基因的发掘和应用提供筛选和评价标准;Cry1Ah蛋白杀虫特异性相关受体的确定,以及Cry1Ah蛋白上与杀虫特异性相关氨基酸区域的明确,初步揭示了Cry1Ah蛋白对棉铃虫杀虫特异性的分子机制,为cry1Ah1基因的推广应用奠定了坚实的理论基础,同时也为其它Cry蛋白的定向改造提供重要借鉴。
Bacillus thuringiensis is widely used in insect control because it shows strong toxicity against many insects, but no toxicity to non-target organisms and safe for the environment. The novel gene crylAhl, intellectual property right owned, was cloned by our lab and was successfully transformed into corn and rice because of encoding a protein with highly toxic against many lepidopteran insect.
     To evaluate the safety of crylAhl gene against non-target insect, the bioassay of CrylAh protein against important economic lepidopteran insect-Bomfyx mori was tested. The results showed that the LC50of CrylAh against B. mori was more than500μg/mL, which confirmed that CrylAh highly toxicity against lepidopteran insect such as Helicoverpa armigera (LC50=7.04μg/g) was safe to economic insect B. mori (LC50>500μg/mL), moreover, it provided theory foundation for the promotion and application of crylAhl gene.
     These characteristic of CrylAh protein were just the opposite with that of another intellectual property right owned gene crylAi gene encoding a protein with low toxicity against H. armigera (LC50>500μg/g), but strong toxicity against B. mori (LC50=5.25μg/mL). The amino acid identity between CrylAh protein and CrylAi protein is84%. They share a very similar structure. In this study, we aimed to explore the molecular mechanism of CrylAh toxin with strong toxicity against H. armigera, and safe to economic insect B. mori.
     CrylAh protein is chose to be the key object, and CrylAi as control. On one hand, we plan to determine the amino acid sites related to insecticidal on CrylAh, the active fragment of CrylAi and the loop region of specific insecticidal activity of CrylAh and CrylAi protein by construction of site-directed mutants, truncated fragments and Loop mutants. On another hand, we plan to search the specific binding protein in BBMVs using an improved receptor-fishing method.
     The results are shown as follows:
     (1) Seven mutants on Domain I and Domain II of CrylAh were constructed by site-directed mutagenesis methods in this study. According to the bioassay results of mutants against H. armigera, the amino acid residue of206on helix a-6of Domain I was changed to Ala make the reduction of toxicity, and more than one additional Asn inserting in463on loop3of Domain I may reduce the toxicity against H. armigera.
     (2) Twenty six truncated fragments were constructed in this study. The active fragment of CrylAi toxin against P. xylostella was exactly located between amino acid residues361and6051, according to the bioassay results against P. xylostella.
     (3) We analyze the binding protein on BBMVs from H. armigera and B. mori to explore the relationship between binding proteins and insecticidal specificity. The results showed that there was a special binding band-APN of CrylAh toxin on BBMVs from H. armigera compared with B, mori. This difference may cause CrylAh toxin to show insecticidal specificity against H. armigera. However, there were also some different binding proteins of CrylAi toxin on BBMVs from B. mori compared with H. armigera, although this part of work need to be repeated further.
     (4) To determine the reasons of specific binding between CrylAh toxin and APN, we compared the structure and amino acid sequences with CrylAh and CrylAi toxin, the results indicated that the major differences on receptor binding region between two toxin was located on Loop2and Loop3of Domain Ⅱ. By constructing some Loops exchange mutants and comparing the bioassay results of Loops mutants against H. armigera and B. mori, we found that exchange of Loop2made CrylAi toxic against H. armigera (Cry1Ai-hloop2: LC50=64.23μg/g) and CrylAh lose toxicity against H. armigera (CrylAh-iloop2: LC50>500ug/g); while exchange of Loop2didn't make two toxin exchange the toxiciry against B. mori (CrylAi-hloop2: LC50=11.60μg/mL; CrylAh-iloop2: LC50>500μg/mL), which indicated that Loop2is related to insecticidal specificity against H. armigera, however, exchange of Loop3not only made Cry1Ai non-increasing on toxiciry against H. armigera (Cry1Ai-hloop3: LC50>500μg/g), but also caused CrylAh lost the toxiciry against H, armigera (CrylAh-iloop3: LC50>500μg/g), which indicated Loop3was important for keeping original toxiciry of CrylAh and CrylAi against H. armigera.
     The determination of the safety of CrylAh to B. mori not only lays theory basis for the promotion and application of cry1Ah1gene, but also provides screen and evaluation standards for discovery and application of novel cry genes; The molecular mechanism of insecticidal specificity of CrylAh toxin was revealed by determination of receptor and amino acid region related to insecticidal specificity. All of these research progresses will lay foundation for the promotion and application of cry1Ah1gene, and provide the theoretical reference for modification of other Cry toxins.
引文
[1].萨姆布鲁克.分子克隆实验指南(第三版)[M]黄培堂等.北京:科学出版社,2002.
    [2].束长龙,宋福平,张杰,黄大昉,何康来,梁革梅.苏云金芽胞杆菌cry1Ai在抗虫中的用途、改造的mcry1Ai基因及应用.中国发明专利,ZL200910241558.8[P].2013.
    [3].王广君,张杰,孙东辉,宋福平,黄大昉.苏云金芽胞杆菌杀虫晶体蛋白Cry1Ba结构域Ⅱ中Loops结构与功能关系研究[J].生物工程学报,2008,24:1631~636.
    [4].王广君,张杰,吴隽,宋福平,黄大昉.苏云金芽孢杆菌杀虫晶体蛋白Cry1Ba3活性区的研究[J].中国农业科学,2005,38:1585~1590.
    [5].王桂荣,吴孔明,梁革梅,郭予元.棉铃虫中肠钙粘蛋白基因的克隆、表达及Cry1A结合区定位[J].中国科学C辑:生命科学,2004,34:537~546.
    [6].吴玉娥,张杰,曹景萍,高继国,黄大昉,宋福平.苏云金芽孢杆菌Cry1Ie1蛋白末端缺失的研究[J].植物保护,2003,29:15~18.
    [7].翟元娜.苏云金芽胞杆菌杀虫蛋白Vip3A、Cry1Ba结构的研究[硕士学位论文].哈尔滨:东北农业大学研究生院,2009.
    [8].张杰,宋福平,黄大昉,何康来,韩岚岚.对鳞翅目昆虫高毒力Bt cry1Ah基因及其表达产物.中国发明专利,ZL200410009918.9[P].2006.
    [9].张静涛,束长龙,宋福平,刘楠,张杰,黄大昉.苏云金芽胞杆菌cry2Ad基因的克隆及其表达产物的活性分析[J].生物技术通报,2009,10:146~150.
    [10].周子珊.苏云金芽胞杆菌Cry1Ah蛋白高毒力作用机制的研究[硕士学位论文].哈尔滨:东北农业大学研究生院,2010.
    [11]. Abdul-Rauf M, Ellar DJ. Mutations of loop2and loop3residues in domain II of Bacillus thuringiensis CrylC5-endotoxin affect insecticidal specificity and initial binding to Spodoptera littoralis and Aedes aegypti midgut membranes [J]. Curr Microbiol,1999,39:94-98.
    [12]. Abdullah MA, Valaitis AP, Dean DH. Identification of a Bacillus thuringiensis Cry11Ba toxin binding aminopeptidase from the mosquito Anopheles quadrimaculatus [J]. BMC Biochem,2006,22:7-16.
    [13]. Agrawal N, Malhotra P, Bhatnagar RK. Interaction of genecloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C [J]. Appl Environ Microbiol,2002,68:4583-4592.
    [14].Alcantara EP, Alzate0, Lee MK, Curtiss A, Dean DH. Role of a-helix7of Bacillus thuringiensis Cry1Ab5-endotoxin in membrane insertion, structural stability, and ion channel activity [J]. Biochem,2001,40:2540-2547.
    [15]. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang QH, Urbatsch IL, Chang G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding [J]. Science,2009,323:1718-1722.
    [16]. Arenas I, Bravo A, Soberon M, Gomez I. Role of alkaline phosphatase from Manduca sextet in the mechanism of action of Bacillus thuringiensis CrylAb toxin [J]. J Biol Chem,2010,285:12497-12503.
    [17]. Arnold S, Curtiss A, Dean DH, Alzate O. The role of a proline-induced broken-helix motif in a-helix2of Bacillus thuringiensis S-endotoxins [J]. FEBS Lett,2001,490:70-74.
    [18].Aronson AI, Chaoxianm G, Wu L. Aggregation of Bacillus thuringiensis CrylA toxin upon binding to target insect larval midgut vesicles [J]. Appl Environ Microbiol,1999,65:2503-2507.
    [19].Atsumi S, Inoue Y, Ishizakal T, Mizuno E, Yoshizawa Y, Kitami M, Sato R. Location of the Bombyx mori175kDa cadherin-like protein-binding site on Bacillus thuringiensis CrylAa toxin [J].2008, FEBS,275:4913-4926.
    [20].Atsumi S, Miyamoto K, Yamamoto K, Narukawa J, Kawai S, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Mita K, Kadono-Okuda K, Wada S, Kanda K, Goldsmith MR, Noda H. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin CrylAb in the silkworm, Bombyx mori [J]. PNAS Plus,2012,109: E1591-1598.
    [21].Banks DJ, Hua G, Adang MJ. Cloning of a Heliothis virescens110kDa aminopeptidase N and expression in Drosophila S2cells [J]. Insect Biochem Mol Biol,2003,33:499-508.
    [22].Banks DJ, Jurat-Fuentes JL, Dean DH, Adang MJ. Bacillus thuringiensis CrylAc and CrylFa5-endotoxin binding to a novel110kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated [J]. Insect Biochem Mol Biol,2001,31:909-918.
    [23].Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N, Kain W, Wang P, Heckel DG, Jiggins CD. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera [J]. Genetics,2011,189:675-814.
    [24].Bayyareddy K, Andacht TM, Abdullah MA, Adang M. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae [J]. Insect Biochem Mol Biol,2009,39:279-286.
    [25].Bietlot HP, Carey PR, Pozsgay M, Kaplan H. Isolation of carboxyl-terminal peptides from proteins by diagonal electrophoresis: application to the entomocidal toxin from Bacillus thuringiensis [J]. Anal Biochem,1989,181:212-215.
    [26].Boonserm P, Davis P, Ellar DJ, Li J. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications [J].2005, J Mol Biol348:363-382.
    [27].Boonserm P, Mo M, Angsuthanasombat C. Lescar J, Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a2.8-angstrom resolution [J]. J Bacteriol,2006,188:3391-3401.
    [28]. Bravo A, Gill SS, Soberon M, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control [J]. Toxicon,2007,49:423—435.
    [29].Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang M, Gill SS Soberon M. Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains [J]. Biochim Biophys Acta,2004,1667:38—46.
    [30].Bravo A, Gomez I, Porta H, Garcia-Gomez BI, Rodriguez-Almazan C, Pardo L, Soberon M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity [J]. Microbial Biotechnol,2012,6:17-26.
    [31].Buzdin AA, Revina LP, Kostina LI, Zalunin IA, Chestukhina GG Interaction of65-and62-kD Proteins from the apical membranes of the Aedes aegypti larvae midgut epithelium with Cry4B and Cry11Aendotoxins of Bacillus thuringiensis [J]. Biochem (Moscow),2002,67:540-546.
    [32].Burton SL, Ellar DJ, Li J, Derbyshire DJ. N-Acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain Ⅲ lectin-like fold of a Bacillus thuringiensis insecticidal toxin [J]. J Mol Biol,1999,287:1011-1022.
    [33].Caccia S, Hernandez-Rodriguez CS, Mahon RJ, Downes S, James W, Bautsoens N, Rie JV, Ferre J. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species [J]. PLoS One,2010,5: e9975.
    [34].Canton PE, Reyes EZ, de Escudero IR, Bravo A, Soberon M. Binding of Bacillus thuringiensis jubsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism [J]. Peptides,2011,32:595-600.
    [35]. Carroll J&Ellar DJ. An analysis of Bacillus thuringiensis insecticidal5-endotoxins action on insect-midgut-membrane permeability using a light-scattering assay [J]. Eur J Biochem,1993214:771-778.
    [36].Carroll J&Ellar DJ. Analysis of the large aqueous pores produced by a Bacillus thuringiensis protein insecticide in Manduca sexta midgut-brush-border-membrane vesicles [J]. Eur J Biochem,1997,245:797-804.
    [37]. Chandra A, Ghosh P, Mandaokar AD, Bera AK, Sharma RP, Das S, Kumar PA. Amino acid substitution in a-helix7of CrylAc delta-endotoxin of Bacillus thuringiensis leads to enhanced toxicity to HelicoverpaarmigeraHubmr [J]. FEBS Lett,1999,458:175-179.
    [38]. Charles JF&Nielsen Le-Roux C. Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena [J]. Mem Inst Oswaldo Cruz,2000,95:201-206.
    [39].Chen J, Brown MR, Hua G, Adang MJ. Comparison of the localization of Bacillus thuringiensis CrylA5-endotoxins and their binding proteins in larval midgut of tobacco hormworm, Manduca sexta [J]. Cell Tissue Res,2005,321:123-129.
    [40].Chen J, Hua G, Jurat-Fuentes JL, Abdullah MA, Adang MJ. Synergismof Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin [J]. PNAS,2007,104:13901-13906.
    [41]. Chen JW, Aimanova KG, Pan S, Gill SS. Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis CryllA toxin [J]. Insect Biochem Mol Biol,2009,39(10):688-696.
    [42]. Chen M, Zhao JZ, Collins HL, Earle ED, Cao J, Shelton AM. A critical assessment of the effects of Bt transgenic plants on parasitoids [J]. PLoS One,2008,3: e2284.
    [43].Chen XJ, Lee MK, Dean DH. Site-directed mutations in a highly conserved region of Bacillus thuringiensis5-endotoxin affect inhibition of short circuit current across Bombyx mori midgets [J]. PNAS,1993,90:9041-9045.
    [44].Coates BS, Sumerford DV, Hellmich RL, Lewis LC. Sequence variation in the cadherin gene of Ostrinia nubilalis: a Tool for field monitoring [J]. Insect Biochem Mol Biol,2005,35:129-139.
    [45].Coux F, Vachon V, Rang C, Moozar K, Masson L, Royer M, Bes M, Rivest S, Brousseau R, Schwartz J, Laprade R, Frutos R. Role of interdomain salt bridges in the pore-forming ability of the Bacillus thuringiensis toxins CrylAa and CrylAc [J]. J Biol Chem,2001,276:35546-35551.
    [46]. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins [J]. Microbiol Mol Biol Rev,1998,62:807-813.
    [47]. de Maagd RA, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world [J]. Trends Genet,2001,17:193-199.
    [48].Denolf P, Hendrickx K, Van Damme J, Jansens S, Peferoen M, Degheele D, Van Rie J. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins [J]. Eur J Biochem,1997,248:748-761.
    [49].Dennis RD, Wiegandt H, Haustein D, Knowles BH, Ellar DJ. Thin layer chromatography overlay technique in the analysis of the binding of the solubilized protoxin of Bacillus thuringiensis var. kurstaki to an insect glycosphingolipid of known structure [J]. Biomed Chromatogr,1986,1:31-37.
    [50]. Derbyshire DJ, Ellar DJ, Li J. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine [J]. Acta Crystallogr Sect D,2001,57:1938-1944.
    [51].Devine GJ&Furlong MJ. Insecticide use:contexts and ecological consequences [J]. Agric Human Values,2007,24:281-306.
    [52].Fernandez LE, Aimanova KG, Gill SS, Bravo A, Soberon M. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti Larvae [J]. Biochem J,2006,394:77-84.
    [53].Fernandez LE, Perez C, Segovia L, Rodriguez MH, Gill SS, Bravo A, Soberon M. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop α-8of domain Ⅱ [J]. FEBS Lett,2005,579:3508-3514.
    [54].Federici BA&Bauer LS. Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta and suppresses high levels of resistance to Cry3Aa [J]. Appl Environ Microbiol,1998,64:4368-4371.
    [55].Ffrench-Constant RH&Bowen DJ. Novel insecticidal toxins from nematode-symbiotic bacteria [J]. Cell Mol Life Sci,2000,57:828-833.
    [56].Flannagan RD, Yu CG, Mathis JP, Meyer TE, Shi X, Siqueira HA, Siegfried BD. Identification, cloning and expression of a CrylAb cadherin receptor from European corn borer, Ostrinia nubilalis (Huner)(Lepidoptera, Crambidae)[J]. Insect Biochem Mol Biol,2005,35:33-40.
    [57].English L, Readdy TL, Bastian AE. Delta-endotoxininduced leakage of86Rb+-K+and H2O from phospholipids vesicles is catalyzed by reconstituted midgut membrane [J]. Insect Biochem,1991,21:177-184.
    [58].Gahan LJ, Pauchet Y, Vogel H, Heckel DG. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis CrylAc toxin [J]. PLoS Genet,2010,6: el001248.
    [59].Gahan LJ, Gould F, Heckel DG. Identification of a gene associated with Bacillus thuringiensis resistance va. Heliothis virescens [J]. Science,2001,293:857-860.
    [60]. Galitsky N, Cody V, Wojtczak A, Ghosh DJ, Luft R, Pangborn W, English L. Structure of the insecticidal bacterial5-endotoxin Cry3Bbl of Bacillus thuringiensis [J]. Acta Crystallogr Sec. D,2001,57:1101-1109.
    [61].Garner KJ, Hiremath S, Lehtoma K, Valaitis AP. Cloning and complete sequence characterization of two Gypsy Moth aminopeptidase N cDNAs including the receptor for Bacillus thuringiensisCrylAc toxin [J]. Insect Biochem Mol Biol,1999,29:527-535.
    [62].Gill SS, Cowles EA, Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CrylAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens [J]. J Biol Chem,1995,270:27277-27282.
    [63].Girard F, Vachon V, Prefontaine G, Marceau L, Su Y, Larouche G, Vincent G, Schwartz JL, Masson L, Laprade R. Cysteine scanning mutagenesis of a-4a putative pore lining helix of the Bacillus thuringiensis insecticidal toxin CrylAa [J]. Appl Environ Microbiol,2008,74:2565-2572.
    [64].Girard F, Vachon V, Lebel G, Prefontaine G, Schwartz JL, Masson L, Laprade R. Chemical modification of Bacillus thuringiensis CrylAa toxin single cysteine mutants reveals the importance of domain I structural elements in the mechanism of pore formation [J]. Biochem Biophys Acta,2009,1788:575-580.
    [65]. Gomez I, Arenas I, Benitez I, Miranda-Rios J, Becerril B, Grande R, Almagro JC, Bravo A, Soberon M. Specific epitopes of domains Ⅱ and Ⅲ of Bacillus thuringiensis CrylAb toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta [J]. J Biol Chem,2006,281:34032-34039.
    [66]. Gomez I, Dean DH, Bravo A, Soberon M. Molecular basis for Bacillus thuringiensis CrylAb toxin specificity, two structural determinants in the Manduca sexta Bt-Rl receptor interact with loops a-8and2in Domain II of CrylAb Toxin [J]. Biochem,2003,42:10482-10489.
    [67].Gomez I, Sanchez J, Miranda R, Bravo A, Soberon M. Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1in domain I and oligomer pre-pore formation of Bacillus thuringiensis CrylAb toxin [J]. FEBS Lett,2002,513:242-246.
    [68].Griffitts JS, Haslam SM, Yang T, Garczynski SF, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV. Glycolipids as receptor for Bacillus thuringiensis crystal toxin [J]. Science,2005,307:922-925.
    [69]. Griffitts JS, Whitacre JL, Stevens DE, Aroian RV. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme [J]. Science,2001,293:860-864.
    [70].Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M. Bacillus thuringiensis CrylA(a) insecticidal toxin:crystal structure and channel formation [J]. J Mol Biol,1995,254:447-464.
    [71].Groulx N, McGuire H, Laprade R, Schwartz JL, Blunck R. Single molecule fluorescence study of the Bacillus thuringiensis toxin CrylAa reveals tetramerization [J]. J Biol Chem,2011,286:42274-42282.
    [72].Guerchicoff A, Delecluse A, Rubinstein CP. The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family [J]. Appl Environ Microbiol,2001,67:1090-1096.
    [73]. Guo SY, Ye S, Liu YS, Wei L, Xue J, Wu HF, Song FP, Zhang J, Wu XA, Huang DF, Rao ZH. Crystal structure of Bacillus thuringiensis Cry8Eal:an insecticidal toxin toxic to underground pests, the larvae of Holotrichiaparallela [J]. Structural Biology,2009,168:259-266.
    [74].Haider MZ&Ellar DJ. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxin:interaction with phospholipids vesicles [J]. Biochim Biophys Acta,1989,978:216-222.
    [75].Heckel DG. Molecular genetics of insecticide resistance in Lepidoptera, in:M.R. Goldsmith, F. Marec (Eds.). Molecular Biology and Genetics of the Lepidoptera [M], CRC Press, Boca Raton,2010, pp.239-269.
    [76].Heckel DG. Learning the ABCs of Bt:ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action [J]. Pestic Biochem Physiol,2012,104:103-110.
    [77]. Hendrickx K, De Loof A, Van Mellart H. Effect of Bacillus thuringiensis delta-endotoxin on the permeability of brush border membrane vesicles from tobacco hornworm(Manduca sexta) midgut [J]. Comp Biochem Physiol,1990,95C:241-245.
    [78].Herrero S, Gechev T, Bakker PL, Moar WJ, de Maagd RA. Bacillus thuringiensis CrylCa-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes [J]. BMC Genomics,2005,6:96-106.
    [79].Herrero S, Gonzalez-Cabrera J, Ferre J, Bakker PL, de Maagd RA. Mutations in the Bacillus thuringiensis CrylCa toxin demonstrate the role of domains Ⅱ and Ⅲ in specificity towards Spodoptera exigua larvae [J]. Biochem J,2004,384:507—513.
    [80].Hossain DM, Shitomi Y, Moriyama K, Higuchi M, Hayakawa T, Mitsui T, Sato R, Hori H. Characterization of a novel plasma membrane protein, expressed in the midgut epithelia of Bombyx mori, that binds to CrylA toxins [J]. Appl Environ Microbiol,2004,70:4604-4612.
    [81].Howlader MT, Kagawa Y, Sakai H, Kagawa Y, Sakai H, Hayakawa T. Biological properties of loop-replaced mutants of Bacillus thuringiensis mosquitocidal Cry4Aa [J]. Journal of Biosci Bioeng,2009,108(3):179-183.
    [82].Hua G, Zhang R, Abdullah MA, Adang MJ. Anopheles Gambiae cadherin AgCadl binds the Cry4Ba toxin of Bacillus thuringiensis subsp. israelensis and a fragment of AgCadl synergizes toxicity [J]. Biochem,2008,47:5101-5110.
    [83].Hurst MR, Jones SM, Tan B, Jackson TA. Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica[J]. FEMS Microbiol Lett,2007,275:160-167.
    [84].Janmaat AF, Wang P, Kain W, Zhao JZ, Myers J. Inheritance of resistance to Bacillus thuringiensis subsp. kurstaki in Trichoplusia ni [J]. Appl Environ Microbiol,2004,70:5859-5867.
    [85]. Jimenez-Juarez N, Munoz-Garay C, Gomez I, SaabRincon G, Damian-Alamazo JY, Gill SS, Soberon M, Bravo A. Bacillus thuringiensis CrylAb mutants affecting oligomer formation are non toxic to Manduca sexta larvae [J]. J Biol Chem,2007,282:21222—21229.
    [86]. Jurat-Fuentes JL, Adang MJ. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae [J]. Eur J Biochem,2004,271:3127-3135.
    [87]. Jurat-Fuentes JL, Karumbaiah L, Jakka SRK, Ning CM, Liu CX, Wu KM, Jackson J, Gould F, Blanco C, Portilla M, Perera O, Adang M. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis [J]. PLoS One,2011,6(3): el7606.
    [88].Keeton TP&Bulla LAJ. Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis CrylA toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures [J]. Appl Environ Microbiol,1997,63:3419-3425.
    [89].Khajuria C, Buschman LL, Chen MS, Siegfried BD, Zhu KY. Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis)[J]. PLoS One,2011,6: e23983.
    [90].Khaokhiew T, Angsuthanasombat C, Promptmas C. Correlative effect on the toxicityof three surface-exposed loops in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin [J]. FEMS Microbio Lett,2009,300:139-145.
    [91].Knight PJ, Knowles BH, Ellar DJ. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CrylA(c) toxin [J]. J Biol Chem,1995,270:17765-17770.
    [92].Knight PJ, Crickmore N, Ellar DJ. The receptor for Bacillus thuringiensis CrylA (c)5-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N [J]. Mol Microbiol,1994,11:429-436.
    [93].Knowles BH&Ellar DJ. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis5-endotoxins with different insect specificity [J]. Biochim Biophys Acta,1987,924:507-518.
    [94].Krieger IV, Revina LP, Kostina LI, Buzdin AA, Zalunin IA, Chestukhina GG, Stepanov VM. Membrane proteins of Aedes aegypti larvae bind toxins Cry4B and CryllA of Bacillus thuringiensis ssp. Israelensis [J]. Biochem (Moscow),1999,64:1163-1168.
    [95].Krishnamoorthy M, Jurat-Fuentes JL, McNall RJ, Andacht T, Adang MJ. Identification of novel CrylAc binding proteins in midgut membranes from Heliothis virescens using proteomic analyses [J]. Insect Biochem Mol Biol,2007,37:189-201.
    [96].Kumar AS&Aronson AI. Analysis of mutations in a pore forming region essential for insecticidal activity of a Bacillus thuringiensis delta-endotoxin [J]. J Bacteriol,1999,181:6103-6107.
    [97].Lee MK, Jenkins JL, You TH, Curtiss A, Son JJ, Adang MJ, Dean DH. Mutations at the arginine residues in a8loop of Bacillus thuringiensis5-endotoxin CrylAc affect toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N [J]. FEBS Lett,2001,497:108—112.
    [98].Lee MK., Miles P, Chen JS. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverp azeamidgets [J]. Biochem Biophys Res Com,2006,339:1043-1047.
    [99]. Lee MK, You TH, Curtiss A, Dean DH. Involvement of two amino acid residues in the loop region of Bacillus thuringiensis CrylAb toxin in toxicity and binding to Lymantria dispar [J]. Biochem Biophys Res Com,1996,229:139-146.
    [100]. Li JD, Carroll J, Ellar DJ. Crystal Structure of insecticidal5-endotoxin from Bacillus thuringiensis at2.5A resolution [J]. Nature,1991,353:815-821.
    [101]. Li J, Derbyshire DJ, Promdonkoy B, Ellar DJ. Structural implications for the transformation of the Bacillus thuringiensis5-endotoxins from water-soluble to membrane-inserted forms [J]. Biochem Soc Trans,2001,29:571—577.
    [102]. Liang Y, Patel SS, Dean DH. Irreversible binding kinetics of Bacillus thuringiensis CrylA5-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity [J]. J Biol Chem,1995,270:24719-24724.
    [103]. Liebig B, Stetson DL, Dean DH. Quantification of the effect of Bacillus thuringiensis toxins on short-circuit current in the midgut of Bombyx mori [J]. J Insect Physiol,1995,41:17-22.
    [104]. Likitvivatanavong S, Katzenmeier G, Angsuthanasombat C. Asnl83in Helix a5is essential for oligomerization and toxicity of the Bacillus thuringiensis Cry4Ba toxin [J]. Arch Biochem Biophys,2006,445:46-55.
    [105]. Likitvivatanavong S, Aimanova K, Gill SS. Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity [J]. FEBS Lett,2009,583:2021-2030.
    [106]. Lorence A, Darszon A, Diaz C, Lievano A, Quintero R, Bravo A. Delta-endotoxins induce cation channels in Spodoptera frugiperda brush border membrane in suspension and in planar lipid bilayers [J]. FEBS Lett,1995,360:353-356.
    [107]. Loseva OI, Tiktopulo El, Vasiliev VD, Nikulin AD, Dobritsa AP, Potekhin SA. Structure or Cry3A delta endotoxin within phospholipids membranes [J]. Biochem,2001,40:14143-14151.
    [108]. Luo K, Sangandala S, Masoon L, Mazza A, Brousseau R, Adang MJ. The Heliothis virescens170kDa aminopeptidase functions as "receptor A" by mediating specific Bacillus thuringiensis CrylA5-endotoxin binding and pore formation [J]. Insect Biochem Mol Biol,1997,27:735-743.
    [109]. Luo K, Lu YJ, Adang MJ. A106kDa form of aminopeptidase is a receptor for Bacillus thuringiensis CrylC5-endotoxin in the brush border membrane of Manduca sexta [J]. Insect Biochem Mol Biol,1996,26:783-791.
    [110]. Lupas A, Van Dyke M, Stock J. Predicted coiled-coils from protein sequences [J]. Science,1991,252:1162-1164.
    [111]. Morse RJ, Yamamoto T, Stroud RM. Structure of Cry2Aa suggests an unexpected receptor binding epitope [J]. Structure (Cambridge),2001,9:409-417.
    [112]. Masson L, Lu YJ, Mazza A, Brosseau R, Adang MJ. The CryIA(c) receptor purified from Manducasextadisplays multiple specificities [J]. J Biol Chem,1995,270:20309-20315.
    [113]. Masson L, Tabashnik BE, Liu YB, Brousseau R, Schwartz JL. Helix4of the Bacillus thuringiensis CrylAa toxin lines the lumen of the ion channel [J]. J Biol Chem,1999,274:31996-32000.
    [114]. Masson L, Tabashnik BE, Mazza A, Prefontaine G, Potvin L, Brousseau R, Schwartz J. Mutagenic analysis of a conserved region of domain III in the CrylAc toxin of Bacillus thuringiensis [J]. Appl Environ Microbiol,2002,68:194-200.
    [115]. McNall RJ&Adang MJ. Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomic analysis [J]. Insect Biochem Mol Biol,2003,33:999-1010.
    [116]. Mendelson M, Kough J, Vaituzis Z, Matthews K. Are Bt crops safe?[J]. Nature Biotech,2003,21:1003-1009.
    [117]. Morin S, Biggs RW, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carriere Y, Dennehy TJ, Brown JK, Tabashnik BE. Three cadherin alleles associated with resistance to Bacillus thuringiensis in Pink Bollworm [J]. Proc Nat Acad Sci,2003,100:5004-5009.
    [118]. Munoz-Garay C, Portugal L, Pardo-Lopez L, Jimenez-Juarez N, Arenas I, Gomez I, Sanchez-Lopez R, Arroyo R, Holzenburg A, Savva CG, Soberon M, Bravo A. Characterization of the mechanism of action of the genetically modified CrylAbMod toxin that is active against CrylAb-resistant insects [J]. Biochim Biophys Acta,2009,1788:2229-2237.
    [119]. Munoz-Garay C, Sanchez J, Darszon A, de Maagd RA, Bakker PL, Soberon M, Bravo A. Permeability changes of Manduca sexta midgut brush border membranes induced by oligomeric structures of different Cry toxins [J]. J Membr Biol,2006,212:61-68.
    [120]. Nagamatsu Y, Toda S, Koike T, Miyoshi Y, Shigematsu S, Kogure M. Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin [J]. Biosci Biotechnol Biochem,1998,62:727-734.
    [121]. Nagamatsu Y, Itai Y, Hatanaka C, Funatsu G, Hayashi K. A toxic fragment from the entomocidal crystal protein of Bacillus thuringiensis [J]. Agric Biol Chem,1984,48:611-619.
    [122]. Nakanishi K, Yaoi K, Nagino Y, Hara H, Kitami M, Atsumi S, Miura N, Sato R. Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella; their classification and the factors that determine their binding specificity to Bacillus thuringiensis CrylA toxin [J]. FEBS Lett,2002,519:215-220.
    [123]. Nair MS&Dean DH. All domains of CrylA toxins insert into insect brush border membranes [J]. J Biol Chem,2008,283:26324-26331.
    [124]. Nunez-Valdez ME, Sanchez J, Lina L, Guereca L, Bravo A. Structural and functional studies of α-helix5region from Bacillus thuringiensis CrylAb5-endotoxin [J]. Biochim et Biophy Acta,2001,1546:122-131.
    [125]. Ochoa-Campuzano C, Real MD, Martinez-Ramirez AC, Bravo A, Rausell C. An ADAM metal-loprotease is a Cry3Aa Bacillus thuringiensis toxin receptor [J]. Biochem Biophys Res Com,2007,362:437-442.
    [126]. Oltean DI, Pullikuth AK, Lee HK, Gill SS. Partial purification and characterization of Bacillus thuringiensis CrylA toxin "receptor A" from Heliothis virescens and cloning of the corresponding cDNA [J]. Appl Environ Microbiol,1999,11:4760-4766.
    [127]. Ounjai P, Unger VM, Sigworth FJ, Angsuthanasombat C. Two conformational states of the membrane associated Bacillus thuringiensis Cry4Ba delta-endotoxin complex revealed by electron crystallography: implications for toxin-pore formation [J]. Biochem Biophys Res Com,2007,361:890-895.
    [128]. Pacheco S, Gomez I, Arenas I, Saab-Rincon, G, Rodriguez-Almazan C, Gill SS, Bravo A, Soberon M. Domain Ⅱ loop3of Bacillus thuringiensis CrylAb toxin is involved in a 'ping-pong' binding mechanism with Manduca sexta aminopetidase-N and cadherin receptors [J]. J Biol Chem,2009a,284:32750-32757.
    [129]. Pacheco S, Gomez I, Gill SS, Bravo A, Soberon M. Enhancement of insecticidal activity of Bacillus thuringiensis CrylA toxins by fragments of a toxin-binding cadherin correlates with oligomer formation [J]. Peptides,2009b,30:583-588.
    [130]. Pardo-Lopez L, Gomez I, Munoz-Garay C, Jimenez-Juarez N, Soberon M, Bravo A. Structural and functional analysis of the pre-pore and membrane-inserted pore of CrylAb toxin [J]. J Invertebr Pathol,2006a,92:172-177.
    [131]. Pardo-Lopez L, Gomez I, Rausell C, Sanchez J, Soberon M, Bravo A. Structural changes of the Cry1Ac oligomeric pre-pore from Bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion [J]. Biochem,2006b,45:10329-10336.
    [132]. Pardo-Lopez L, Soberon M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection [J]. FEMS Microbiol Rev,2013,37:3-22.
    [133]. Park HW&Federici BA. Effect of specific mutations in helix a7of domain I on the stability and crystallization [J]. Mol Biotechnol,2004,27:89-100.
    [134]. Park Y, Abdullah MA, Taylor MD, Rahman K, Adang MJ. Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin binding fragment of an insect cadherin [J]. Appl Environ Microbiol,2009,75:3086-3092.
    [135]. Parker MW&Feil SC. Pore forming proteins toxins:from structure to function [J]. Prog Biophys Mol Biol,2005,88:91-142.
    [136]. Perez C, Munoz-Garay C, Portugal LC, Sanchez J, Gill SS, Soberon M, Bravo A. Bacillus thuringiensis subsp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure [J]. Cellular Microbiol,2007,9:2931-2937.
    [137]. Petersen TN., Brunak S, von Heijne G, Nielsen H. SignalP4.0:discriminating signal peptides from transmembrane regions [J]. Nature Meth,2011,8:785-786.
    [138]. Pigott CR&Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity [J]. Microbiol Mol Biol Rev,2007,71:255-281.
    [139]. Pigott CR, King MS, Ellar DJ. Investigating the properties of Bacillus thuringiensis Cry proteins with novel loop replacements created using combinatorial molecular biology [J]. Appl Environ Microbiol,2008,74:3497-3511.
    [140]. Puntheeranurak T, Stroh C, Zhu R, Angsuthanasombat C, Hinterdorfer P. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes [J]. Ultramicroscopy,2005,105:115-124.
    [141]. Rajangopal R, Agrawai N, Seivapandiyan A, Sivakumar S, Ahmad S, Bhatnagar RK. Recombinantly expressed isozymic aminopeptidases from Helicoverpa armigera midgut display differential interaction with closely related Cry proteins [J]. Biochem J,2003,370:971-978.
    [142]. Rajamohan F, Alcantara E, Lee MK, Chen XJ, Curtiss A, Dean DH. Single amino acid changes in domain Ⅱ of Bacillus thuringiensis CrylAb δ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles [J]. J Bacteriol,1995,177(9):2276-2282.
    [143]. Rajamohan F, Alzate O, Cotrill JA. Protein engineering of Bacillus thuringiensis δ-endotoxin:Mutations at domain Ⅱ of CrylAb enhance receptor affinity and toxicity toward gypsy moth larvae [J]. Proc Natl Acad Sci USA,1996,93:14338-14343.
    [144]. Rausell C, Garcia-Robles I, Sanchez J, Munoz-Garay C, Martinez-Ramirez AC, Rea MD, Bravo A. Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3toxins in membranes of Leptinotarsa decemlineata [J]. Biochem Biophys Acta,2004b,1660:99-105.
    [145]. Rausell C, Munoz-Garay C, Miranda-CassoLuengo R, Gomez I, Rudino-Pinera E, Soberon M, Bravo A. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of CrylAb toxin from Bacillus thuringiensis is the membrane-insertion intermediate [J]. Biochem,2004a,43:166—174.
    [146]. Rausell C, Pardo-Lopez L, Sanchez J, Munoz-Garay C, Morera C, Soberon M, Bravo A. Unfolding events in the water-soluble monomeric CrylAb toxin during transition to oligomeric pre-pore and membrane inserted pore channel [J]. J Biol Chem,2004c,279:55168-55175.
    [147]. Rodriguez-Almazan C, Zavala LE, Munoz-Garay C, Jimenez-Juarez N, Pacheco S, Masson L, Soberon M, Bravo A. Dominant negative mutants of Bacillus thuringiensis CrylAb toxin function as anti-toxins: Demonstration of the role of oligomerization in toxicity [J]. PloS One,2009,4: e5545.
    [148]. Rodriguez-Almazan C, Reyes EZ, Zuniga-Navarrete F, Munoz-Garay C, Gomez I, Evans AE, Likitvivatanavong S, Bravo A, Gill SS, Soberon M. Cadherin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae [J]. Biochem J,2012,443:711-717.
    [149]. Roh JY, Nair MS, Liu XS, Dean DH. Mutagenic analysis of putative domain II and surface residues in mosquitocidal Bacillus thuringiensis Cryl9Aa toxin [J]. FEMS Microbiol Lett,2009,295:156-163.
    [150]. Schwartz JL, Lu YJ, Sohnlein P, Brousseau R, Laprade R, Masson L, Adang MJ. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors [J]. FEBS Lett,1997,412:270-276.
    [151]. Schwartz JL, Garneau L, Savaria D, Masson L, Brousseau R, Rousseau E. Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation and anion selective channels in planar lipid bilayers [J]. J Membr Biol,1993,132:53-62.
    [152]. Shitomi Y, Hayakawa T, Hossain DM, Higuchi M, Miyamoto K, Nakanishi K, Sato R, Hori H. A novel96-kDa aminopeptidase localized on epithelial cell membranes of Bombyx morimidgat, which binds to CrylAc toxin of Bacillus thuringiensis [J]. J Biochem (Tokyo),2006,139:223-233.
    [153]. Simpson RM&RD. Binding of Bacillus thuringiensis-endotoxins CrylAc and CrylBato a120-kDa aminopeptidase-N of Epiphyas postvittana purified from both brush border membrane vesicles and baculovirus-infected Sf9cells [J]. Insect Biochem Mol Biol,2000,30:1069-1078.
    [154]. Smedley DP&Ellar DJ. Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion [J]. Microbiology,1996,142:1617—1624.
    [155]. Soberon M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik B, Bravo A. Engineering modified Bt toxins to counter insect resistance [J]. Science,2007,318:1640—1642.
    [156]. Soberon M, Gill SS, Bravo A. Signaling versus punching hole: how do Bacillus thuringiensistoxins kill insect midgut cells [J]? Cell Mol Life Sci,2009,66:1337-1349.
    [157]. Takesue S, Yokota K, Miyajima S, Taguchi R, Ikezawa H, Takesue Y. Partial release of aminopeptidase N from larval midgut cell membranes of the silkworm, Bombyx mori, by phosphatidylinositol-specific phospholipase C [J]. Comp Biochem Physiol B,1992,102:7-11.
    [158]. Tabashnik BE, Huang F, Ghimire MN, Leonard BR, Siegfried BD, Rangasamy M, Soberon M. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance [J]. Nature Biotech,2011,29:1128—1131.
    [159]. Tiewsiri K&Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin CrylAc in cabbage looper [J]. Proc Natl Acad Sci USA,2011,108:14037-14042.
    [160]. Tiewsiri K&Angsuthanasombat C. Structurally conserved aromaticity of Tyr249and Phe264in helix7is important for toxicity of the Bacillus thuringiensis Cry4Ba toxin [J]. J Biochem Mol Biol,2007;40:163-171.
    [161]. Tigue NJ, Jacoby J, Ellar DJ. The Alpha-helix4residue, Asnl35, is involved in the oligomerization of CrylAcl and CrylAb5Bacillus thuringiensis toxins [J]. Appl Environ Microbiol,2001,67:5715-5720.
    [162]. Tomimoto K, Hayakawa T, Hori H. Pronase digestion of brush border membrane-bound CrylAa shows that almost the whole activated CrylAa molecule penetrates into the membrane [J]. Comp Biochem Physiol,2006,144B:413-422.
    [163]. Tuntitippawan T, Boonserm P, Katzenmeier G, Angsuthanasombat C. Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity [J]. FEMS Microbiol Lett,2005,242:325-332.
    [164]. Upadhyay SK&Singh PK. Role of alkaline phosphatase in insecticidal action of CrylAc against Helicoverpa armigera larvae [J]. Biotechnol Lett,2011,33:2027—2036.
    [165]. Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of frizzled [J]. Cell,1999,98:585-595.
    [166]. Vachon V, Prefontaine G, Coux F, Rang C, Marceau L, Masson L, Broussea R, Frutos R, Schwartz JL, Laprade R. Role of helix3in pore formation by Bacillus thuringiensis insecticidal toxin CrylAa [J]. Biochem,2002,41:6178-6184.
    [167]. Vachon V, Prefontaine G, Rang C, Coux F, Juteau M, Schwartz JL, Brousseau R, Frutos R, Laprade R, Masson L. Helix4mutants of the Bacillus thuringiensis insecticidal toxin CrylAa display altered pore-forming abilities [J]. Appl Environ Microbiol,2004,70:6123-6130.
    [168]. Vadlamudi RK, Ji TH, Bulla LAJ. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner [J]. J Biol Chem,1993,268:12334-12340.
    [169]. Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla LAJ. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis [J]. J Biol Chem,1995,270:5490—5494.
    [170]. Valaitis AP, Jenkins JL, Lee MK, Dean DH, Garner KJ. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush bordermembrane glycoconjugate that binds Bacillus thuringiensis CrylA toxins with high affinity [J]. Arch Insect Biochem Physiol,2001,46:186-200.
    [171]. Vestal DJ&Ranscht B. Glycosyl phosphatidylinositol-anchored T-cadherin mediates calcium-dependent, homophilic cell adhesion [J]. J Cell Biol,1992,119:451-461.
    [172]. Vie V, Van Mau N, Pomarede P Dance C, Schwartz JL, Laprade R, Frutos R, Rang C, Masson L, Heitz F. Lipid-induced pore formation of the Bacillus thuringiensis CrylAa insecticidal toxin [J]. J Membr Biol,2001,180:195-203.
    [173]. Wang P, Zhang X, Zhang J. Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni [J]. Insect Biochem Mol Biol,2005,35:611-620.
    [174]. Wang YB, Lang ZH, Zhang J, He KL, Song FP, Huang DF. Ubil intron-mediated enhancement of the expression of Bt cry1Ah gene in transgenic maize (Zea mays L.)[J]. Chin Sci Bull,2008,53:3185-3190.
    [175]. Wolfersberger MG, Chen XJ, Dean DH. Site-directed mutations in the third domain of Bacillus thuringiensis δ-endotoxin CryIAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles [J]. Appl Environ Microbiol,1996,62:279-282.
    [176]. Wu SJ, Koller NC, Miller DL, Bauer LS, Dean DH. Enhanced toxicity of Bacillus thuringiensis Cry3A N-endotoxin in coleopterans by mutagenesis in a receptor binding loop [J]. FEBS Lett,2000,473:227-232.
    [177]. Zhao XM, Xia LQ, Ding XZ, Wang FX. The theoretical three-dimensional structure of Bacillus thuringiensis Cry5Aa and its biological implications [J]. Protein J,2009,28:104-110.
    [178]. Xu X, Yu L, Wu Y. Disruption of a cadherin gene associated with resistance to CrylAc δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera [J]. Appl Environ Microbiol,2005,71:948-954.
    [179]. Xue J, Liang GM, Crickmore N, Li HT, He KL, Song FP, Feng X, Huang DF, Zhang J. Cloning and characterization of a novel CrylA toxin from Bacillus thuringiensis with high toxicity to the asian corn borer and other lepidopteran insects [J]. FEMS Microbiol Lett,2008,280:95-101.
    [180]. Xue J, Zhou ZS, Song FP, Shu CL, Huang DF, Zhang J.2011. Identification of the minimal active fragment of the CrylAh toxin [J]. Biotech Lett,33,531-537.
    [181]. Yang YL, Zhu YC, Ottea J, Husseneder C, Leonard BR, Abel C, Luttrell R, Huang FN. Down regulation of a gene for cadherin, but not alkaline phosphatase, associated with CrylAb resistance in the sugarcane borer Diatraea saccharalis [J]. PLoS One,2011,6: e25783.
    [182]. Yaoi K, Naknishi K, Kadotani T, Imamura M, Koizumi N, Iwahana H, Sato R. cDNA cloning and expression of Bacillus thuringiensis CrylAa toxin binding120kDa aminopeptidase-N from Bombyx mon[J]. Biochim Bio-phys Acta,1999,1444:131-137.
    [183]. Yaoi K, Kadotani T, Kuwana H, Shinkawa A, Takahashi T, Iwahana H, Sato R. Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis CrylAa toxin [J]. Eur J Biochem,1997,246:652-657.
    [184]. Zavala LE, Pardo-Lopez L, Canton PE, Gomez I, Soberon M, Bravo A. Domains II and III of Bacillus thuringiensis CrylAb toxin remain exposed to the solvent after insertion of part of domain I into the membrane [J]. J Biol Chem.2011,286:19109-19117.
    [185]. Zhuang M, Oltean DI, Gomez I, Pullikuth AK, Soberon M, Bravo A, Gill SS. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation [J]. J Biol Chem,2002,277:13863-13872.
    [186]. Zhang X, Candas M, Griko NB, Rose-Young L, Bulla LAJ. Cytotoxicity of Bacillus thuringiensis CrylAb toxin depends on specific binding of the toxin to the cadherin receptor BT-R1expressed in insect cells [J]. Cell Death Differ,2005,12:1407-16.
    [187]. Zhang X, Candas M, Griko NB, Taissing R, Bulla LAJ. Amechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the CrylAb toxin of Bacillus thuringiensis [J]. Proc Natl Acad Sci USA,2006,103:9897-9902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700