转Bt cry1Ah基因玉米对蜜蜂的安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜜蜂是公认的有益昆虫,具有经济和生态重要性,既能提供有益的蜂产品又能为植物授粉。对提高农作物产量、改善产品品质和维持生态平衡具有十分重要的作用。近年来世界范围内蜜蜂大量减少,杀虫剂中毒是导致蜂群下降的主要原因之一。转基因抗虫植物的发展,为害虫防治提供了一条新思路,减少了杀虫剂的使用。新型杀虫蛋白基因cry1Ah基因是中国农业科学院植物保护研究所从Bt菌株BT8中鉴定克隆的,其编码蛋白对鳞翅目害虫具有强毒力,尤其对亚洲玉米螟(Ostrinia furnacalis)的毒力强于目前使用的cry1A类基因。转cry1Ah基因基因抗虫玉米具有很好的应用前景。因此,开展转cry1Ah基因玉米对蜜蜂的安全性研究很有必要。
     本文从农业生态系统的角度出发通过毒蛋白的实验室测验、Bt玉米花粉饲喂蜂群幼虫试验和更接近实际农业生态条件的大田网室试验,测定转Bt cry1Ah基因玉米对蜜蜂的直接影响;并测定了Cry1Ah毒素对蜜蜂敌害大蜡螟的毒性以及螨害蜜蜂对毒素敏感性的改变,并且以一些化学杀虫剂为阳性对照研究其对蜜蜂的致死亚致死效应。具体结果如下:
     1、在实验室将接近Bt玉米花粉中表达量浓度1 ng/ml、10 ng/ml和不现实的高浓度10000 ng/ml Cry1Ah毒素混入糖水中饲喂蜜蜂工蜂,测定Cry1Ah毒素对意大利蜜蜂和中华蜜蜂存活、寿命、花粉取食量、王浆腺重量和学习行为的影响。结果显示三种浓度Cry1Ah毒素对意大利蜜蜂和中华蜜蜂工蜂的存活、寿命、花粉取食量和王浆腺重量未见不利影响。取食含10000 ng/ml Cry1Ah毒素糖水的意大利蜜蜂对30%蔗糖水的PER响应水平较对照低,而且对学习行为有不利影响。
     2、通过解剖工蜂大脑,培养获得大量分离的蜜蜂脑神经细胞,利用膜片钳技术全细胞记录模式研究Bt毒素对蜜蜂脑神经细胞兴奋性的影响。Bt毒素在10ng/ml和100ng/ml浓度下短时间(3-5min)条件下对蜜蜂脑神经元的阈电流没有显著改变,表明对脑神经细胞兴奋性没有显著影响。
     3、给意大利蜜蜂和中华蜜蜂蜂群中4-6日龄幼虫饲喂转基因玉米花粉、常规玉米花粉、杂花粉、以及哺育蜂饲喂,转基因玉米花粉对封盖率、出房率、发育成功率和发育历期没有显著影响,表明转cry1Ah基因玉米花粉对意大利蜜蜂和中华蜜蜂幼虫的存活和发育没有不良影响。以联苯菊酯和溴氰菊酯作为阳性对照,通过饲喂的方式测定了这两种杀虫剂对蜜蜂的亚致死效应,结果表明联苯菊酯和溴氰菊酯显著降低了发育成功率,延长了发育历期。
     4、通过大田网室试验测定在实际田间条件下转cry1Ah基因玉米对意大利蜜蜂的风险。意大利蜜蜂蜂群在扬花期分别放入种植转基因玉米和常规玉米的网室中,测定对蜂群存活、发育和行为的影响。结果显示,Bt玉米对发育历期、工蜂存活、蜜蜂体重、王浆腺重量、群势、采集行为和嗅觉学习行为均无不利影响。
     5、通过饲喂含毒素糖水的方法在实验室探讨了Cry1Ah毒素对螨害蜜蜂的影响。1 ng/ml、10 ng/ml和10000 ng/ml三种浓度Cry1Ah毒素对螨害蜜蜂的存活没有显著影响。与此同时开展了Cry1Ah毒素对蜜蜂敌害大蜡螟(Galleria mellonella)的致死效应研究。结果表明大蜡螟幼虫取食含有Cry1Ah毒素的人工饲料,其死亡率较对照组高。Cry1Ah毒素可作为一种可能的防治大蜡螟的措施。
The honeybee is widely recognized as a beneficial insect of agronomic, ecological, and scientific importance. It produces commercially valuable products (honey, pollen, royal jelly, propolis, and wax) and plays a major role in crop pollination. Insecticide is one of causes of honeybee colony disorder in the world. Transgenic insect-resistant crop is one of the possible ways forward with the aim of combining higher yield and quality with environmentally friendly agronomic practices. Bt crop truly reduces insecticide applications, then Bt crops may increase the abundance of honeybees. The cry1Ah gene was one of the novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8 which exhibited high toxicity against lepidopteran larvae. Cry1Ah protein showed higher toxicity to Asian corn borer (Ostrinia furnacalis) than that of any other cry1A genes. The cry1Ah gene was a candidate gene for insect resistant transgenic corn research. Assessment of impacts on honeybee is an essential part of the risk assessment process for Bt cry1Ah gene corn.
     The objective of this study was to assess effects of various concentrations of the Cry1Ah toxin in laboratory condition and Bt corn pollen under field cage conditions on honeybees. The effects of Cry1Ah toxin on wax moth (Galleria mellonella) and honeybees with parasitical mites were also tested. The lethal and sublethal effects of chemical insecticides on honeybees were assessed as positive reference. The results were as follows:
     1. We conducted feeding trials in a laboratory setting to test for possible adverse effects of different concentrations (10000 ng/ml, 10 ng/ml and 1 ng/ml) of microbially produced Cry1Ah toxin on survival, pollen consumption and hypopharyngeal gland mass of Apis mellifera ligustica and Apis cerana cerana. There were no significant differences in mortalities of Apis mellifera ligustica or Apis cerana cerana among groups fed sugar syrup with or without Cry1Ah toxin within 24, 48 or 72h. Adverse effects of Cry1Ah toxin on survival of Apis mellifera ligustica and Apis cerana cerana were not observed. No significant differences were found in the longevity of Apis mellifera ligustica fed sugar syrup with Cry1Ah toxin compared with control. In experiments with Apis cerana cerana fed Cry1Ah toxin, only a concentration of 10ng/ml Cry1Ah toxin resulted in a significantly longer longevity compared with the control. No differences were detected for pollen consumption and hypopharyngeal gland mass of Apis mellifera ligustica and Apis cerana cerana.
     2. We dissociated neurons from brains of bee workers. This preparation resulted in a large number of isolated viable neurons. Effect of Bt toxin on the excitability of the isolated neurons were observed by the whole-cell configuration of the patch-clamp technique. The results showed that Bt toxin (10ng/ml and 100ng/ml) did not affect excitability of the isolated neurons, because current threshold did not change significantly.
     3. The effects of dietary transgenic Bt corn pollen on honeybee worker larvae of Apis mellifera ligustica and Apis cerana cerana were examined. We measured cap rate, emergence rate, success rate of development, and immature stage after 4-6-day-old larvae were fed various pollens (Bt cry1Ah gene corn pollen, non-Bt corn pollen, mixed bee pollen and control). There were no significant differences in all the parameters tested among treatments. Our studies suggest that transgenic Bt corn pollen does not pose a threat to honeybee larval development. The sublethal effects of chemical insecticides bifenthrin and deltamethrin on honeybees were assessed as positive reference. Effects of two pesticides at the sub-lethal concentration on honeybees were examined with the feeding method. It was shown that both bifenthrin and deltamethrin significantly decreased the rate for bee to develop to adulthood and increased their immature periods.
     4. Honeybee could be exposed to insecticidal proteins from transgenic plants via pollen. Assessment of impacts on honeybee is an essential part of the risk assessment process for Bt corn. A field trial was conducted to evaluate the effect of transgenic Bt cry1Ah gene corn on honeybee, Apis mellifera ligustica. Colonies of honeybees were moved to Bt or non-Bt corn fields during bloom and then sampled for survival, development and behavior. No differences in immature stages, workers survival, bee body weight, hypopharyngeal glands weight, colony performance, foraging activity and olfactory learning abilities were detected between colonies placed in non-Bt corn fields and those in Bt corn fields. Results from this study suggest that transgenic Bt cry1Ah gene corn pollen does not have adverse effects on Apis mellifera ligustica.
     5. The effects of dietary Bt Cry1Ah toxin (1 ng/ml、10 ng/ml and 10000 ng/ml) on honeybee workers parasited by Varroa destructor were examined. There were no significant differences in mortality tested between workers fed Bt Cry1Ah toxin and control. We also evaluated Bt Cry1Ah toxin as a potential control for wax moth larvae in a laboratory study. We fed wax moth larvae three concentration of Cry1Ah toxin: 1 ng/g、10 ng/g and 10000 ng/g. We found that the mortality of larvae fed artificial diet containing Cry1Ah toxin was significantly greater than the mortality of larvae fed artificial diet without Cry1Ah toxin. Our studies suggest that transgenic Bt corn pollen does not pose a threat to honey bee larval development and has the potential to serve as an alternative control for wax moth.
引文
[1]曹建斌.膜片钳技术的发展及其应用.运城学院学报, 2009, 27(2): 53~55.
    [2]陈军.膜片钳实验技术.北京:科学出版社, 2001.
    [3]陈利珍.棉铃虫中肠Cry1A结合蛋白分离、鉴定及其与抗性的关系. [博士学位论文].北京:中国农业科学院, 2008.
    [4]程东美,张志祥,胡美英.电生理技术在昆虫毒理学上的应用.仲恺农业技术学院学报, 2001, 14(3): 64~70.
    [5]代平礼,王强,孙继虎,周婷,刘锋,王星. 4种农药对意大利蜜蜂的毒力测定.农药, 2007, 46(8): 546~547.
    [6]杜育哲,李杰,贺秉军,刘安西.苦参碱对棉铃虫幼虫神经细胞钠通道的影响.昆虫学报, 2004, 47(2): 189~192.
    [7]杜育哲.新型生物合理杀虫剂作用机理研究. [博士学位论文].天津:南开大学, 2002.
    [8]贺秉军,刘安西.细胞电生理技术在昆虫抗药性研究中的应用.昆虫学报, 2001, 44(4): 574~581.
    [9]贺秉军,刘东波,陈强,刘安西,汪清民,黄润秋,芮昌辉.光学活性拟除虫菊酯对棉铃虫神经细胞钠通道电流的影响.昆虫学报, 2003, 46(2): 156~160.
    [10]贺秉军,刘东波,王勇,李杰,鱼智飞,芮昌辉,刘安西.敏感及抗性棉铃虫不同龄期幼虫神经细胞Na+通道电生理特性的比较研究.南开大学学报(自然科学版), 2004, 37(4): 111~114.
    [11]姜玮瑜,代平礼,张永军,周婷,林毅,束长龙,张杰.转Bt-cry1Ac基因棉花对意大利蜜蜂肠道细菌群落的影响.应用与环境生物学报, 2010a, 16(2): 211~215.
    [12]姜玮瑜,梁革梅,林毅,束长龙,宋福平,张杰,对Bt蛋白抗性和敏感的棉铃虫中肠细菌群落的比较.微生物学报,2010b, 50(6): 828~834.
    [13]匡邦郁,李有泉.中国蜜蜂属的种类.中国养蜂, 1986, 5: 7~9.
    [14]李健,官春云,李栒,陈社员.转Bt基因抗虫油菜花粉对蜜蜂生存的影响.中国油料作物学报, 2003 25(2): 78~79.
    [15]李丽莉,王振营,何康来,彭于发,花蕾.转基因抗虫作物对非靶标昆虫的影响.生态学报, 2004 24(8): 1797~1808.
    [16]李泱,程芮.离子通道学.武汉:湖北科学技术出版社, 2007.
    [17]林燕飞,欧阳守.膜片钳技术研究进展及其应用.海峡药学, 2008, 20(9): 8~11.
    [18]刘安西.细胞膜离子通道.北京:中央民族学院出版社, 1990.
    [19]刘标,许崇任.转基因植物对传粉蜂类影响的研究进展.生态学报, 2003, 23(5): 946~955.
    [20]刘艳荷,陈盛禄.转抗虫基因植物对蜜蜂的影响.昆虫知识, 2001, 38(4): 258~262.
    [21]刘振伟.实用膜片钳技术.北京:军事医学科学出版社, 2006.
    [22]罗术东. Bt-cry1Ac棉花抗性棉铃虫对Cry2Ab的抗性风险研究. [博士学位论文].北京:中国农业科学院, 2007.
    [23]罗万春.世界新农药与环境.北京:世界知识出版社, 2002.
    [24]马德凤.中国农业百科全书,养蜂卷.北京:农业出版社, 1993.
    [25]马力农.细胞膜离子通道及其检测技术的研究进展.深圳职业技术学院院报, 2003, 2(3): 21~26.
    [26]田晶.膜片钳技术的应用进展.吉林医药学院学报, 2008, 29(4): 227~229.
    [27]田岩,张永军,吴孔明,赵奎军,彭于发,郭予元.转Bt-cry1Ac棉花花粉对意大利蜜蜂生长发育的影响.应用与环境生物学报, 2006a, 12(4): 464~467.
    [28]田岩,张永军,吴孔明,赵奎军,彭于发,郭予元.转Bt-cry1Ab玉米花粉对意大利蜜蜂生长发育及体内酶活性的影响.农业生物技术学报, 2006b, 14(6): 990~991.
    [29]王新刚,毛罕平,左志宇.离子选择微电极与膜片钳在电生理检测中的应用.农机化研究, 2007, (10): 36~39.
    [30]王延锋.转Bt基因抗虫玉米田间试验与遗传稳定性分析. [博士学位论文].哈尔滨:东北农业大学, 2010
    [31]王悦冰,郎志宏,张杰,何康来,宋福平,黄大昉.利用ubi1内含子增强Bt cry1Ah基因在转基因玉米中的表达.科学通报, 2008, 53(17): 2041~2046.
    [32]吴文君,刘惠霞,朱靖博.天然产物杀虫剂——原理·方法实践.西安:陕西科技出版社, 1998.
    [33]胥保华.蜜蜂属内蜂种的分类、地理分布、形态特征和生物学特性.山东农业大学学报(自然科学版) , 2000, 31(3): 265~268.
    [34]薛超彬,罗万春.膜片钳技术在昆虫毒理学研究中的应用.昆虫知识, 2003, 40(3): 496~499.
    [35]岳同卿.转Bt Cry1Ah基因抗虫玉米的研究. [博士学位论文].北京:中国农业科学院, 2009.
    [36]张永军,吴孔明,彭于发,郭予元.转基因植物的生态风险.生态学报, 2002, 22(11): 1951~1959.
    [37]郑明奇,邱立红,王成菊,李学锋,姜辉,陶传江. 9种含阿维菌素或甲氨基阿维菌素的农药对蜜蜂安全性评价.安徽农业科学, 2005 33: 980~981.
    [38]中国农业科学院植物保护研究所.对鳞翅目昆虫高毒力的Bt cry1Ah基因.中国,发明专利, CN200410009918.9, 2006.
    [39]周婷,王强,代平礼,张毅力,孙继虎.成年蜜蜂脑神经细胞的培养和电生理特征.昆虫学报, 2008, 51(7): 700~706.
    [40]周婷,王强,姚军.钠离子通道与蜜蜂狄斯瓦螨对氟胺氰菊酯的抗性机理.昆虫知识, 2003, 40(6): 491~495.
    [41]周婷,姚军,王强,王风忠.微孢子虫和狄斯瓦螨分别侵染后的意蜂血淋巴蛋白质含量变化.昆虫学报, 2004, 47(4): 530~533.
    [42] Aliouane Y., El Hassani A.K., Gary V., Armengaud C.M.L., Gauthier M. Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem., 2009, 28: 113~122.
    [43] Amar M., Pichon Y., Inoue I. Patch-clamp analysis of the effects of the insecticide deltamethrin on insect neurones. J. Exp. Biol., 1992, 163: 65~84.
    [44] Andow D.A., Hilbeck A. Science-based risk assessment for nontarget effects of transgenic crops. Bioscience, 2004, 54: 637~649.
    [45] Andow D.A., Lovei G.L., Arpaia S. Ecological risk assessment for Bt crops. Nat. Biotechnol., 2006, 24: 749~751.
    [46] Andow D.A., Zwahlen C. Assessing environmental risks of transgenic plants. Ecol. Lett., 2006, 9: 196~214.
    [47] Arpaia S. Ecological impact of Bt-transgenic plants: 1. assessing possible effects of CryIIIB toxin on honey bee (Apis mellifera L.) colonies. J. Genet. Breed., 1996, 50: 315~319.
    [48] Babendreier D, R.B., Romeisa J, Biglera F. Impact of insecticidal proteins expressed in transgenic plants on bumblebee microcolonies. Entomologia Experimentalis et Applicata , 2008, 126: 148~157.
    [49] Babendreier D., Joller D., Romeis J., Bigler F., Widmer, F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol., 2007, 59: 600~610.
    [50] Babendreier D., Kalberer N.M., Romeis J., Fluri P., Mulligan E., Bigler F. Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie, 2005, 36: 585~594.
    [51] Babendreier D., Kalberer N., Romeis J., Fluri P., Bigler F. Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie, 2004, 35: 293~300.
    [52] Barbara G.S., Zube C., Rybak J., Gauthier M., Grunewald B. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2005, 191: 823~836.
    [53] Bloomquist J.R. Ion channels as targets for insecticides. Annu. Rev. Entomol., 1996, 41: 163~190.
    [54] Br?dsgaard H.F., Br?dsgaard C.J., Hansen H., Lovei G.L. Environmental risk assessment of transgene products using honey bee (Apis mellifera) larvae. Apidologie, 2003, 34: 139~145.
    [55] Bromenshenk J.J., Cronn R.C., Nugent J.J. Monitoring fluoride with honey bees in the upper Snake River Plain of Idaho. J. Environ. Qual., 1996, 25: 868~877.
    [56] Bromenshenk J.J., Doskocil J., Olbu G.J., DeGrandi-Hoffman G., Roth S.A. PC BEEPOP, an ecotoxicological simulation-model for honey-bee populations. Environ. Toxicol. Chem., 1991, 10: 547~558.
    [57] Bromenshenk J.J., Gudatis J.L., Carlson S.R., Thomas J.M., Simmons M.A. Population-dynamics of honey-bee nucleus colonies exposed to industrial pollutants. Apidologie, 1991, 22: 359~369.
    [58] Clark E.A. Environmental risks of genetic engineering. Euphytica, 2006, 148: 47~60.
    [59] Colin M.E., Bonmatin J.M., Moineau I., Gaimon C., Brun S., Vermandere J.P. A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch. Environ. Contam. Toxicol., 2004, 47: 387~395.
    [60] Cox R.L., Wilson W.T. Effects of permethrin on the behavior of individually tagged honey bees, Apis mellifera L.(Hymenoptera: Apidae). Environ. Entomol., 1984, 13: 375~378.
    [61] Craig W., Tepfer M., Degrassi G., Ripandelli D. An overview of general features of risk assessments of genetically modified crops. Euphytica, 2008, 164: 853~880.
    [62] Crailsheim, K. The protein balance of the honey bee worker. Apidologie, 1990, 21: 417~429.
    [63] Crailsheim K., Schneider L., Hrassnigg N., Buhlmann G., Brosch U., Gmeinbauer R., Schoffmann B. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J. Insect Physiol., 1992, 38: 409~419.
    [64] Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D.H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev., 1998, 62: 807~813.
    [65] Davis A.R. The study of insecticide poisoning of honeybee brood. Bee World, 1989, 70: 163~174.
    [66] de Maagd R.A., Bravo A., Berry C., Crickmore N., Schnepf H.E. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet., 2003, 37: 409~433.
    [67] Decourtye A., Devillers J., Cluzeau S., Charreton M., Pham-Delègue M.H. Effects of imidacloprid and deltamethrin on associative learning in honeybee under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf., 2004, 57: 410~419.
    [68] Decourtye A., Devillers J., Genecque E., Le Menach K., Budzinski H., Cluzeau S., Pham-Delegue M. H. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol., 2005, 48: 242~250.
    [69] Decourtye A., Devillers J., Genecque E., Menach K.L., Budzinski H., Cluzeau S., Pham-Delègue M.H. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol., 2005, 48: 242~250.
    [70] Decourtye A., Le Metayer M., Pottiau H., Tissuer M., Odoux J.F., Pham-Delegue M.H. Impairment of olfactory learning performances in the honeybee after long term ingestion of imidacloprid. In L.P. Belzunces, C. Pelissier and G.B. Lewis,(eds) Hazards of Pesticides to Bees, France: INRA., 1999, 113~117.
    [71] Denolf P., Hendrickx K., Van Damme J., Jansens S., Peferoen M., Degheele D., Van Rie J. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur. J. Biochem., 1997, 248: 748~761.
    [72] Douville M., Gagne F., Blaise C., Andre C. Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment. Ecotoxicol. Environ. Saf., 2007, 66: 195~203.
    [73] Duan J.J., Lundgren J.G., Naranjo S., Marvier M. Extrapolating non-target risk of Bt crops fromlaboratory to field. Biol. Lett., 2009.
    [74] Duan J.J., Marvier M., Huesing J., Dively G., Huang Z. Y. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). Plosone, 2008, 1: 1415.
    [75] El Hassani A.K., Dacher M., Gary V., Lambin M., Gauthier M., Armengaud C. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch. Environ. Contam. Toxicol., 2008, 54: 653~661.
    [76] El Hassani A.K., Dacher M., Gauthier M., Armengaud C. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol. Biochem. Behav., 2005, 82: 30~39.
    [77] Engel M.S. The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis). Journal of Hymenoptera Research, 1999, 8: 165~196.
    [78] EPA. Honey bee acute contact toxicity. Ecological Effects Test Guidelines OPPTS 850.3020, USEPA. Draft 1996.
    [79] EPPO. Decision making scheme for the environmental risk assessment of plant protection products. EPPO Bull, 1993, 23: 151~165.
    [80] EPPO. Guideline on test methods for evaluating the side-effects of plant protection products on honeybees. EPPO Bull, 1992, 22: 203~215.
    [81] FAO. Protecting the pollinators, www.fao.org/ag/magazine/0512sp1.htm., 2005
    [82] Faucon J.P., Flamini C., Colin M.E.évaluation de l'incidence de la deltamethrine sur les problèmes de cheptel apicole 2e Partie, Bull. Lab. Vet., 1985, 18: 33~45.
    [83] Fearing P.L.B., Vlachos D., Meghji M., Privalle L. Quantitative analysis of CryIA(b) expression in Bt maize plants, tissues, and silage and stability of expression over successive generations. Molecular Breeding, 1997, 3: 169~176.
    [84] Fill M., Coronado R. Ryanodine receptor channel of sarcoplasmic reticulum. Trends Neurosci, 1988, 11: 453~457.
    [85] Fluri P., Lüscher M., Wille H., Gerig L. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect. Physiol., 1982, 28: 61~68.
    [86] Free J.B. Insect Pollination, 2nd ed., Academic, New York, NY, USA., 1993.
    [87] Fromm M.E., Morrish F., Armstrong C., Williams R., Thomas J., Klein T.M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology (N Y), 1990, 8: 833~839.
    [88] Glickman A.H., Lech J.J. Differential toxicity of transper-methrin in rainbow trout and mice. II. Role of target organ sensitivity. Toxicol. Appl. Pharmacol., 1982, 66: 162~171.
    [89] Gordon-Kamm W.J., Spencer T.M., Mangano M.L., Adams T.R., Daines R.J., Start W.G., O'Brien J.V., Chambers S.A., Adams W.R., Jr., Willetts N.G., Rice T.B., Mackey C.J., Krueger R.W., Kausch A.P., Lemaux P.G. Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants. Plant. Cell., 1990, 2: 603~618.
    [90] Guez D., Zhang S.W., Srinivasan M.V. Methyl parathion modifies foraging behaviour in honeybees (Apis mellifera). Ecotoxicology, 2005, 14: 431~437.
    [91] Halm M.P., Rortais A., Arnold G., Taséi J.N., Rault S. New risk assessment approach for systemic insecticides: The case of the honey bees and imidacloprid (Gaucho). Environ. Sci. Technol., 2006, 40: 2448~2454.
    [92] Han P., Niu C.Y., Lei C.L., Cui J.J., Desneux N. Quantification of toxins in a Cry1Ac+CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology, 2010a, 19:1452-1459.
    [93] Han P., Niu C.Y., Lei C.L., Cui J.J., Desneux N. Use of an innovative T-tube maze assay and the Proboscis Extension Response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology, 2010b, 19:1612-1619.
    [94] Hamill O.P., Marty A., Neher E., Sakmann B., Sigworth F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch., 1981, 391: 85~100.
    [95] Hanley A.V., Huang Z. Y., Pett W. L. Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J. Apicult. Res., 2003, 42: 77~81.
    [96] Haydak M.H. Honey bee nutrition. Annu. Rev. Entomol., 1970, 15: 143~156.
    [97] Haynes K.F. Sublethal effects of neurotoxic insecticides on insect behaviour. Annu. Rev. Entomol., 1988, 33: 149~168.
    [98] H?fte H., Whiteley H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev., 1989, 53: 242~255.
    [99] Howard J.A., Donnelly K. C. A quantitative safety assessment model for transgenic protein products produced in agricultural crops. J. Agricult. Environ. Ethics, 2004, 17: 545~558.
    [100] http://cera-gmc.org/index.php?action=gm_crop_database.
    [101] http://chinalnn.com/Html/Article/Class21/Class24/24_203907.html
    [102] http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/.
    [103] Huang Z.Y., Hanley A.V., Pett W.L., Langenberger M., Duan J.J. Field and semifield evaluation of impacts of transgenic canola pollen on survival and development of worker honey bees. J. Econ. Entomol., 2004, 97: 1517~1523.
    [104] James C. Global status of commercialized biotech/GM crops: 2010. ISAAA Briefs No. 42., 2010.
    [105] Kevan P.G. Pollinators as bioindicators of the state of the environment: species activity and diversity. Agricult. Ecosyst. Environ., 1999, 74: 373~393.
    [106] Koch W., Weiber P. Exposure of honey bees during pesticide application under field conditions. Apidologie, 1997, 28: 439~447.
    [107] Konrad R., Connor M., Ferry N., Gatehouse A.M.R., Babendreier D. Impact of transgenic oilseed rape expressing oryzacystatin-1 (OC-1) and of insecticidal proteins on longevity and digestive enzymes of the solitary bee Osmia bicornis. J. Insect Physiology, 2009, 55: 305~313.
    [108] Konrad R., Ferry N., Gatehouse A.M., Babendreier D. Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis. PLoS One, 2008, 3: e2664.
    [109] Ladurner E., Bosch J., Kemp W.P., Maini S. Assessing delayed and acute toxicity of five formulated fungicides to Osmia lignaria Say and Apis mellifera. Apidologie, 2005, 36: 449~460.
    [110] Ladurner E., Bosch J., Maini S., Kemp W.P. A method to feed individual bees (Hymenoptera: Apiformes) known amounts of pesticides. Apidologie, 2003, 34: 597~602.
    [111] Latsch G. Are GM Crops Killing Bees? Spiegel Online International., 2007.
    [112] Lee D., Brown, M.T., Adms, E.M. Properties of neuronal sodium channels in susceptible and pyrethroid-resistance insects. Abstract of Paper ACS, 1996, 212: 1~2.
    [113] Lee D., Park Y., Brown T.M., Adams M.E. Altered properties of neuronal sodium channels associated with genetic resistance to pyrethroids. Mol. Pharmacol., 1999, 55: 584~593.
    [114] Liu B., Shu C., Xue K., Zhou K., Li X., Liu D., Zheng Y., Xu C. The oral toxicity of the transgenic Bt+CpTI cotton pollen to honeybees (Apis mellifera). Ecotoxicol. Environ. Saf., 2009, 72: 1163~1169.
    [115] Liu B., Xu C.R., Yan F.M., Gong R.Z. The impacts of the pollen of insect-resistant transgenic cotton on honeybees. Biodiversity and Conservation, 2005, 14: 3487~3496.
    [116] MacKenzie K.E., Winston M.L. Effects of sublethal exposure to diazinon on longevity and temporal division of labor in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol., 1989, 82: 75~82.
    [117] Malone L., Tregidga E., Todd J., Burgess E., Philip B., Markwick N., Poulton J., Christeller J., Lester M., Gatehouse H. S. Effects of ingestion of a biotin-binding protein on adult and larval honey bees. Apidologie, 2002, 33: 447~458.
    [118] Malone L.A., Burgess E.P.J., Gatehouse H.S., Voisey C. R., Tregidga E.L., Philip B.A. Effects of ingestion of a Bacillus thuringiensis toxin and a tryp sin inhibitor on honey bee flight activity and longevity. Apidologie, 2001a, 32: 57~68.
    [119] Malone L.A., Burgess E.P.J., Stefanovic D. Effects of a Bacillus thuringiensis toxin , two Bacillus thuringiensis biopesticide formulations , and a soybean trypsin inhibitor on honey bee ( Apis mellifera L. ) survival and food consumption. Apidologie, 1999, 30: 465 ~ 473.
    [120] Malone L.A., Pham-Delègue M. H. Effects of transgene products on honey bees (Apis mellifera) and bumble bees (Bombussp.). Apidologie, 2001b, 32: 287~304.
    [121] Malone L.A., Todd J.H., Burgess E.P.J., Christeller J.T. Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie, 2004, 35: 655~664.
    [122] Mamood A.N., Waller G.D. Recovery of learning responses by honeybees following sublethal exposure to permethrin. Physiol. Entomol., 1990, 15: 55~60.
    [123] Marvier M., McCreedy C., Regetz J., Kareiva P. A meta-analysis of effects of Bt cotton and maizeon non-target invertebrates. Science, 2007, 316: 1475~1477.
    [124] Masson C., Pham-Delègue M.H., Fonta C., Gascuel J., Arnold G.,Nicolas G., Kerszberg M. Recent advances in the concept of adaptation to natural odor signals in the honeybee, Apis mellifera L. Apidologie, 1993, 24: 169~194.
    [125] Mayer D.F., Kovacs G., Lunden J.D. Field and laboratory tests on the effects of cyhalothrin on adults of Apis mellifera, Megachile rotundata and Nomia melanderi. J. Apicult. Res., 1998, 37: 33~37.
    [126] Mayer D.F., Lunden J.D. Field and laboratory tests of the effects of fipronil on adult female bees of Apis mellifera, Megachile rotundata and Nomia melanderi. J. Apicult. Res., 1999, 38: 191~197.
    [127] Mendelsohn M., Kough J., Vaituzis Z., Matthews K. Are Bt crops safe? Nat Biotechnol, 2003, 21: 1003~1009.
    [128] Mohr K.I., Tebbe C.C. Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide~resistant oilseed rape pollen to gut bacteria of bees. Appl. Microbiol. Biotechnol., 2007, 75: 573~582.
    [129] Morandin L.A., Winston M.L. Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ. Entom., 2003, 32: 555~563.
    [130] Narahashi T. Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci, 1992, 13: 236~241.
    [131] Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 1976, 260: 799~802.
    [132] NRCC. Pesticide-Pollinator Interactions. NRCC/ CNRC Ottawa, Publication No. 18471, 1981, 190.
    [133] O'callaghan M., Glare T. R., Burgess E. P. J., Malone L. A. Effects of plants genetically modified for insect resistance on nontarget organisms. Annu. Rev. Entomol, 2005, 50: 271~292.
    [134] OECD. Guidelines for the testing of chemicals Number 213 Honeybees, Acute Oral Toxicity Test, OECD. Environmental Health and Safety Division, Paris., 1998b.
    [135] OECD. Guidelines for the testing of chemicals Number 214 Honeybees, Acute Contact Toxicity Test. OECD. Environmental Health and Safety Division, Paris., 1998a.
    [136] Pajot S. Dossier Gaucho. Abielles et Fleurs, 2001, 616: 160~165.
    [137] Park Y., Taylor M.F. A novel mutation L1029H in sodium channel gene hscp associated with pyrethroid resistance for Heliothis virescens (Lepidoptera:Noctuidae). Insect Biochem. Mol. Biol., 1997, 27: 9~13.
    [138] Park Y., Taylor M.F., Feyereisen R. A valine421 to methionine mutation in IS6 of the hscp voltage-gated sodium channel associated with pyrethroid resistance in Heliothis virescens F. Biochem. Biophys. Res. Commun., 1997, 239: 688~691.
    [139] Patrice D., Bernd G., Monique G. The insecticide imidacloprid is a partial agonist of the nicotinicreceptor of honeybee Kenyon cells Neuroscience Letters, 2002, 32l: 13~16.
    [140] Pettis J.S., Delaplane K.S. Coordinated responses to honey bee decline in the USA. Apidologie, 2010, 41: 256 ~ 263.
    [141] Pham-Delègue M.H., Ramirez-Romero R., Chaufaux J. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie, 2005, 36: 601~611.
    [142] Pigott C., Ellar D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Molecular Biol. Rev., 2007, 71: 255~281.
    [143] Ramirez-Romero R., Chaufaux J., Pham-Delègue M.H.. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie, 2005, 36: 601~611.
    [144] Ramirez-Romero R., Desneux N., Decourtye A., Chaffiol A., Pham-Delegue M. H. Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol. Environ. Saf., 2008, 70: 327~333.
    [145] Rando T.A. Rapid and slow gating of veratridine-modified sodium channels in frog myelinated nerve. J. Gen. Physiol., 1989, 93: 43~65.
    [146] Rortais A., Arnold G., Halm M.P., Touffet-Briens F. Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie, 2005, 36: 71~83.
    [147] Rose R., Dively G. P., Pettis J. Effects of Bt corn pollen on honey bees: emphasis on protocol development. Apidologie, 2007, 38: 368~377.
    [148] Rosov A.S. Food consumption by bees. Bee World, 1944, 25: 94~95.
    [149] Roulston T.H., Cane J.H. Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution, 2000, 222: 187~209.
    [150] Russell R.M., Robertson J.L., Savin N.E. POLO a new computer program for probit analysis. Rev. Entomol. Soc., 1977, 23: 209~215.
    [151] SAS Institute Inc. SAS/STAT User’s Guide, Release 8.01 edition. Cary, NC. , 2000
    [152] Schmuck R. Effects of a chronic dietary exposure of the honeybee Apis mellifera (Hymenoptera: Apidae) to imidacloprid. Arch. Environ. Contam. Toxicol., 2004, 47: 471~478.
    [153] Schmuck R. No causalrelationship between Gaucho seed dressing in sunflowers and the French bee syndrome. Pflan1enschutz-Nachrichten Bayer, 1999, 52: 257~299.
    [154] Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev, 1998, 62: 775~806.
    [155] Schricker B., Stephen W.P. The effect of sublethal doses of parathion on honeybee behaviour. I. Oral adminstration and the communication dance. J. Apicult. Res., 1970, 9: 141~153.
    [156] Seeley T.D. Division of labour between scouts and recruits in honeybee foraging. Behav. Ecol.Sociobiol., 1983, 11: 287~293.
    [157] Shelton A.M., Zhao J.Z., Roush R.T. Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu. Rev. Entomol., 2002, 47: 845~881.
    [158] Sims S.R. Bacillus thuringiensis var. ku rstak i (Cry IA (c) ) protein expressed in transgenic cotton: effects on beneficial and o ther nontarget insects. Southwestern Entomologist, 1995, 20: 493~500.
    [159] Soderlund D., Bloomquist J.R. Neurotoxic actions of pyrethroid insecticides. Annu. Rev. Entomol., 1989, 34: 77~96.
    [160] Stephen W.P., Schricker B. The effect of sublethal doses of parathion II Site of parathion activity, and signal integration. J. Apicult. Res., 1970, 9: 155~164.
    [161] Stone J.C., Abramson C., Price J.M. Task dependent effects of dicofol (Kelthane) on learning in the honey bee (Apis mellifera). Bull. Environ. Contam. Toxicol., 1997, 58: 177~183.
    [162] Stoner A., Wilson W.T. Diflubenzuron (Dimilin):effect of long-term feeding of low doses in sugar cake or sucrose syrup on honey bees in standard-size field colonies. Amer. Bee J., 1982, 122: 579~582.
    [163] Stoner A., Wilson W.T., Harvey J. Dimethoate (Cygon): effect of long-term feeding of low doses on honey bees in standard size field colonies. Southwest. Entomol., 1983, 8: 174~177.
    [164] Stoner A., Wilson W.T., Rhodes H.A. Carbofuran: effect of long-term feeding of low doses in sucrose syrup on honey bees in standard-size field colonies. Environ. Entomol , 1982, 11: 53~59.
    [165] Suchail S., Guez D., Belzunces L.P. Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ. Toxicol. Chem., 2000, 7: 1901~1905.
    [166] Taylor K.S., Waller G.D., Crowder L.A. Impairment of a classical conditioned response of the honey bee (Apis mellifera L.) by sublethal doses of synthetic pyrethroid insecticides. Apidologie, 1987, 18: 243~252.
    [167] Thompson H.M. Behvioural effects of pesticides in bees——Their potential for use in risk assessment. Ecotoxicology, 2003, 12: 317~330.
    [168] Thompson H.M., Hunt L.V. Extrapolating from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology, 2004, 8: 147~166.
    [169] Tony M.A., Butschke A., Broll H., Grohmann L., Zagon J., Halle I., Danicke S., Schauzu M., Hafez H.M., Flachowsky G. Safety assessment of Bt 176 maize in broiler nutrition: degradation of maize-DNA and its metabolic fate. Arch. Tierernahr, 2003, 57: 235~252.
    [170] United Nations Environment Programme. http://www.unep.org/dewa/Portals/67/pdf/Global _Bee_Colony_Disorder_and_Threats_insect_pollinators.pdf., 2011
    [171] United States Environmental Protection Agency. Bt plant-pesticides biopesticides registration action document. http://www.epa.gov.oscpmont/sap/2000/october/brad3 sment. pdf., 2000.
    [172] Vandame R., Meled M., Colin M.E., Belzunces L.P. Alteration of the homing-flight in the honey bee Apis mellifera L. Exposed to sublethal dose of deltamethrin. Environ. Toxicol. Chem., 1995,14: 855~860.
    [173] Villa S., Vighi M., Finizio A., Serini G.B. Risk assessment for honeybees from pesticide-exposed pollen. Ecotoxicology, 2000, 9: 287~297.
    [174] WHO. Safe use of pesticides. Technical Report Series No. 720. World Health Organization, Geneva., 1985.
    [175] Wraight C.L.Z., A.R. Carroll M.J. Berenbaum M.R. Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc. Natl. Acad. Sci., 2000, 97: 7700~7703.
    [176] Wu K.M., Lu Y.H., Feng H.Q., Jiang Y.Y., Zhao J.Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science, 2008. 321: 1676~1678.
    [177] Wustenberg D.G., Boytcheva M., Grunewald B., Byrne J.H., Menzel R., Baxter D.A. Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. J. Neurophysiol., 2004, 92: 2589~2603.
    [178] Xue J., Liang G., Crickmore N., Li H., He K., Song F., Feng X., Huang D., Zhang J. Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol Lett, 2008, 280: 95~101.
    [179] Zhou T., Anderson D. L., Huang Z. Y., Huang S.X., Yao J., Tan K., Zhang Q.W. Identification of Varroa mites (Acari: Varroidae) infesting Apis cerana and Apis mellifera in China. Apidologie, 2004, 35, 645–654.
    [180] Zhou T., Wang Q., Dai P.L., Liu F., Zhang Y.L., Sun J.H. Effect of sublethal doses pyrethroids on neuronal excitability of adult honey bees Apis mellifera. Pesticide Biochemistry and Physiology., 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700