甜菜夜蛾的抗药性监测及对虫酰肼的抗性风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜夜蛾是一种世界性分布的重要农业害虫,其寄主范围广,抗药性强,近年在我国危害呈加重趋势。虫酰肼是目前防治甜菜夜蛾的少数几种高效药剂之一。本研究监测了不同地区甜菜夜蛾对各类杀虫剂的抗性,通过室内选育虫酰肼抗性品系,计算抗性现实遗传力,预测抗性发展速度,并进行了交互抗性,抗性遗传方式和适合度及增效剂增效作用的研究,以期为甜菜夜蛾的抗性治理提供科学依据。现将研究结果总结如下:
     1甜菜夜蛾的抗药性监测
     用浸叶法监测了江苏和河南两省几个地区甜菜夜蛾种群对各类杀虫剂的抗性,结果表明:甜菜夜蛾对几种新型杀虫剂甲维盐、甲氧虫酰肼、呋喃虫酰肼、虫酰肼、溴虫腈和茚虫威以及氨基甲酸酯类杀虫剂拉维因基本处于敏感到敏感性下降阶段,首次监测到江苏省江宁和射阳种群对阿维菌素分别具有10.4和14.2倍的中等水平抗性,江苏丰县种群对茚虫威具有6.8倍的低水平抗性。对定虫隆,只有02年采集的江苏丰县种群尚敏感,江苏射阳种群达中等水平抗性(38.3倍),江苏江宁、河南新野和江苏阜宁种群均已达高抗(分别为195.7、365.5和407.2倍)。对有机磷杀虫剂辛硫磷、毒死蜱和敌百虫以及菊酯类杀虫剂高效氯氰菊酯和三氟氯氰菊酯产生了不同程度的抗药性,对三氟氯氰菊酯抗性最高,所测种群均达到极高抗性水平(181.1~1865.6),辛硫磷(6.9~11.7),为低到中等水平抗性,毒死蜱(3.6~11.4)、敌百虫(3.4~10.0)和高效氯氰菊酯(3.5~9.9),为敏感性下降到中等或低水平抗性。
     2甜菜夜蛾对虫酰肼的抗性选育及抗性风险评估
     在室内采用饲料感染法筛选甜菜夜蛾对虫酰肼的抗性,在饲养75代期间筛选62代,与起始种群相比,抗性比为39.2倍,与室内敏感品系相比,抗性比为141.3倍。在五次连续筛选过程中,现实遗传力依次为0.0471(F_0~F_7)、0.2606(F_(22)~F_(28))、0.3613(F_(31)~F_(38)、0.1228(F_(45)~F_(55))和0.1849(F_(57)~F_(75)),整个筛选62代现实遗传力为0.1556。抗性发展趋势为先慢后快,再缓慢再加快。抗性发展速率随药剂杀死率和现实遗传力的提高而加快,当现实遗传力h~2为0.1556,杀死率为80%~9 0%时,抗性上升10倍,需要10.2~12.9代。抗性种群筛选43次(F_(55))后停止用药筛选,饲养21代后,与敏感品系相比,抗性由63.5倍下降到21倍,抗性下降了2倍。
     3甜菜夜蛾虫酰肼抗性品系对其它杀虫剂的交互抗性和增效剂增效作用
     在室内筛选到47和64代时分别测定了筛选种群对其它杀虫剂的敏感性,结果表明:甜菜夜蛾对虫酰肼产生高水平抗性(F_(47)为50.7倍,F_(64)为85倍)后,对定虫隆具有高水平交互抗性(抗性增长倍数RR~1>312.5倍);对甲氧虫酰肼具有高水平交互抗性,在F_(47)RR~1为71.4(浸叶法)和46倍(饲料感染法);在F_(64)RR~1为123.1(浸叶法)和133倍(饲料感染法);对呋喃虫酰肼具有低(浸叶法RR~14.7和7.4倍)或中等水平(饲料感染法RR~1 14.9和22.3倍)的交互抗性;对阿维菌素(F_(47):RR~1 13.1)和甲维盐(F_(64):RR~1 20.4)具有中等水平的交互抗性;对茚虫威具有低水平交互抗性(RR~1 8.4和8.7倍);但对溴虫腈和拉维因交互抗性不明显或没有交互抗性。
     分别用谷胱甘肽-S-转移酶抑制剂DEM、多功能氧化酶抑制剂PBO和酯酶抑制剂DEF对甜菜夜蛾抗性和敏感品系进行活体增效测定,结果表明:PBO对敏感和抗性品系都有一定的增效作用,增效倍数分别为1.9乖3.6倍,对抗性品系的增效作用更明显,两者增效比为1.9倍。DEM和DEF对敏感品系没有增效作用,但对抗性品系有一定的增效作用,增效比分别为1.5和1.4倍,抗性品系和敏感品系增效倍数之比分别为1.6和1.4倍。可见,多功能氧化酶在虫酰肼的抗性中起主要作用,但酯酶和谷胱甘肽转移酶也可能参与了对虫酰肼的代谢。
     4甜菜夜蛾对虫酰肼的抗性遗传方式
     甜菜夜蛾抗性和对照品系正反交后代初孵幼虫毒力分别为0.523(0.279~0.772)和0.453(0.402~0.507)mg/L,两者差异不显著(95%置信限重叠),表明甜菜夜蛾对虫酰肼抗性为常染色体遗传。按stone(1968)报道的公式,求得正交显性度D=-0.4217,反交显性度D=-0.49 82,二者介于-1~0之间,说明甜菜夜蛾对虫酰肼的抗性为不完全隐性。同样,甜菜夜蛾抗性和敏感品系正反交后代幼虫毒力分别为0.514(0.463~0.570)和0.500(0.317~0.717)mg/L,两者差异不显著(95%置信限基本重叠),也表明甜菜夜蛾对虫酰肼的抗性为常染色体遗传。按stone报道的公式,计算得正交和反交的显性度D值分别为-0.2651和-0.277 3,二者介于-1~0之间,也证明抗性主基因为不完全隐性。F_1与抗性亲本回交或自交后代的虫酰肼LD-P曲线与单个主基因控制假设明显不符,说明抗性为多基因控制。
     5甜菜夜蛾虫酰肼抗性和敏感品系的相对适合度
     适合度研究表明:甜菜夜蛾虫酰肼抗性品系的4~5龄幼虫的存活率下降,幼虫和蛹发育历期延长、蛹重减轻、化蛹率和产卵量降低,相对于其它品系存在一定种群繁殖劣势。计算各种群的净增殖率分别为341.3、613.0、358.4和241.6,正反交和抗性品系相对于敏感品系适合度分别为1.80、1.05和0.71,进一步表明甜菜夜蛾虫酰肼抗性品系比其它品系具有明显的生存劣势。
The beet armyworm,Spodoptera exigua(H(?)bner),is a worldwide distributed and polyphagous pest,which has developed resistance to many insecticides,including chlorinated hydrocarbons,organophosphates,carbarnates,pyrethroids,benzoylphenylureas, and Bt formulations.In recent years the damage by the beet armyworm to crops increased dramatically in China.Tebufenozide is considered as one of a few highly effective insecticides for controlling beet armyworm.In order to make good use of this insecticide and implement effective resistance management strategy,we surveyed resistance of field populations of beet armyworm from some areas of Jiangsu and Henan provinces in China to several classes of insecticides.Furthermore,the resistant strain was selected with tebufenozide,the resistance realized heritability(h~2) was estimated and resistance development rate was projected.In the same time,cross-resistance,inhetitance of resitance, fitness cost and synergistic effects of three synergists to tebufenozide were studied.The results were summarized as follows:
     1 Resistance monitoring in beet armyworm
     Susceptibility to several classes of insecticides was determined using leaf-dipping method in field populations of Spodoptera exigua from some areas of Jiangsu and Henan Provinces,in China.The results showed that the majority of populations were susceptible or decreased susceptible to a few novel insecticides,such as emamectin benzoate, methoxyfenozede,JS118,tebufenozede,chlorfenapy and indoxacarb,as well as thoidicarb, but two populations from Jiangning and Sheyang counties of Jiangsu province first developed a moderate levels of resistance to abamectin,and one population from Fengxian county of Jiangsu province had a low level of resistance to indoxacarb.Two populations from Jiangning and Funing counties of Jiangsu province and one population from Xinye county of Henan province developed very high levels resitance with 195.7-,407.2-and 365.5-fold and one population from Sheyang county of Jiangsu province had a moderate level resistance(38.3) to chlorfuazuron,and only one populaton collected from Fengxian county of Jiangsu province in 2002 showed susceptible to chlorfuazuron.All tested populations developed very high level resistance to cyhalothrin(181.1~1865.6), low-moderate levels resistance to phoxim(6.9~11.7) and decreased susceptible to low or moderate levels resistance to chlorpyrifos(3.6~11.4),trichlorphon(3.4~10.0) and beta-cypermethrin(3.5~9.9).
     2 Resistanc selection and risk assessment to tebufenozide in beet armyworm
     A field population of beet armyworm,Spodoptera exigua(H(?)bner)(Lepidoptera: Noctuidae),from Shenzhen,Guangdong province was used by dietary exposure to select for resistance to tebufenozide in the laboratory.After continuous selection with tebufenozide 62 times during 75generations,a resistant strain was achieved with resistance ratio of 39.2-fold to tebufenozide when compared with the original reference strain (141.3-fold compared with a susceptible laboratory strain).Estimation of Realized heritability(h~2) of resistance in different selection stage was based on the method described by Tabashnik & McGaughey.The results suggested that h~2 to tebufenozide in 5 successive selection stages was 0.0471(F_0~F_8),0.2606(F_(22)~F_(28)),0.3613(F_(31)~F_(38)),0.1228(F_(45)~F_(55)) and 0.1849(F_(57)~F_(75)),respectively,h~2 for the entire selection experiment was 0.1556.The time course of resistant development appeared to slow at first then speed up,afterwards become slow then speed up.The resistance development rate increases as h~2 and selection intensity increase.Thus,assuming h~2=0.1556 and selection kills 80%~90%of the populations,then a 10-fold increase in LC_(50) is expected in 10.2~12.9 generations.The susceptibility to tebufenozide increased 2 times when the culture was kept for 21 generation without exposure to the chemical pressure after 43 times selection.
     3 Cross-resistance to other insecticides of tebufenozide-selected beet armyworm and synergistic effects of synergists to tebufenozide
     Susceptibity to other insecticides was determined in selected population after 47 and 64 selection in the laboratory,respectively.Bioassay revealed that this resistant strain showed high levels resistance to tebufenozide(F_(47):50.7-fold,F_(64):85-fold),and showed high levels cross-resistance to chlorfuazuron(increasing resistance fold RR′>312.5-fold),high levels cross-resistance to methoxyfenozide,RR′71.4(leaf-dipping method) and RR′46(dietary exposure) in F_(47) and RR′123.1(leaf-dipping method) and RR′133(dietary exposure) in F_(64), low(RR′4.7 and 7.4-fold with leaf-dipping method) or moderate(RR′14.9 and 22.3-fold with dietary exposure) levels cross-resistance to JS118,moderate levels cross-resistance to abamectin(F_(47):RR′13.1)and emamectin benzoate(F_(64):RR′20.4),low levels crossresistance to indoxacarb(RR′8.4 and 8.7),a little cross-resistance to chlorfenapy(RR′1.9 and 1.3),and no cross-resistance to thiodicarb(RR′0.3).
     Synergism experiment in vitro with DEM,PBO and DEF was performed to see the roles of detoxication enzymes in tebufenozide resistance.The results revealed that PBO had significant synergistic effects on tebufenozide in resistant(SR 3.6) and susceptible strain (SR1.9).Synergistic ratio between resistant and susceptible strains was 1.9.DEM and DEF had apparent synergistic effects in resistant strain(SR 1.6 and 1.4),but no effect in susceptible strain.This implied that mixed-function oxidase played an important role in resistance to tebufenozide,but esterase and glutathione-S-tranferase might be involved in the tebufenozide metabolism.
     4 Resistance inheritance to tebufenozide in beet armyworm
     Logit regression analysis of F-1 reciprocal crosses between resistant and un-selected strain of beet armyworm indicated that LC_(50) of the progenies from F_1 and F_1′were 0.523(0.279~0.772) and 0.453(0.402~0.507) mg/L,respectively,and there were no significant difference between the two LC_(50)s.This results showed the gene(or genes) that confers resistance to tebufenozide was on autosome.According to the formula of Stone(1968),the dominance degree(D) of F_1 and F_1′were -0.4217 and -0.4982,respectively.This indicated that resistance was inherited as an incompeletely recessive trait(-1>D>0).Similarly,Logit regression analysis of F_1 reciprocal crosses between resistant and laboratory susceptible strain of beet armyworm indicated that LC_(50) of the progenies from F_1 and F_1′were 0.514 (0.463~0.570) and 0.500(0.317~0.717) mg/L,respectively,and there were no significant difference between the two LC_(50)s.This results also showed the gene(or genes) that confers resistance to tebufenozide was on autosome.According to the formula of Stone(1968),the dominace degree(D) of F_1 and F_1′were -0.2651 and -0.2773,respectively.This indicated that resistance was inhetited as an incompeletely recessive trait(-1>D>0).LD-P curves for progenies of two backcrosses and F_2,F_2′were apparently different from correspongding expected curves assuming monogenic inheritance.Theχ~2 analysis confirmed that observed mortalities failed to fit the monogenetic model,which supports the conclusion that resistance to tebufenozide conferred by more than one factor.
     5 Fitness cost of resistance to tebufenozide in beet armyworm
     The results of the relative fitness indicated that the resistant strain possessed significantly biological disadvantages,including lower survivor rate of fourth to fifth instar,prolonged larval and pupal duration,lighter pupa weight,lower pupation and egg number laid per female when compared with other strains.Intrinsic rate of natural increase of resistant, susceptible strains and RS,SR were 341.3,241.6,613.0 and 358.4,respectively.The resistant strain and RS,SR were calculated to have 0.71,1.80 and 1.05 of fitness value relative to susceptible strain.
引文
1.彩万志,庞雄飞,花保祯等.普通昆虫学[M].中国农业大学出版社:194.
    2.蔡健和.新型高效无公害杀虫剂-抑太保.[J]广西植保,1998,4:35.
    3.蔡秀玉,黄冠辉,丁翠.在我国发现的一些昆虫病毒[J].昆虫学报,21(1):101-102.
    4.曹春田,刘新峰,藏学斌,等.棉田甜菜夜蛾发生规律及防治对策[J].江西植保,2005,28(1):41-42.
    5.陈丙坤,王开运,姜兴印,等.甜菜夜蛾的抗药性调查与研究[J].植物保护学报,2002,29(4):366-370.
    6.陈广文,王家坤,虢华山.甜菜夜蛾微孢子虫研究初报[J].河南师范大学学报(自然科学版),1992,20(2):18.
    7.陈其津,李广宏,庞义,等.甜菜夜蛾核多角体病毒杀虫剂研究进展[J].杀虫微生物,2000,15:234-235.
    8.陈永兵,张炳光,何紫萱.温州地区甜菜夜蛾生活史研究初报[J].福建农业学报,2005,20(2):84-86.
    9.程罗根,李凤良,韩招久,等.小菜蛾对杀虫双和杀螟丹抗性的现实遗传力[J],昆虫学报,2001,44(3):263-267.
    10.程志明.昆虫蜕皮加速剂tebufenozide的开发沿革和构效关系[J].1999,世界农药,21(6):5-11.
    11.代建堂,汪德民.甜菜夜蛾的发生规律及其综合防治[J].安徽农学通报,2006,12(8):152-153.
    12.戴淑慧,杨亚萍.甜菜夜蛾的生物学特性及防治[J].植物保护,1993,19(2):20-21.
    13.杜育哲,刘安西.非甾醇蜕皮激素类杀虫剂的研究进展[J].农药,2002,41(6):7-11.
    14.段学慧,段澄,李红.石家庄地区甜菜夜蛾的发生及防治[J].天津农业科学,2005,11(4):39-41.
    15.范贤林,芮昌辉.棉铃虫对虫酰肼的抗药性汰选[J].植物保护,2006,32(1):98-100.
    16.方文杰,恭进兴,李金景.厦门地区甜菜夜蛾的发生与防治[J].华东昆虫学报,1998,7(2):73-79.
    17.冯殿英,王继藏,任兰花,等.甜菜夜蛾生物学特性及防治研究[J].山东农业科学,1995,4:39-41.
    18.冯坚.双酰肼类昆虫生长调节剂研究开发进展[J].现代农药,2004,3(2):4-8.
    19.冯夏,陈焕瑜,吕利华,等.广东小菜蛾对阿维菌素的抗性研究[J].华南农业大学学报,2001,22(2).35-38.
    20.郭郛.昆虫的激素[M].北京:科学出版社,1979.
    21.郭世俭,林文彩,章金明.浙江省主要菜区小菜蛾抗药性的研究[J].浙江农业学报,2003,15(1):19-22.
    22.韩启发,庄佩君,唐振华.抗杀螟硫磷二化螟的抗性遗传力研究[J].昆虫学报,1995,38(4):402-405..
    23.何玉仙,杨秀娟,翁启勇,等.甜菜夜蛾的抗药性研究及其治理[J].世界农业,1999,6:41-43.
    24.黄琳瑞.甜菜夜蛾对虫酰肼抗药性选育和抗药性机理初探[D].中国农业大学硕士学位论文,2005.
    25.江幸福,罗礼智,胡毅.幼虫食物对甜菜夜蛾生长发育、繁殖及飞行的影响[J].昆虫学报,1999,42(3):270-275.
    26.江幸福,罗礼智。甜菜夜蛾暴发原因及防治对策[J].植物保护,1998,25(3):32-34.
    27.江幸福.甜菜夜蛾在我国的发生为害及防治概况[J].农资科技,1998,6:8-10.
    28.蒋明星,刘向东,谢立群.甜菜夜蛾的生物学特性及其防治[J].植物医生,1997,10(2):27-29.
    29.孔岳樵.桑蚕的蜕皮激素[J].桑蚕茶叶通讯,1994,1:37-40.
    30.兰亦全,赵士熙,吴刚.甜菜夜蛾对三种拟除虫菊酯类杀虫剂的抗性现实遗传力及风险评估[J].应用生态学报,2006,17(3):468-471.
    31.兰亦全,赵士熙.抗三氟氯氰菊酯甜菜夜蛾品系的相对适合度研究[J].华东昆虫学报,2004,13(1):88-91.
    32.兰亦全,赵士熙.甜菜夜蛾对三种拟除虫菊酯杀虫剂的抗性稳定性研究[J].农药学学报,2004,6(1):77-80.
    33.兰亦全,赵士熙.甜菜夜蛾抗药性监测及机理[J].福建农林大学学报(自然科学版),2004,33(1):26-29.
    34.兰亦全.甜菜夜蛾对拟除虫菊酯类杀虫剂抗药性及其机理研究[D].福建农林大学博士学位论文,2004.
    35.李广宏,陈其津,庞义.甜菜夜蛾核多角体病毒的研究与应用进展[J].中国生物防治,1999,15(4):178-182.
    36.李子玲,杨桂珍,韦绥概,等.甜菜夜蛾发生规律及防治技术简述[J].湖北植保,2005,5:40-42.
    37.梁沛,高希武,郑丙宗,等.小菜蛾对阿维菌素的抗性机制及交互抗性研究[J].农药学学报,2001,3(1):41-45.
    38.粱革梅,谭维嘉,郭予元.棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究[J].昆虫学 报,2000,43(增刊):57-62.
    39.林祥文,沈晋良.棉铃虫对辛硫磷抗性的风险评估与预报[J].昆虫学报,2001,44(4):462-468.
    40.刘长令,钟滨,李正名.以天然产物为先导化合物开发的农药品种(Ⅱ)-杀虫杀螨剂[J]。农药,2003,42(12):1-8.
    41.刘长令.新型高效杀虫剂茚虫威[J].农药,2003,42(2):42-44.
    42.刘长令.杀虫杀螨剂研究开发的新进展[J].农药,2003,42(12):1-4.
    43.刘甲魁,王桂风,马旭峰.山东聊城地区甜菜夜蛾突发原因及综防对策[J].植物医生,1998,11(1):25-26.
    44.刘万才,姜玉英,汤金仪,等.我国甜菜夜蛾的发生现状及治理对策[J].中国农学通报,1998,14(3):41-45.
    45.刘效明,凌万开,雄桂和,等.甜菜夜蛾生物学特性及防治技术[J].植物保护,1995,21(6):29-30.
    46.刘永杰,沈晋良.甜菜夜蛾对四类杀虫剂的抗药性监测[J].棉花学报,2002,14(6):356-360.
    47.刘永杰,沈晋良。甜菜夜蛾抗氯氟氰菊酯品系相对适合度、抗性生化机理和抗性遗传方式[J].昆虫学报,2003,46(5):567-572.
    48.刘永杰,赵旭东,沈晋良,等.甜菜夜蛾泰安郊区田间种群对杀虫剂的抗药性水平监测[J].华东昆虫学报,13(2):72-75.
    49.刘永杰.甜菜夜蛾抗药性监测与抗性机理研究[D].南京农业大学博士学位论文,2002.
    50.刘悦秋,江幸福.甜菜夜蛾的生物防治[J]。植物保护,2002,28(2):54-56.
    51.龙丽萍,蔡健和,唐文伟,等.广西小菜蛾对定虫隆的抗药性监测[J].华中农业大学学报,2006,25(3):241-244.
    52.陆致平,谢贻格.甜菜夜蛾发生规律及其防治研究[D].中国植物保护研究进展,北京:中国科技出版社,1995.
    53.罗礼智,曹雅忠,江幸福.甜菜夜蛾发生危害特点及其趋势分析[J].植物保护,2000,26(3):37-39.
    54.牟吉元,柳晶莹.普通昆虫学[M].北京农业大学出版社:133.
    55.慕立义.植物化学保护研究方法[M].北京:中国农业出版社,1994.
    56.慕卫,吴孔明,粱革梅,等.高效氯氰菊酯不同抗性基因型甜菜夜蛾相对适合度研究[J].农药学学报,2001,3(4):49-52.
    57.慕卫,吴孔明.甜菜夜蛾的发生及无公害防治技术[J].北京农业科学,2002,1:25-27.
    58.倪玉萍,朱丽梅,侯华民,等.新杀虫剂JS118的生物活性研究[J].现代农药,2002,1: 16-20.
    59.聂开晟,侯春青,刘长令。新型昆虫生长调节剂-环虫酰肼[J].农药,2001,40(2):42-43.
    60.欧晓明,黄明智,王晓光,等.昆虫抗性靶标部位及其在杀虫剂创制中的作用[J].现代农药,2003,2(5):11-16.
    61.邱立红,张文吉.害虫对阿维菌素(avermectins)的抗药性发展及治理策略探讨[J].中国农业大学学报,1999,4(1):43-48.
    62.曲明静.二化螟对三唑磷的抗性及其机理研究[D]。南京农业大学博士学位论文,2005.
    63.任晓霞,韩召军,王荫长.棉铃虫对久效磷抗性和敏感性品系的生物适合度[J].南京农业大学学报,2001,24(2):41-44.
    64.沈晋良,吴益东.棉铃虫抗药性及其治理[M].北京:中国农业出版社,1995,153-158.
    65.司升云,刘小明,望勇,等.武汉地区甜菜夜蛾的发生与综合治理[J].长江蔬菜,2005,8:38-39.
    66.司升云,吴仁锋,刘小明,等.小菜蛾、甜菜夜蛾的抗荮性现状及治理对策[J].长江蔬菜,2000,1:6-7.
    67.宋国春.山东省甜菜夜蛾暴发原因初探[J].华东昆虫学报,1998,7(2):123-124.
    68.苏建亚.甜菜夜蛾的迁飞及在我国的发生[J].昆虫知识,1998,3(1):55-57.
    69.苏建亚.甜菜夜蛾的天敌和生物防治问题[J].昆虫天敌,1997,19(4):180-187.
    70.唐振华,毕强.杀虫剂作用的分子行为[M]。上海远东出版社,2002.
    71.滕宏,唐振华,毕强.具有蜕皮激素活性的新型杀虫剂[J].世界农药,2001,23(2):24-26.
    72.王朝阳,刘志勇,李卫国,等.安阳市甜菜夜蛾的发生特点及防治对策[J].中国棉花,2000,7:43-44.
    73。王维专,陈伟平,卢叔勤,等.广州、深圳地区小菜蛾对定虫隆、Bt的抗性监测[J].植物保护学报,1993,20(3):273-276.
    74.王晓容,黎永栈,卢辉红.甜菜夜蛾研究进展[J].仲凯农业技术学院学报,1995,8(2):87-93.
    75.王艳青.美国棉田甜菜夜蛾的发生及其治理[J].植保技术与推广,2001,21(1):44-45.
    76.王荫长.昆虫生理学[M].北京:中国农业出版社,2004.
    77.王兆守,徐金汉,关雄.甜菜夜蛾生物生态学及综合治理研究[J].武夷科学,1999,15:124-130.
    78.吴金慧.高效低毒--农药开发的大方向[J].化工管理,2002,1:24-25.
    79.吴孔明,刘芹轩,棉蚜对杀虫剂抗性的稳定性[J].昆虫学报,1995,38(2):253-255.
    80.吴孔明,刘芹轩.棉蚜抗杀灭菊酯品系的某些生物特性[J].昆虫学报,1994,37(2):137-144.
    81.吴青君,张文吉,张友军,等。敏感和抗阿维菌素小菜蛾的生物适合度[J].农药学学报,2000,2(1):36-40.
    82.吴青君,朱国仁,赵建周,等小菜蛾对定虫隆的抗性生化机制初探[J].昆虫学报,1998,41(增刊):42-48.
    83.吴世昌,顾言真,沈忠良,等.甜菜夜蛾的抗药性监测及防治[J].植物保护学报,1995,22(1):95-96.
    84.吴益东,沈晋良,谭福杰,等.棉铃虫对拟除虫菊酯抗性稳定性研究[J].昆虫学报,1996,39(4):342-346.
    85.吴益东,沈晋良,谭福杰,等.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度[J].昆虫学报,39(3):233-237.
    86.夏敬源,崔金杰,常蕊芹.转基因抗虫棉对甜菜夜蛾的抗性研究[J].中国棉花,2000,27(9):10-11.
    87.徐金汉,黄志鹏,余月萍,等.甜菜夜蛾生物学特性及药效测定[J].福建农业大学,1998,27(1):73-77.
    88.许国庆,孟未来,王丽娟,等.甜菜夜蛾在辽宁暴发成灾[J].辽宁农业科学,2000,6:53.
    89.杨荣明,朱叶芹,张瑞平.江苏省1999年甜菜夜蛾发生特点及原因分析[J]。植保技术与推广,2000,20(4):39-40.
    90.杨廷策.邕宁发生甜菜夜蛾猖獗为害香葱[J].广西植保,2000,13(3):37-38.
    91.尹仁国,欧阳本友,刘爱媛.甜菜夜蛾生物学特性的研究[J].昆虫知识,1994,31(1):7-10.
    92.于金凤,慕立义,王开运.4种棉蚜抗药性种群的生命力及繁殖力[J].植物保护学报,1996,23(1):73-78.
    93.袁永达,王冬生,於文俊.上海地区甜菜夜蛾的抗药性及防治[J].上海农业学报,2006,22(1):42-45.
    94.袁永达,吴世昌,王冬生.上海地区小菜蛾对抑太保的抗性监测[J].上海农业学报,16(增刊):25-28.
    95.袁永达,吴世昌,王冬生,等.上海市甜菜夜蛾的发生与防治[J].农药科学与管理,2001增刊:14-15.
    96.曾晓慧.甜菜夜蛾对苏云金芽孢杆菌抗性的研究[D].华中农业大学博士学位论文,1998.
    97.张湘宁,李玉峰,倪玉萍,等.创新双酰肼类昆虫生长调节剂JS118的合成和生物活性[J].农药,2003,42(12):18-20.
    98.张雪燕,何婕,叶翠玉,等.云南省小菜蛾对阿维菌素的抗药性监测和药剂防治试验[J].华中农业大学学报,2001,20(5):426-430.
    99,张雪燕,何婕.小菜蛾对阿维菌素B1抗药性选育及交互抗性[J]。植物保护学报,2001,(28):163-168.
    100.章士美,赵泳祥.中国农林昆虫地理分布[M].北京:农业出版社,1996,260-261.
    101.赵建周,朱国仁,徐宝云,等.武汉地区小菜蛾对溴氰菊酯的抗性回复及交互抗性[J].植物保护,1993,19(6):13-14.
    102.郑允,高静华.甜菜夜蛾抗药性之研究[J].中华农业研究,1993,42(4):396-402.
    102.朱丽梅.甲胺基阿维菌素苯甲酸盐与阿维菌素的杀虫活性研究[J].南京农专学报,2003,19(4):28-31.
    104.朱树勋,司升云,邹丰,等.甜菜夜蛾的抗药性测定及田间抗性监测[J].昆虫知识,1996,33(2):82-85.
    105.朱祥林,池杏珍,韩殿高。江苏垦区采种甜菜苗期甜菜夜蛾的发生特点及防治对策[J].中国糖料,1998,4:44-46.
    106.庄永林,沈晋良,戴德江,等.褐飞虱对噻嗪酮抗性的遗传分析[J].昆虫学报,2004,47(6):749-753.
    107.庄永林.褐飞虱对噻嗪酮及吡虫啉的抗药性研究[D].南京农业大学博士学位论文,2000.
    108.Ahmad M,Arif M I,Ahmad Z.Susceptibility of Helicoverpa armigera(Lepidoptera:Noctuidae)to new chemistries in Paskistan[J].Crop Protection,2003,22:539-544.
    109.Ahmad M,Hollingworth R M,Wise J C Broad-spectrum insecticide resistance in obliquebanded leafroller Choristoneura rosaceana(Lepidoptera:Tortricidae)from Michigan[J].Pest Management Science,2002,58:834-838.
    110.Aldosari S A,Watson T F,Sivaupramaniam S.Osman A A.Susceptibility of field populations of beet armyworm(Lepidoptera:Noctuidae) to cyfluthrin,methyl and profenofos and selection for resistance to cyfluthrin[J].Journal of Economic Entomology,1996,89:1359-1363.
    111.Argentine J A,Clark J M,Lin H.Genetics and biochemical mechanisms of abamectin resistance in two isogenic strains of Colorado potato beetle[J].Pesticide Biochemistry and Physiology,1992,44:191-207.
    112.Ashburner M,Chilhara C,Meltze P et al.Temporal control of puffing activity in polytene chromosomes of Drosophila melanogaster[J].Cold Spring Harbor Symoposia on Quantitative Biology.1974,38:655-462.
    113.Barnes M M,Moffit H R.Resistance to DDT in the adult codling moth and reference curves for guthion and carbaryl[J].Journal of Economic Entomology.1963,56(6):722-725.
    114. Brewer M J, Trumble J T. Beet armyworm resistance to fenvalerate and methomyl: resistance variation and insecticide synergism [J]. Journal of Agricultural Entomology, 1994, 11(4): 291-300.
    115. Brewer M J, Trumble J T. Inheritance and fitness consequences of resistance to fenvalerate in Spodoptera exigua (Lepidoptera: Noctuidae) [J]. Journal of Economic Entomology, 1991, 84(6): 1638-1644.
    116. Brewer M J, Trumble J T. Field monitoring for insecticide resistance in beet armyworm (Lepidoptera: Noctuide) [J]. Journal of Economic Entomology, 1989, 83:1520-1526.
    117. Brewer M J, Trumble J T. Alvarado-Rodriguez B.et al. Beet armyworm (Lepidoptera: Noctuide) adult and larval susceptibility to three insecticides in managed habitants and relationship to laboratry selection for resistance [J]. Journal of Economic Entomology, 1990, 83: 2136-2146.
    118. Burris E, Graves J B, Leonard B R, et al. Beet armyworm (Lepidoptera: Noctuidae) in Northeast Louisiana: observations in an uncommon insect pest [J]. Florida Entomologist, 1994, 77(4): 454-459.
    119. Campos F, Krupa D A, et al. Susceptibility of population of two-spotted spider mites (Acari: Tetranychiae) from Florida, Holland and the Canary Islsnds to abamectin and characterization of abamectin resistance [J]. Journal of Economic Entomology, 1996, 89(3): 594-601.
    120. Cao G C and Han Z J. Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost [J]. Pest Management Science, 2006,62: 746-751.
    121. Carlson G R, Dhadialla T S, Hunter R, et al. The chemical and biological properities of methoxyfenozide, a new insecticidal ecdysteroid agonist [J]. Pest Management Science, 2001, 57: 115-119.
    122. Chaufaux J and P Ferron. Sensibitite differente de deux populations de Spodoptera exigua Hub. (Lepid., Noctuidae) aux baculovirus et pyrethroides de synthese[J]. Agonomie, 1986,6: 99-104.
    123. Cowles R S, Villini M G. Susceptibility of Japanese beetle, oriental beetle and European chafer (Coleoptera: Scarabaeidae) to halofenozide, an insect growth regulator [J]. Journal of Economic Entomology. 1996,89:1356-1365.
    124. Darvas B, Polgar L, Eldin M H, et al. Developmental disturbances indifferent insects orders caused by ecdysteroid agonist, RH-5849 [J]. Journal of Economic Entomology, 1992, 85(6): 2107-2112.
    125. Delorme Robert, Fournier Didier, Chaufaux J.et al. Esterase metabolism and penetration are causes of resistance to deltamethrin in Spodoptera exigua HUB (Noctuidae: Lepidoptera) [J]. Pesticde Biochemistry and Physiology, 1988, 32: 240-246.
    126. Dhadialla T S, Carlson G R, Le D P. New insecticides with ecdysteroidal and juvenile hormone activity [J]. Annual review of Entomology. 1998, 43: 545-569.
    127. Elbrecht A, Chen Y L, Jurgens T, et al. 8-O-acetylharpagide is a nonsteroidal ecdysteroid agonist [J]. Insect Biochemtry and Molecular. Biology, 1996, 26: 519-523.
    128. Falconer, D S. Introduction to quantitative genetics, 3rd ed. Longman, New York, 1989.
    129. Georghiou G P, Taylor C E. Genetic and biological influences in the evolution of insecticide resistance [J]. Journal of Economic Entomology, 1977, 70: 319—323.
    130. Gerghiou G P. The stability of resistance to carbamate insecticides in the housefly after cessation of selection pressure [J]. 1964, Bull WHO. 30: 85-90
    131. Gore J and Adamczyk J J. Laboratory selection for beet armyworm (Lepidoptera: Noctuidae) resistance to methoxyfenozide [J]. Florida Entomologist, 2004, 87(4): 450-453.
    132. Heller J, Maattioda H, Klein E, et al. Field evaluation of RH-5992 on Lepidopterous pests in Europe [J]. 1992, Brighton Crop Protection Conferences. Pests Diseases. 1: 59-65.
    133. Hiruma K, Carter M S and Riddiford L M. Characterization of the dopa decarboxylase gene of Mandula sexta and its suppression by 20-hydroxyecdysone [J]. Developmental Biology, 1995, 169:195-209.
    134. Hiruma K, Hardie J and Riddiford L M. Hormonal regulation of epidermal metamorphosis in vitro: control of expression of a larval-specific cuticle gene [J]. Developmental Biology, 1991, 144:369-379.
    135. Hopkins T L and Kramer K J. Insect cuticle sclerotization [J]. Annual Review Entomology, 1992, 37:273-302.
    136. Iahaaya I, Yablonski S, Horwita A R. Comparative toxicology of two ecdysteroid agonists, RH-2485 and RH-5992, on susceptible and pyrethroid-resistant strains of the Egyptian cotton leafworm Spodoptera littoalis [J]. Phytoparasitica. 1995, 23: 139-145.
    137. Iqbal M.and Wright D J. Evaluation of resistance, cross-resistance and synergism of abamectin and teflubenzuron in a multi-resistance field population of Plutalla xylostella (Lepidoptera: Plutellidae) [J]. Bulletin of Entomological Research, 1997, 87:481—486.
    138. Kerns D L, Palumbo J C, Tellez T. Resistance of field strains of beet armyworm (Lepidoptera: Noctuidae) from Arizona and California to carbamate insecticides [J]. Journal of Economic Entomology. 1998, 91(5): 103-1043.
    139. Kolle M R, Talbot W S, Segraves W A, et al. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily [J]. Cell, 1991, 67: 59-77.
    140. Le D P, Thirugnanam M, Lidert Z, et al. RH-2485: a new selective insecticides for caterpillar control [J]. Brighton Crop Protection Conference, Pests Disease, 1996, 2: 481-486.
    141. Mascarenha V J, Graves J B, Leonard B R, et al. Dosage-mortality response of third instars of beet armyworm (Lepidoptera: Noctuidae) to selected insecticides [J]. Journal of Agricultural Entomology, 1998, 15: 125-140.
    142. Mascarenha V J, Graves J B, Leonard B R, et al. Susceptibility of field population of beet armyworm (Lepidoptera: Noctuidae) to commercial and experimental insecticides [J]. Journal of Economic Entomology, 1998,91(4): 827-833.
    143. Mascarenhas V J, Leonard B R, Burris E, et al. Beet armyworm (Lepidoptera: Nocctuidae) control on cotton in Louisiana [J]. Florida Entomologist, 1996,79(3): 336-343.
    144. Mascarenhas, R N, Boethel, D J. Response of field-collected strains of soybean looper (Lepidoptera: Noctuidae) to selected insecticides using an artificial diet overlay bioassay [J]. Journal of Economic Entomology, 1997,90: 1117-1124.
    145. Meike L, Ware G W. Tolerance of three beet armyworm strains in Arizona to methomyl [J]. Journal of Economic Entomology, 1978,71:640-646.
    146. Mikitani K. Ecdysteroid receptor activity at the level of gene expression are correlated with the activity of Bombyx mori [J]. Journal of Insect Physiology. 1996,42: 937-941.
    147. Moulton J K and Dennehy T J. Beet armyworm resistance to the Bt toxin Cryl Ac [J]. Proceeding Beltwide Cotton Conference, National Cotton Council, 2001, PP: 989-991.
    148. Moulton J K, Pepper D A, Dennehy T J. Beet armyworm (spodoptera exigua) resistance to spinosad [J]. Pest Management Science, 2000, 56: 8421-8488.
    149. Moulton J K, Pepper D A, Jansson R K, et al. Pro-active management of beet armyworm (Lepidoptera:Noctuidae) resistance to tebufenozide and methoxyfenozide: Baseline monitoring, risk assessment, and isolation of resistance [J]. Journal of Economic Entomology. 2002, 95(2): 414-424.
    150. Oaks L. MIMIC~(?) insecticide. 1994, Tech.Inf. Bull. Rohm & Haas Co. 20 pp.
    151. Palli S R and Retnakaran A. Molecular and biochemical aspects of chitin synthesis inhibition, in chitin snd chintnases, ed by Jolles P, Muzzarelli RAA, Birkhauser Verlag, Basel, 1999, pp 85-98.
    152. Palli S R, Ladd T R, Ricci, A R et al. Cloning and developmental expression of Chortistoneura hormone receptor 75: a homologue of the Drosophila E75A gene [J]. Developmental Genetics, 1997,20:36-46.
    153. Palli S R, Ladd T R, Sohi S S, et al. Cloning and developmental expression of Choristoneura hormone receptor 3, an ecdysone-inducible gene and a member of the steroid hormone receptor super family [J]. Insect Biochemstry and Molecular Biology, 1996, 26: 485-499.
    154. Palli S R, Primavera M, Tomkins W. Age-specific effects of a non-steroidal ecdysteroid agonist, RH-5992, on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) [J]. European Journal of Entomlogy, 1995,92: 325-332.
    155. Renakaran, A, Hiruma K, Palli S R et al. Molecular analysis of the mode of action of RH-5992, a Lepidoptera-specific non-steroidal ecdysteroid agonist [J]. Insect Biochemitry and Molecular Biology, 1995, 25(1): 109-117.
    156. Retnakaran A, Gelbic I, Sundaram M, et al. Mode of action of the ecdysone agonist tebufenozide (RH-5992), and an exclusion mechanism to explain resistance to it [J]. Pest Management Science, 2001,57:951-957.
    157. Retnakaran A, MacDonald A, Tomkins WL, et al. Ultrastructural effects of a non-steroidal ecdysone agonist RH-5992, on the sixth instar larva of the spruce budworm, Choristoneura fumiferana [J]. Journal of Insect Physiology, 1997, 43: 55-68.
    158. Riddiford L M, Cherbas P and Truman J W. Ecdysone receptors and their biological actions [J].Vitamin & Hormones. 2000,60: 71-73.
    159. Riddiford L M. Hormonal control of sequential gene expression in insect epidermis, in Physiology of the Insect Epidermis, ed by Binnington K and Retnakaran A, CSIRO, Melbourne, 1991, pp 46-54.
    160. Rodriguez L M, Ottea J A, and Reagan T E. Selection, egg viability, and fecundity of the sugarcane borer (Lepidoptera: Crambidae) with tebufenozide [J]. Journal of Economic Entomology, 2001, 94(6): 1553-1557.
    161. RohMid LLC. RH-0345, Turf and Ornamental Insecticide. 1996, Tech. Info. Bull. 9 pp.
    162. Roush R T, Croft B A. Experimental population genetics and ecological studies of pesticide resistance in insects and mites. In: National Research Council ed. Pesticide Resistance: Strategies and Tactics for management [J]. Washington, DC: National Academy Press. 1986, 257-270.
    163. Roush R T, Mckenzie J A. Ecological genetics if insecticide and acaricide resistance [J]. Annual Review of Entomology, 1987, 32: 361—380.
    164. Ruberson J R. Herzog G A, Lambert W R et al. Management of the beet armyworm (Lepidoptera: Noctuidae) in cotton: role of natural enemies [J]. Florida Entomologist, 1994, 77(4): 440-453.
    165. Sauphanor B and Bouvier JC. Cross-resistance between benzoylureas and benzoylhydrazines in the codling moth, Cydia ponomella [J]. Pesticide Science, 1995, 45: 369-375.
    166. Sauphanor B, Bouvier J C and Bross V. Spectrum of insecticides resistance in Cydia pomonella (Lepidoptera: Tortricidae) in southeastern France [J]. Journal of Economic Entomology, 1998, 91: 1225-1231.
    167. Scott J G, Georghiou G P. Mechanism responsible for high levels of permethrin resistance in the housefly [J]. Pesticide Science, 1986, 17: 195-206.
    168. Scott J G. Cross-resistance to the biological insecticide abamectin in pyrethroid resistant strains of house flies [J]. Pesticide Biochemistry and Physiology, 1989, 34: 27-31.
    169. Shelton A M, Sances, F V, Hawley J, et al. Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera: Plutellidae) in California in 1997 [J]. Journal of Economic Entomology, 2000, 93: 931 -936.
    170. Smagghe G and Deheele D. Action of a novel nonsteroidal ecdysteroid Minic, tebufenozide (RH-5992), on insects of different Orders [J]. Pesticide Science, 1994, 42: 85-92.
    171. Smagghe G and Deheele D. The significance of pharmacokinetics and metabolism to the biological activity of RH-5992 (tebufenozide ) in Spodoptera exempta, Spodoptera exigua, and Leptinotarsa decemlineata [J]. Pesiticide Biochemitry and Physiology. 1994, 49:224-234.
    172. Smagghe G, Vinuela E, Budia F, et al. In vivo and vitro effects of the nonsteroidal ecdysteroid agonist tebufenozide on cuticle formation in Spodoptera exigua: an ultrastructural approach [J]. Archieves of Insect Biochemistry and Physiology, 1996, 33: 121-134.
    173. Smagghe G and Degheele D. Comparative toxicity and tolerance for the ecdysteroid mimic tebufenozide in a laboratory and field strain of the cotton leafworm [J]. Journal of Economic Entomology, 1997, 90: 278-282.
    174. Smagghe G, Pineda S, Carton B, et al. Toxicity of kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctuidae) [J]. Pest Management Science, 2003,59:1203-1209.
    175. Smagghe G, Dhadialla T S, Derycke S, et al. Action of the ecdysteroid agonist tebufenozide in susceptible and artificially selected beet armyworm [J]. Pesticide. Science, 1998, 54: 27-34.
    176. Smirle M J, Lowery D T, Zurowski C L. Resistance and cross-resistance to four insecticides in populations of obliquebanded leafroller (Lepidoptera: Tortricidae) [J]. Journal of Economic Entomology, 2002, 95: 820-825.
    177. Sokal R R. Rohlf F J. Biometry, 3rd Editon. W. H. Freeman, New York., 1981.
    178. Spindler-Barth M and Spindler K-D. Ecdysteroid resistant subclones of the epithelial cell line from Chironomus tentans (Insecta: Diptera) I. Selection and characterization of resistant clones [J]. In Vitro Cell Developmental Biology-Animal. 1998, 34:116-122.
    179. Stone B F. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. WHO Bullitin, 1968, 38:325-326.
    180. Sugunaran M. Molecular mechanisms of cuticular sclerotization [J]. Advances in Insect Physiology. 1988, 21: 179-231.
    181. Sundaram M, Palli S R, Krell P J, et al. Basis for selective action of a synthetic molting hormone agonist, RH-5992 on Lepidopteran insects [J]. Insect Biochemistry and Molecular Biology, 1998,28:693-704.
    182. Tabashnik B E, McGaughey, W H. Resistance risk assessment for single and multiple insecticides: responses of indianmeal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis [J]. Journal of Economic Entomology, 1994, 87(4): 834-841.
    183. Tabashnik, B E. Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae), Tobacco Budworm (Lepidoptera: Noctuidae), and Colorado Potato Beetle (Coleptera: Chrysomelidae) [J]. Journal of Economic Entomology, 1992, 85(5): 1551-1559.
    184. Teran-Vargas-AP. Response to the beet armyworm from Southern Tamaulipas, Mexico to insecticides [J]. Proceeding Beltwide Cotton Conferences, 1997, 2: 1225-1227.
    185. Thomas H E, Stunnenberg H G and Stewart A F. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle [J]. Nature, 1993, 362: 471-475.
    186. Truman J W. Neuroendocrine control of ecdysis, in Molting and Metamorohosis, ed by Oshinishi E and Ishizaki, Springer-Verlag, Berlin, 1990, pp 67-82.
    187. Truman J W. The eclosion hormone system of insects [J]. Progress in Brain Research, 1992, 92: 361-374.
    188. Tsukamoto M. The log dosage-probit mortality curve in genetic researches of insect resistance to insecticides [J]. Botyu-Kagaku, 1963, 28:91-98.
    189. Van Laecke K and Degheele D. Synergism of diflubenzuron and teflubenzuron in larvae of beet armyworm (Lepidoptera: exigua) [J]. Journal Economic Entomology, 1991, 84(3): 785-789.
    190. Van Laecke K.Van, Degheele D. Detoxification of diflubenzuron and teflubenzuron in the larvae of the beet armyworm (Spodoptera exigua) (Lepidoptera: Noctuide) [J]. Pesticide-Biochemistry and Physiology, 1991,40(2): 181-190.
    191. Wang W, Mo J C, Cheng J A, et al. Selection and characterization of spinosad resistance in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) [J]. Pesiticide Biochemistry and Physiology, 2006, 84: 180-187.
    192. Wearing C H. Cross-resistance between azinphos-methyl and tebufenozide in the greenheaded leafroller, Planotortrix octo [J]. Pesticide Science, 1998, 54: 203-211.
    193. Williams C M. The juvenile hormone II. Its role in the endocrine control of molting, pupation, and adult development in the cecropia silkworm [J]. The Biological Bullitin in Woods Hole, 121: 572-585.
    194. Wolfenbarger D A. Inheritance of resistance by a strain of beet armyworm to fenvalerate, methomyl, methyl parathion and permethrin [J]. Resistant Pest Management Newsletter, 2003, 13(1): 25-27.
    195. Yao T P, Forman B M. Function ecdysone receptor is the product of EcR and ultraspiracle gene [J]. Nature, 1993, 366: 476-479.
    196. Yao T P, Segraves W A, Oro A E, et al. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation [J]. Cell, 1992, 71: 63-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700