用户名: 密码: 验证码:
非饱和弹性多孔介质中体波与表面波的传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性多孔介质材料的波动问题研究涉及到数学、热力学、弹性力学等诸多学科,它不仅是对弹性介质动力学理论的扩充和发展,更对实际工程问题,如:岩土工程、石油工程、地球物理学、生物力学等领域有着广泛的指导价值。以往的研究多是基于两相多孔介质材料,即多孔材料的孔隙中充满液体时的完全饱和状态。然而,实际上许多多孔介质材料是处于非饱和状态的,即介质孔隙中存在气体,例如地球表面附近的岩土材料、油气田中含有天然气的土层。因此对非饱和弹性多孔介质材料的波动问题的研究显得尤为重要。本文基于三相多孔介质理论建立其动力控制方程,并在此基础上对非饱和多孔介质中的体波与表面波的传播问题进行了较为深入和系统的研究。
     首先本文在广义混合物理论的框架内,以多相孔隙介质弹性理论为基础,根据三相介质组分的运动学方程,结合质量守恒方程、动量守恒方程、熵不等式及相关的本构关系式,推导得到了线弹性变形条件下的非饱和弹性多孔介质波动控制方程。所建立的三相介质波动方程可以退化到经典的Biot波动理论方程的简化形式,这验证了该方程的合理性。运用Helmholtz分解的计算方法对波动方程进行求解,计算并分析了无限空间内非饱和弹性多孔介质中体波的传播问题。通过求解波动方程,得到了体波传播的特征方程。计算结果显示:在非饱和弹性多孔介质中存在有三种压缩波(P1波、P2波和P3波)和一种剪切波(S波),这与之前许多学者的研究结果一致。通过数值算例,系统地研究了非饱和弹性多孔介质中这四种体波的传播特性(如传播速度与衰减系数)受到介质饱和度和激发频率的影响情况。计算结果显示,由于孔隙中气体的出现,非饱和弹性多孔介质中不同体波的传播特性发生了显著的变化。
     接着本文在非饱和弹性多孔介质线弹性理论的基础之上,分别研究了体波在不同边界条件时的反射问题和透射问题:(i)不同体波(P1波和S波)在非饱和多孔介质自由表面上的反射问题;(ii)不同体波(P1波和S波)在非饱和多孔介质和弹性介质分界面上的反射与透射问题;(iii)不同体波(P1波和S波)在具有不同饱和度的多孔介质之间分界面上的反射与透射问题。由于在四种不同体波中P1波和S波传播速度较快且衰减速度较慢,因此本文主要考虑这两种体波的反射与透射特性。数值算例从振动幅值和入射波的能量分配等方面分析了在边界处的频率、入射角度、多孔介质饱和度的影响作用。计算结果均显示,在不同条件的分界平面处,不同体波的反射与透射特性受到多孔介质饱和多变化的影响是不可忽视的。
     然后本文通过三相弹性多孔介质波动理论研究分析了非饱和半空间自由边界处的Rayleigh波的传播问题。根据半空间自由边界处的边界条件推导出Rayleigh波的弥散方程。由弥散方程可以看出,在非饱和多孔介质半空间自由边界处存在三种波型的Rayleigh波(R1波、R2波、R3波),其中波速:R1波>R2波>R3波。通过数值计算分别讨论了这三种Rayleigh波在半空间自由边界附近的传播特性(如传播速度与衰减系数)受到介质饱和度和频率变化的影响情况。计算结果显示,不同模态的Rayleigh波的传播特性受到频率和饱和度变化的影响较为明显。
     最后本文基于非饱和弹性多孔介质波动理论方程,运用解析法的方法,通过分界平面处的边界条件建立和解析了非饱和多孔介质边界处中Love波的弥散特征方程。分别讨论了两种情况:(1)当非饱和多孔介质半空间上覆盖有弹性介质层的情况;(2)当弹性介质半空间上覆盖有非饱和多孔介质层的情况。通过迭代法对弥散方程进行了数值计算,讨论了不同模态下的Love传播速度及衰减系数受到饱和度变化的影响情况。此外,本文还讨论了高模态Love波的截止频率受到介质饱和度的影响情况。
     本文通过进行一系列相关数值模拟计算,得到了非饱和多孔介质材料中体波和表面波传播过程中的一般规律和结论。这些规律和结论在理论上揭示在实际工程应用领域,如土动力学或者地震工程学等研究领域中,人们应更加重视饱和度变化的影响。
The problem of wave motion in poroelastic materials involves many academic subjects such as mathematics, thermodynamics and elastic mechanics. It is not only the expansion and development for the elastic medium dynamic theory, but also has extensive guidance significance for the practical engineering problems such as geotechnical engineering, petroleum engineering, geophysics, biomechanics and other fields. The previous research was based on the two-phase porous medium materials, namely the fully saturated state when the porosity of the porous materials is filled with liquid. In practice, however, most of the porous materials are in the unsaturated state, namely the gas exist in the medium pore, such as the geo-materials near the earth's surface and the soil layer containing gas in the oil and gas field. Hence it is very important to study the wave motion problem of the unsaturated poroelastic materials. The dynamic governing equations are established basing on the triphase poroelastic medium theory in this dissertation and then the propagation problems of body waves and surface waves in these materials is analyzed deeply and systematically.
     In this dissertation, first of all, within the framework of generalized mixture theory, on the base of multiphase porous medium elasticity theory, according to the kinematics equations of three-phase equation, combining with mass conservation equations, momentum conservation equations, entropy inequality and relevant constitutive equations, the wave controlling equations of the unsaturated porous elastic medium in the scope of linear elastic deformation is obtained. The established three-phase wave equations can be reduced to the simplified form of Biot wave theory equations, which verifies the rationality of our equations. Then the Helmholtz decomposition method is used to solve the equations and the propagation problem of body waves in infinite space of unsaturated porous elastic medium is calculated and analyzed. By means of solving the wave equations, the characteristc equations of wave propagation are derived. The calculation results show that, three compressional waves (P1wave, P2wave, P3wave) and one shear wave (S wave) exist in the unsaturated poroelastic medium, which is consistant with the results of previous research. The influences of saturation degree and excitation frequency on the propagation characteristics such as wave velocity and attenuation coefficient are studied systematically through numerical examples. It is shown that, due to the presence of gas in the porosity, the propagation characteristics of body wave in unsaturated poroelastic medium have changed significantly.
     Then, on the base of linear elastic theory of unsaturated porous elastic medium, the reflection and transmission problems of body waves at various boundary conditions are respectively studied:(ⅰ) reflection problems of different body waves (P1wave and S wave) on the free surface of unsaturated porous medium,(ⅱ) reflection and transmission problems of different body waves (P1wave and S wave) on the interface between unsaturated porous medium and elastic medium,(ⅲ) reflection and transmission problems of different body waves (P1wave and S wave) on the interface between unsaturated porous medium layers with different saturation degrees. Because P1wave and S wave are the body waves with high wave velocity and low attenuation, so this dissertation mainly consider the reflection and transmission characteristics of these two body waves. In the numerical examples, the influences of frequency, incident angle and porous media saturation on the aspects such as vibration amplitude and incident wave energy distribution are discussed. The calculation results shows that, at different interface conditions, the impact of saturation change on the reflection and transmission characteristics should not be overlooked.
     After that, based on the wave theory of three-phase porous elastic medium, the Rayleigh wave propagation problems at the free boundary of unsaturated half-space are analyzed. According to the free boundary conditions on the half-space, the dispersion equation of Rayleigh wave is derived. It can be seen from the dispersion equation that, there are three Rayleigh wave modes, namely R1wave, R2wave and R3wave, with wave velocity R1wave> R2wave> R3wave. Through the numerical examples, the influences of porous media saturation on the propagation characteristics such as propagation velocity and attenuation coefficient are discussed. The calculation results show that the influences of frequency and saturation degree on the propagation characteristics of the different modes of Rayleigh waves are obvious.
     Finally, based on the unsaturated porous elastic medium wave theory and the boundary condition of the plane interface, this dissertation use the analytical method to establish and solve the Love wave dispersion characteristic equation near the boundary of unsaturated porous media. And two different cases are discussed:(1) unsaturated porous media half space is covered with a layer of elastic medium;(2) the elastic medium half-space covered with a layer of unsaturated porous media. The numerical analysis is carried out through an iterative process of dispersion equation and the influences of saturation change on the propagation velocity and attenuation coefficient are calculated and discussed. At the same time, this dissertation also has discussed the impact of media saturation degree on the cutoff frequency of high mode Love waves.
     In this dissertation, through a series of corresponding numerical simulation calculations, some general laws and conclusions of body waves and surface waves propagating in the unsaturated porous materials are obtained. On a theoretical level, these laws and the conclusions show that the impact of the saturation change should attract more attention in the practical engineering application fields such as soil dynamics and earthquake engineering.
引文
[1]Albers, B.. On results of the surface wave analyses in poroelastic media by means of the simple mixture model and the Biot model. Soil Dynamics and Earthquake Engineering,2006,26(6-7):537-547.
    [2]Albers, B.. Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model. Transport in Porous Media,2009,80(1):173-192.
    [3]Allen, F.A., Richart, F.E., Woods, R. D.. Fluid wave propagation in saturated and nearly saturated sands. Journal of Geotechnical Engineering,1980,106(3): 235-254.
    [4]Aitchison, G.D.. Relationship of moisture and effective stress functions in unsaturated soils. Proceedings 4th International Conference on Soil Mechanics and Foundation Engineering. London:Butterworths,1961.
    [5]Benson, C.H., Gribb, M. "Measuring unsaturated hydraulic conductivity in the laboratory and field, Unsaturated Soil Engineering Practice. Reston:Special Technical Publication No.68.1997:113-168.
    [6]Berryman, J.G.. Confiroation of Biot's theory. Applied Physics Letters,1980, 37(4):382-384.
    [7]Berryman, J.G., Thigpen, L., Chin, R.C.Y.. Bulk elastic wave propagation in partially saturated porous solids. Journal of the Acoustical Society of America, 1988,84(1):360-373.
    [8]Biot, M.A.. The theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅰ. Low-frequency range. Journal of the Acoustical Society of America,1956a,28(2):168-178.
    [9]Biot, M.A.. The theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅱ. Higher-frequency range. Journal of the Acoustical Society of America,1956b,28(2):179-191.
    [10]Biot, M.A.. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics,1962,33(4):1482-1498.
    [11]Bishop, A.M.. The principle of of effective stress. Teknisk Ukeblad.1959, 106(39):113-143.
    [12]Bishop A, Donald I. The experimental s tudy of partly saturated soil in the triaxial apparatus.5th International Conference on Soil Mechanics and Foundation Engineering, Paris,1961; 13-21.
    [13]Blight, G.E.. Effective stress evaluation for unsaturated soils. Journal of the Soil Mechanics and Foundations Division,1967,93:125-148.
    [14]Bowen, R.M.. Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Science,1980,18(9):1129-1148.
    [15]Bowen, R.M.. Compressible porous media models by use of theory of mixtures. International Journal of Engineering Science.1982.20(6):697-735.
    [16]Brooks, R.H., Corey, A.T.. Hydraulic propertied of porous media. Hydrology Paper No.3, Colorado State Univ., Fort Collins, CO,1964:3-27.
    [17]Brutsaert, W., Luthin, J.N.. The velocity of sound in soils near the surface as a function of the moisture content. Journal of Geophysical Research,1964,69(4): 643-652.
    [18]Cadoret, Tsw., Marsion, D., Zinszner, B.. Influence of frequency and fluid distribution on elastic wave velocity in partially saturated limestones. Journal of Geophysical Reseaqrch,1995,100(B6):9789-9803.
    [19]Cadoret, T., Mavko, G., Zinszner, B.. Fluid distribution effect on sonic attenuation in partially saturated limestones. Geophysics,1998,63(1):154-160.
    [20]Coleman, J.D.. Stress-strain relations for partly saturated soils. Geotechnique, 1962,12(4):348-350.
    [21]Corey, A.T. Measurement of waterand air permeability in unsaturated soil. Proceedings of Soil Science Society of America,1957,21(1):7-10.
    [22]Coussy, O.. Poromechanics, second ed. Chichester:John Wiley and Sons,2004.
    [23]Coussy, O.. From mixture theory to Biot's approach for porous media. International Journal of Solids and Structures,1998,35(34):4619-4635.
    [24]Chen, W.Y., Xia, T.D., Hu, W.T.. A mixture theory analysis for the surface-wave propagation in an unsaturated porous medium. International Journal of Solids and Structures,2011,48(46-17):2402-2412.
    [25]Chiang, C.M., Mostafa, A.F. Wave-induced responses in a fluid-filled poro-elastic solid with a free surface boundary layer theory. Geophysical Journal of the Royal Astronomical Society,1981,66(3):597-631.
    [26]Childs, E.C., Collis-George, G.N.. The permeability of porous materials. Proceedings of the Royal Society of London [C]. Series A.1950.
    [27]Dafalias, Y.F.. Bounding Surface Plasticity. Ⅰ:Mathematical Foundation and Hypoplasticity. Journal of Engineering Mechanics.1986,112(9):966-987.
    [28]Dafalias Y.F., Herrmann, L.R.. Bounding Surface Plasticity. Ⅱ:Application to Isotropic Cohesive Soils. Joumal of Engineering Mechanics.1986,112(12): 1263-1291.
    [29]Dai, Z.J., Kuang, Z.B.. Love waves in double porosity media. Journal of Sound and Vibration,2006,296(4-5):1000-1012.
    [30]Deresiewicz, H.. The effect of boundaries on wave propagation in a liquid-filled porous solid:1. Reflection of plane waves at a free plane boundary (Nondissipative case). Bulletin of the Seismological Society of America,1960, 50(4):599-607.
    [31]Deresiewicz, H.. The effect of boundaries on wave propagation in a liquid-filled porous solid:2. Love waves in a porous layer. Bulletin of the Seismological Society of America,1961,51(1):51-59.
    [32]Deresiewicz, H., Rice, J. T.. The effect of boundaries on wave propagation in a liquid-filled porous solid:3. Reflection of plane waves at a free plane boundary (General case). Bulletin of the Seismological Society of America,1962a,52(3): 595-625.
    [33]Deresiewicz, H.. The effect of boundaries on wave Propagation in a liquid-filled porous solid:4. Surface waves in a half-place. Bulletin of the Seismological Society of America,1962b,52(3):627-638.
    [34]Deresiewicz, H., Rice, J.T.. The effect of boundaries on wave propagation in a liquid-filled porous solid:10. Transmission through a stratified medium. Bulletin of the Seismological Society of America,1967,57(3):381-392.
    [35]Domenico, S. N.. Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale. Geophysics,1974,39(6):759-769.
    [36]Domenico, S.N.. Elect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophysics,1976,41(5):882-894.
    [37]Domenico, S.N. Elastic properties of unconsolidated porous sand reservoirs. Geophysics,1977,42(7):1339-1368.
    [38]Drumhelle, D.S.. The theoretical treatment of a porous solid using a mixture theory. International Journal of Solids and Structures,1978.14(6):441-456.
    [39]Dullien, F.A.L.. Porous Media Fluid Transport and Pore Structure.1992, Academic Press, Inc.
    [40]Dutta, N. C, Ode, H.. Seismic reflections from a gas-water contact. Geophysics, 1983,48(2):148-162.
    [41]Eringen, A.C..连续统力学,程昌钧等译.北京:科学出版社,1983.
    [42]Eringen, A.C..连续统物理的基本原理,朱照宣译.南京:江苏科学技术出版社,1985.
    [43]Feng, S., Johnson, D.L.. High-frequency acoustic properties of a fluid/porous solid interface. Ⅰ. New surface mode. Journal of the Acoustical Society of America,1983a,74:906-914.
    [44]Feng, S., Jsohnson, D.L.. High-frequency acoustic properties of a fluid/porous sesolid interface. Ⅱ. The 2D reflection Green's function. Journal of the Acoustical Society of America,1983b,74:915-924.
    [45]Feng, M., Fredlund, D.G.. Hysterctic influence associated with thermal conductivity sensor Measurements. Proceedings from Theory to the Practice of Unsaturated Soil Mechanics in Association with the 52nd Canadian Geotechnical Conference and the Unsaturated Soil Group. Regina, Sask:Canadian Geotechnical Society,1999.14-20.
    [46]Fredlund, D.G., Morgenstem, N.R.. Stress state variables for unsaturated soils. Journal of the Geotechanical Engineering Division,1977,103(GT5):447-466.
    [47]Fredlund, D.G., Morgenstem, N.R., Wildger, R.A.. The shear strength of unsaturated soils. Canadian Geotechnical Journal,1978,15(3):313-321.
    [48]Fredlund, D.G., Morgenstem, N.R..非饱和土力学中国建筑工业出版社,1997.
    [49]Fredlund, D.G.. The implementation of unsaturated soil mechanics into geotechnical engineering. Canadian Geotechnical Journal.2000,37(5): 963-986.
    [50]Gan, K.J., Fredlund, D.G.. Multistage direct shear strength of unsaturated soils. Geotechnical Testing Journal,1988,11(2):132-138.
    [51]Garg, S.K., Nayfeh, A.H.. Compressional wave propagation in liquid and or gas saturated elastic porous media. Journal of Applied Physics,1986,60(9): 3045-3055.
    [52]Gassmann, F.. Elastic waves through a packing of spheres. Geophysics,1951, 16(4):673-685.
    [53]Geertsma, J., Smit, D.C.. Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics,1961,26(2):169-181.
    [54]Geiser, F., Laloui, L., VullietL.. Modelling the behaviour of unsaturated silt. Proceedings of an international workshop on unsaturated soils. Trento, Italy: Balkema,2000.155-175.
    [55]Gens, A.. Soil-environmsesssseent iwqenteracteqions in geotechnical engineering. Geotechnique.2010.60(1):3-74.
    [56]Ghorai, A.P., Samal S.K., Mahanti, N.C.. Love waves in a fluid-saturated porous layer under a rigid boundary and lying over an elastic half-space under gravity. Apllied Mathematical Modelling,2010,2010,34(7):1873-1883.
    [57]Gray, W.G.. Thermodynamics and constitutive theory for multiphase porous-media flow considering internal geometric constraints. Advances in Water Resources,1999,22(5):521-547.
    [58]Gray, W.G., Schrefler, B.A., Analysis of the solid phase stress tensor in multiphase porous media. International Journal for Numerical and Analytical Methods in Geomechanics,2007,541-581.
    [59]Gubaiduliin, A.A., Kuchugurina, O.Y., Smeulders, D.M.J., Wisse. C.J.. Frequency- dependent acoustic properties of a fluid/porous solid interface. Journal of the Acoustical Society of America,2004,116(3):1474-1480.
    [60]Hanyga, A.. Two-fluid porous flow in a single temperature approximation. International Journal of Engineering Science,2004a,42(13-14):1521-1545.
    [61]Hanyga, A., Lu, J.F.. Thermal effects in immiscible two-fluid porous flow. International Journal of Engineering Science,2004b,42(3-4):291-301.
    [62]Hassanizadeh, S.M., Gray, W.G.. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in Water Resources,1990,13(4):169-186.
    [63]Hogarth, W.L., Hopmans, J., Parlange, J.Y.. Application of a simple soil-water hysteresis model. Journal of Hydrology.1988,98(1/2):21-29.
    [64]Huang, S., Fredlund, D.G., Barbour, S.L.. Measurement of the coefficient of permeability for a deformable unsaturated soil using a triaxial permeameter. Canadian Geotechnical Journal,1998,35:426-432.
    [65]Hutson, J.T., Cass, A.. A retentivity function for use in soil water simulation models. Journal of Soil Science,1987,38:105-113.
    [66]Hutter, K., Laloui, L., Vulliet, L.. Thermodynamically based mixture models of saturated and unsaturated soils. Mechanics of Cohesive-frictional Materials, 1999,4(4):295-338.
    [67]Jennings, J.E.B., Burland J.B.. Limitations to the use of effective stresses in unsaturated soils. Geotechnique,1962,12(2):125-144.
    [68]Jommi, C.. Remarks on the constitutive modelling of unsaturated soils. Experimental Evidence and Theoretical Approaches in Unsaturated Soils; Proceedings of an International Workshop, Trento,2000,139-153.
    [69]Jones, J.E.. Rayleigh waves in a porous elastic saturated solid. Journal of the Acoustical Society of America,1961,33(7):959-962.
    [70]Ishihara, K.. Approximate Forms of WaveEquations for Water-Saturated Porous Materials and Related Dynamic Module. Soils and Foundations,1970,10(4): 10-38.
    [71]Kawai, K., Karube, D., Kato, S.. The model of water retention curve considering effects of void ratio. Proceedings of Asian Conferenceon Unsaturated Soils. Singapore:Baikerna,2000.329-334.
    [72]Kambe, D., Kawai, K. The role of pore water in the mechanical behaviour of unsaturated soils. Geotechnical and Geological Engineering.2001,19(3/4): 211-241.
    [73]Ke, L.L., Wang, Y.S., Zhang, Z.M.. Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties. Soil Dynamics and Earthquake Engineering,2006,26(6-7):274-581.
    [74]Kelder, O., Smeulders, D.M.J.. Observatssion of the Biot slow wave in water-saturated Nivelsteiner sandstone. Geophysics,1997,62(6):1794-1796.
    [75]Khalili, N., Khabbaz, M.H.. A unique relationshipfor χ for the determination of shear strength of unsaturated soils. Gdotechnique,1998,48(5):681-688.
    [76]Khalili, N., Geiser, F., Blight, G.E.. Effecdve stress in unsaturated soils:review with new evidence. Inemational Journal of Geomechanics,2004,4(2):115-126.
    [77]Klute, A., Dirksen, C.. Hydraulic conductivity and diffusivity:laboratory methods Methods of Soil Analysis. Monograph 9, Part 1. Madison:American Society of Agronomy,1965:253-261.
    [78]Knight, R., Nolen-Hoeksema, R.A.. Laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution. Geophysical Research Letters,1990,17(10):1529-1532.
    [79]Knight, R., Dvorkin, J., Nur, A.. Acoustic signatures of partial saturation. Geophysics,1998,63(1):132-138.
    [80]Lade, P.V., de Boer, R.. The concept of effecitive stress for soils, concret and rock. Geotechnique,1997,47(1):61-78.
    [81]Lakopoulos, A.C. Transient flow through unsaturated porous media. Ph. D. thesis,1965, Berkeley:University of California.
    [82]Larsson, R., Wysocki, M., Toll, S.. Process-modeling of composites using two-phase porous media theory. European journal of mechanics a-solids,2004, 23:15-36.
    [83]Leij, F.J., Russell, W.B., Lesch, S.M.. Closed form expressions for water retention and conductivity data. Ground Water,1997,35(5):848-858.
    [84]Li, X.S.. Modelling of hysteresis response for arbitrary wetting/drying paths. Computers and Geotechnics.2005,32(2):133-137.
    [85]Liu, Y.. Parlange, J.Y., Steenhuis, T.S.. A soil water hysteresis model for fingered flow data. Water Resources Research.1995,31(9):2263-2266.
    [86]Liu, Z., de Boer, R.. Dispersion and attenuation of surface waves in a fluid-saturated porous medium. Transport in Porous Media.1997,29(2): 207-223.
    [87]Lo, W.C.. Wave propagation through porous media containing two immiscible fluid. Ph. D. thesis,2003, Berkeley:University of California.
    [88]Lo, W.C., Majer, E., Sposito, G.. Wave propagation through elastic porous media containing two immiscible fluids.dsees Water Resources Research,2005, 41(W02025):1-20.
    [89]Lo, W.C., Sposito, G., Majer, E.. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids. Transport in Porous Media.2007,68:91-105.
    [90]Lo, W.C.. Propagation ansed attenuatdsesion of Rayleigh waves in a semi-infinite unsaturated poroelastic medium. Advasnces in Water Resources, 2008,31(10):1399-1410.
    [91]Lu, J.F., Hanyga, A.. Linear dynamic model for porous media saturated by two immiscible fluids. International Journal of Solids and Structures,2005,42(9-10): 2689-2709.
    [92]Luckner, L., Vangenuchten, M.T., Nielsen, D.R.. A consistent set of parametric models for the 2-phase flow of immiscible fluids in the subsurface. Water Resources Research,1989,25(10):2187-2193.
    [93]Lysmer, J.. Kuhlemeyer, R.L.. Finite dynamic model for infinite media. Journal of Engineering Mechanics Division,1969,95(4):859-877.
    [94]Miller, Q.F., Pursey, H.. On the partition of energy between elastic waves in a semi-infmite solid. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, London,1955,233(1192):55-69.
    [95]Mochizuki, S. Attenuation in partially saturated rocks. Journal of Geophysical Research,1982,87(B10):8598-8604.
    [96]Mualem, Y.. Modified approach to capillary hysteresis based on a similarity hypothesis. Water Resources Research.1973,9(5):1324-1331.
    [97]Mualem, Y.. A concept model of hysteresis. Water Resources Research. Water Resources Research.1974,9(5):1324-1331.
    [98]Mualem, Y.. A new model for predicting the hydraulic conductivity of unsaturated porousmedia. Water Resources Research,1976,12(3):513-522.
    [99]Mualem, Y.. Extension of the similarity hypothesis used for modeling the soil water characteristits. Water Resources Research.1977,13(4):773-780.
    [100]Muraleetharan, K.K., Wei, C.. Dynamic behaviour of unsaturated porous media: Governing equations usinseg the theory of mixtures with interfaces (TMI). International Journal for Numerical and Analytical Methods in Geomechanics, 1999,23(13):1579-1608.
    [101]Murphy, W. F.. Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass. Journal of the Acoustical Society of America, 1982,71(6):1458-1468.
    [102]Murphy, W. F.. Acoustic measures of partial gas saturation in tight sandstone. Journal of Geophyscal research,1984,89(B13):11549-11559.
    [103]Nuth, M., Laloui, L.. Effective stress concept in unsaturated soils:Clarification and validation of a unified framework. International Journal for Numerical and Analytical Methods in Geomechanics,2008,32:771-801.
    [104]Parlange, J.Y.. Capillary Hysteresis and the Relationship Between Drying and Wetting Curves. Water Resources Research.1976,12(2):224-228.
    [105]Plona, T.J.. Observation of a second bulk compressional wave at ultrasonic frequency. Applied Physics Letters,1980,36(4):259-261.
    [106]Ravazzoli, C.L.. Analysis of the reflection and transmission coefficients in three-phase sandstone reserviors. Journal of Computational Acoustics,2001, 9(4):1437-1454.
    [107]Richards, L.A.. Capillary conduction of liquids through porous medium. Journal of Applied Physics,1931,1(5).
    [108]Rubino, J.G., Ravazzoli, C.L., Santos, J.E.. Reflection and transmission of waves in composite porous media:A quantification of energy conversions involving slow waves. Journal of the Acoustical Society of America,2006,120 (5):2425-2436.
    [109]Sharma, M.D., Gogna, M.L.. Propagation of Love waves in an initially stressed medium consisting of a slow elastic layer lying over a liquid-saturated porous solid half-space. Journal of the Acoustical Society of America,1991,89(6): 2584-2588.
    [110]Singh, J., Tomar, S.K.. Reflection and transmission of transverse waves at a plane interface between two different porous elastic solid half-spaces. Applied Mathematics and Computation,2006,176(1):364-378.
    [111]Santos, J.E., Corbero, J.M., Ravazzoli, C.L., et al. Reaflection and transmission coefficients in fluid-satursated porous media. Journal of Acoustical Society of America,1992,91(4):1911-1913.
    [112]Schrefler, B.A.. The finite element method in soil consolidation (with applications to surface subsidence). Ph.D. Thesis. University College of Swansea,1984.
    [113]Scott, P.S., Farquhar, G.J., Kouwen N.. Hysteretic effects on net infiltration. In Advances in infiltration. St. Joseph, Mich:ASCE,1983.163-170.
    [114]Sheng, D., Sloan, S.W., Gens A.. A constitutive model for unsaturated soils: thermomechanical and computational aspects. Computational Mechanics,2004, 33:453-465.
    [115]Stoll, R.D., Bryan, G.M.. Wave attenuation in saturated sediments. Journal of the Acoustical Society of America,1970,47(5B):1440-1447.
    [116]Stoll, R.D.. Acoustic waves in saturated sediments. In Physics of sound in Marine Sediments, L. Hampton, ed., New York:Plenum Press,1974.
    [117]Stoll, R.D.. Acoustic waves in ocean sediments. Geophysics,1977,42(4): 715-725.
    [118]Stoll, R.D.. Experimental studies of attenuation in sediments. Journal of the Acoustical Society of America,1979,66(4):1152-1160.
    [119]Stoll, R.D., Kan, T.K.. Reflection of Acoustic Waves at a Water-Sediment Interface. Journal of the Acoustical Society of America,1981,70(S1):149-156.
    [120]Tajuddin, M.. Rayleigh wave in a poro-elastic half-space, Journal of the Acoustical Society of America,1984,75(3):682-684.
    [121]Tarantino, A.. Direct measurement of soil water tension. Proc.3th Inte mational Conference on Unsaturated Soils. Brazil:Balkema Publishers,2002: 1005-1017.
    [122]Thomas, H.R., He, Y.. Analysis of coupled heat, moisture and air flow in a deformable unsaturated soil. Geotechnique,1995,45(4):677-689.
    [123]Topp, G.C.. Soil-water hysteresis:The domain theory extended to pore interaction conditions. Soil Science Society of America Journal.1971,35: 219-225.
    [124]van Genuchten, M.T.. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal,1980, 44:892-898.
    [125]van Genuchten, M.T., Nielsen, D.R.. On describing and predicting the hydraulic properties of unsaturated soils. Geophysics,1985,3:615-628
    [126]Vardoulakis, I., Beskos, D.E.. Dynamic behavior of nearly saturated porous media. Mechanics of Materials,1986,5(1):87-108.
    [127]Vogel, T., van Genuchten, M.T., Cislerova, M.. Effect of the shape of the soil hydraulic functions near saturation on variably saturated flow predictions. Advances in Water Resources,2001,24:133-144.
    [128]Wang, Y.S., Zhang, Z.M.. Propagation of Love waves in a transversely isotropic fluid saturated porous layered half-space. Journal of the Acoustical Society of America,1998,103(2):695-701.
    [129]Wei, C. Static and dynamic behavior of multiphase porous media:governing equations and finite element implementation. Ph. D. thesis,2001, University of Oklahoma.
    [130]Wei, C., Muraleetharan, K.K.. A continuum theory of porous media saturated by multiple immiscible fluids:Ⅰ. Linear poroelasticity. International Journal of Engineering Science,2002a,40(16):1807-1833.
    [131]Wei, C., Muraleetharan, K.K.. A continuum theory of porous media saturated by multiple immiscible fluids:Ⅱ. Lagrangian description and variational structure. International Journal of Engineering Science,2002b,40(16): 1835-1854.
    [132]Wei, C., Muraleetharan, K.K.. Acoustical characstdeerization of fluid-saturated porous media with local heterogeneities:Theory and application.International Journal of Solids and Structures,2006a,43(5):982-1008.
    [133]Wei, C.F., Dewoolkar, M.M.. Formulation of capillary hysteresis with internal state variables. Water Resources Research.2006b,42:W07405.
    [134]Whitaker, S.. Advances in theory of fluid motion in porous media, Industrial and Engineering Chemistry,1969,61(12):14-28.
    [135]Wilmanski, K.. Thermomechanics of Continua. Springer, Berlin,1998.
    [136]Wilmanski, K.. A few remarks on Biot's model and linear acoustics of poroelastic saturated materials. Soil Dynamics and Earthquake Engineering, 2006; 26:509-36.
    [137]Woods, R.D.. Screening of surface waves in soils. Journal of Soil Mechanics and Foundation Division,1968,94(4):951-979.
    [138]Wu, K., Xue, Q., ADLER, L.. Reflection and transmission of elastic waves from a fluid-saturated porous solid boundary. Journal of the Acoustical Society of America,1990,87(6):2349-2358.
    [139]Yang, J., Wu S.M.. Reflection and transmission of seismic waves at an interface between two saturated soils. Acta Seismologica Sinica,1997,10(1):35-42.
    [140]Yang, J. Influence of water saturation on horizontal and vertical motion at a porous soil interface induced by incident P wave. Soil Dynamics and Earthquake Engineering,2000a,19(5):575-581.
    [141]Yang, J., Santo, T.. Influence of water saturation on horizontal and vertical motion at a porous soil interface induced by incident SV Wave. Soil Dynamics and Earthquake Engineering,2000b,19(3):339-346.
    [142]Yang, J.. Saturation Effects of Soils on Ground Motion at Free Surface Due to Incident SV Waves. Journal of Engineering Mechanics,2002,128(12): 1295-1303.
    [143]Yang, J.. Rayleigh surface waves in an idealised partially saturated soil. Geotechnique,2005,55(5):409-414.
    [144]Zerhouni, M.I. Role de la pression interstitielle negative dans le comportement des sols—apllication au calcul d esroutes. Ph.D. Thesis, Ecole Centrale Paris, Paris,1991.
    [145]蔡袁强,李保忠.饱和度变化对弹性波在非饱和砂岩表面反射和透射的影响.岩石力学与工程学报,2006,25(3):520-527.
    [146]陈龙珠.饱和土中弹性波的传播速度及其应用.博士学位论文,1987,杭州:浙江大学.
    [147]陈龙珠,吴世明,曾国熙.弹性波在饱和土层中的传播.力学学报,1987,19(3):276-283.
    [148]陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特性.岩土工程学报,1998,20(3):6-9.
    [149]陈炜昀,夏唐代,王志凯,孙苗苗.非饱和地基中Love波的传播特性.振动与冲击,2012a.31(17):22-25.
    [150]陈炜昀,夏唐代,陈伟,翟朝娇.平面P波在弹性介质和非饱和多孔弹性介质分界面上的传播,应用数学和力学,2012b,33(7):829-844.
    [151]陈炜昀,夏唐代,刘志军,周新民.平面S波在非饱和土自由边界上的反射问题研究,振动与冲击,2013a,32(1):99-103.
    [152]陈炜昀,夏唐代,王宁,胡文韬.不同饱和度土层分界面上剪切波的反射与透射,岩土力学,2013b,34(3):894-900.
    [153]陈正汉,孙树国,方祥位,等.非饱和土与特殊土测试技术新进展.岩土工程学报,2006,28(2):147-169.
    [154]陈正汉.岩土力学的公理化理论体系.应用数学和力学,1994,15(10):901-909.
    [155]胡亚元,王立忠等.横观各向同性饱和土体的实用波动方程.振动工程学报,1998a,12(2):170-176.
    [156]胡亚元,王立忠等.弹性波在横观各向同性弹性土和饱和土界面上的反射与透射.地震学报,1998b,20(6):598-606.
    [157]黄义,张引科.多相孔隙介质理论及其应用.北京:科学出版社,2009.
    [158]黄秋菊.瑞利波在饱和土中的传播.硕士学位论文,1997,杭州:浙江大学.
    [159]贾永莹.世界干旱地区概貌,干旱地区农业研究,1995,13(1):121-126.
    [160]柯燎亮,汪越胜,章梓茂.非均匀饱和土中Love波的传播特性.岩土力学,2004,25(增):369-374.
    [161]李春友,任理,李保国.利用优化方法求算van Genuchten方程参数.水科学进展,2001,12(4):473-478.
    [162]李保忠.非饱和多孔介质中波的传播.博士学位论文,2007,杭州:浙江大学.
    [163]李顺群.非饱和土的吸力与强度理论研究及其试验验证.博士学位论文,2006,大连:大连理工大学.
    [164]李向维,李相约.饱水孔隙介质的质量耦合波动问题.应用数学和力学,1989,10(4):309-314.
    [165]黎在良,刘殿魁.固体中的波.北京:科学出版社,1995.
    [166]凌华.非饱和土强度变形实用计算方法.博士学位论文,2006,南京:河海大学.
    [167]刘艳.非饱和土的广义有效原理及其本构模型研究.博士学位论文,2010,北京:北京交通大学.
    [168]门福录.波在饱含流体的孔隙介质中的传播问题.地球物理学报,1981,24(1):66-76.
    [169]蒋彭年.非饱和土工程性质简论.岩土工程学报,1989,11(6):39-9.
    [170]沈珠江.非饱和土简化固结理论及其应用.水利水运工程学报,2003,4:1-6.
    [171]苏万鑫,谢康和.土水特征曲线为直线的非饱和土一维固结计算.浙江大学学报(工学版),2010,44(1):150-155.
    [172]孙德安.非饱和土的水力和力学特性及其弹塑性描述.岩土力学.2009,11:3217-3231.
    [173]王立忠.饱和各向异性土体中的弹性波.博士学位论文,1995,杭州:浙江大学.
    [174]王文焰,张建丰.在一个水平土柱上同时测定非饱和土壤水各运动参数的试验研究.水利学报,1990,(7):26-31.
    [175]魏义长,刘作新,康玲玲,等.土壤持水曲线van Genuchten模型求参的Matlab土壤学报,1980,44:380-386.
    [176]吴丽君.高速铁路非饱和土固结压缩特性及地基力口固技术研究.博士学位论文,2006,西南交通大学.
    [177]吴世明.土介质中的波.北京:科学出版社,1997.
    [178]夏唐代.地基中表面波特性及其应用.博士学位论文,1992,杭州:浙江大学.
    [179]夏唐代,王立忠,吴世明.饱和土中Love波弥散特性.振动工程学报,1994,7(4):357-362.
    [180]夏唐代,吴世明,等.横观各向同性成层地基中Love波弥散特性.浙江大学学报,1995,29(4):493-500.
    [181]夏唐代,张忠苗,吴世明.用Love表面波特性计算动力响应的进一步探讨.振动工程学报,1996a,9(3):281-285.
    [182]夏唐代,罗晓,吴世明,张忠苗Love表面波法机理的进一步讨论.浙江大学学报(自然科学版),1996b,30(4):374-384.
    [183]夏唐代,陈龙珠,吴世明.半空间饱和土中瑞利波特性.水利学报,1998,2:47-53.
    [184]夏唐代,颜可珍,孙鸣宇.饱和土层中瑞利波的传播特性.水利学报,2004,11:81-84.
    [185]夏唐代,薛威,颜可珍.准饱和土中瑞利波弥散特性.江南大学学报(自然科学版),2007,6(1):76-80.
    [186]徐长节,史焱永.非饱和土中波的传播特性.岩土力学,2004,25(3):354-358.
    [187]徐平,夏唐代.弹性波在准饱和土和弹性土界面的反射与投射.力学与实践,2006,28(6):58-63.
    [188]徐绍辉,张佳宝,刘建立,等.表征土壤水分持留曲线的几种模型的适应性研究.土壤学报,2002,39(4):498-504.
    [189]徐永福,兰守奇,孙德安,等.一种能测量应力状态对非饱和土渗透系数影响的新型试验装置.岩石力学与工程学报,2005,24(1):160-164.
    [190]谢定义,冯志炎.对非饱和土有效应力研究中若干基本观点的思辨.岩土工程学报,2006,28(2):170-173.
    [191]邢义川.非饱和土的有效应力与变形-强度特性规律的研究.博士学位论文,2001,西安:西安理工大学.
    [192]邢义川,谢定义,李振.非饱和土的应力传递机理与有效应力原理.岩土工程学报,2002,(1):53-57.
    [193]薛威.半空间准饱和土中波的传播.浙江大学硕士论文,2005,杭州:浙江大学.
    [194]颜可珍,夏唐代.交通荷载作用下地基中的Love波的传播特性.岩土力学,2005,26(7):1118-1122.
    [195]杨峻,吴世明,蔡袁强.饱和土中弹性波的传播特性.振动工程学报,1996,9(2):128-137.
    [196]杨松岩,俞茂宏.多相孔隙介质的本构描述,力学学报,2000,32(1):11-24.
    [197]张桂满.土水特征曲线滞回循环对非饱和土强度影响模拟研究.硕士学位论文,2011,北京交通大学.
    [198]张雪东.土水特征曲线及其在非饱和土力学中应用的基本问题研究.北京:北京交通大学.2010.
    [199]张引科.非饱和土混合物理论及其应用.博士学位论文,2001,西安:西安建筑科技大学.
    [200]周新民.准饱和土波动特性及动力响应研究.博士学位论文,2006,杭州:浙江大学.
    [201]周新民,夏唐代,徐平,邹振轩.饱和土介质中地震波在水、气分界面上的反射与透射.地震学报,2006,28(4):372-379.
    [202]诸国桢,朱喜福,刘亮.用光学的方法验证流体饱和孔隙介质中慢纵波的存在.声学学报,2000,25(1):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700