新型压电尺蠖精密驱动器柔性机构分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电尺蠖精密驱动器是基于尺蠖原理实现双向、大行程、高精度直线运动的精密驱动器。针对压电尺蠖驱动器存在的主要问题,本文重点针对尺蠖驱动器关键元件柔性铰链机构进行了系统而深入的研究,提出了一种新型行走型尺蠖驱动器。本文主要研究内容包括以下几个方面:
     对各类尺蠖驱动器的工作原理、运动方式等进行了系统地分析和研究,针对传统行走型尺蠖驱动器加工要求高、调整配合困难的缺点,提出了利用两根平行轴作为导向机构的新型行走型尺蠖驱动器。该构型的特点便于采用调整机构对压电叠堆预紧及箝位摩擦面间隙进行调整,降低了加工要求,提高了系统可靠性。对该尺蠖驱动器的结构原理方案进行了详细的分析,同时对驱动器的导向轴、铜套和预紧机构进行了具体设计与分析,本文还分析了压电叠堆与柔性机构的耦合特性。
     对尺蠖驱动器的关键元件柔性铰链机构进行分析研究,探讨了柔性铰链的精度特性。基于有限元方法建立了单切口柔性铰链旋转刚度模型。提出利用桥式柔性机构作为尺蠖驱动器中间驱动机构与箝位机构的耦合柔性机构,对桥式耦合柔性机构进行了相应的理论分析,研究了柔性铰链寄生刚度及旋转刚度精度对该类柔性机构静力学模型的影响,并建立了高精度的刚度和应力模型,采用能量法建立其固有频率模型。通过定义的误差贡献率评价指标,方便地分析了柔性铰链寄生刚度对平面柔性铰链机构刚度模型精度的影响。利用有限元方法给出根据性能要求确定柔性机构几何参数的简单有效的优化方法,并使用有限元软件ANSYS及实验方法进行了验证。建立了平行板柔性机构精确的刚度模型,对其尺寸参数进行了设计分析,并使用有限元分析方法进行了验证计算。
     针对尺蠖驱动器柔性机构三维有限元模型建模复杂、计算效率低的问题,对等效梁模型进行了分析比较研究,对其建模的基础柔性铰链的三维有限元模型与实验结果进行对比分析,并对其承受剪切力的情况进行了对比分析,结果表明该模型具有较好的精度。以桥式柔性机构为例,对椭圆柔性铰链等效梁模型进行了分析比较,结果表明该模型具有广泛的适用性。论文还利用等效梁模型对桥式柔性机构进行优化仿真分析,结果表明该模型具有精度好、效率高的特点,适用于尺蠖驱动器柔性机构的参数优化设计。
     为了验证上述模型,研制了尺蠖驱动器专用的驱动控制器,构建了尺蠖驱动器的实验测试系统,对尺蠖驱动器样机进行了实验研究,测试并分析了尺蠖驱动器的各项性能参数。实验证明,该尺蠖驱动器的结构方案是可行的,达到了预期的设计目标,进一步优化后可具有良好的性能,为其进一步的研究提供了依据。
     本文研究的新型行走型尺蠖驱动器克服了传统行走型尺蠖驱动器的不足,在确保行程、输出力、速度及精度的同时具有易装可调、成本低廉的特点,对于推动尺蠖驱动器的实用化及产业化具有一定的积极意义。对尺蠖驱动器耦合柔性机构的理论分析方法,可用于平面柔性机构的分析研究,具有一定的通用性。
Piezoelectric inchworm precision linear actuator based on the inchworm principle achieves a bidirectional large-travel and high-precision linear motion. According to existing main problems of inchworm actuators, flexure-based compliant mechanisms as the key components of inchworm actuator are systematically and deeply studied and a new walker type inchworm actuator is proposed. The main contents of this dissertation are considered of the following parts.
     Working principle and movement characteristics of various inchworm actuators are systematically analyzed and studied. According to the shortcomings of high processing requirements and adjustment difficulties of traditional walker type inchworm actuators, a new type inchworm actuator with a pair of parallel orientation axis as the orientation is proposed. This configuration facilitates the piezoelectric stack preload and the adjustment of the gap between friction surfaces, which reduces the processing requirements and improves system reliability. Structure scheme of this inchworm actuator is detailedly analyzed. Detailed design and analysis of the guiding shaft, copper sleeve and preload devices are conducted and the coupling characteristics between piezoelectric stack and complian mechanism are analyzed.
     Flexure-based compliant mechanisms as the key components of inchworm actuator are systematically and deeply studied. The accuracy characteristics of flexure hinge are studied. A rotational stiffness model for single-notch circular flexure hinge is established based on finite element method. Bridge-type compliant mechanism is proposed to be as the direct coupling mechanism of piezoelectric stack in intermediate drive mechanism and clamp mechanism. The effect of parasitic stiffness equations and the accuracy of rotational stiffness equations of flexure hinges on the overall performance are comprehensive studied. Accurate stiffness and stress model and natural frequency model based on energy method are established. The index of the error contribution rate is proposed, which facilitates the study of the effect of parasitic stiffness of flexure hinge on planar compliant mechanism. A simple optimum design procedure based on finite element method is proposed which achieves optimize static and dynamic performance of the compliant mechanism by changing geometrical dimensions according to performance requirements. The optimum results are verfied by finite element software ANSYS and the test. Accurate stiffness model of parallel-plate shifting pair is derived and the design parameters are presented, which are verfied by finite element method.
     According to the complex modeling and low efficiency of three-dimensional finite element model for inchworm actuator’s compliant mechanism, analysis and comparison research on the euivalent beam model is carried out. Three-dimensional finite element model for circular flexure hinge as the basis of equivalent beam model is verified by comparison with experimental results. The accuracy of Timoshenko short-beam due to shear force is verified based on finite element method. The results show that the equivalent beam model has good accuracy. The equivalent beam model for a planar compliant mechanism with elliptical flexure hinges is presented and verified, which shows that the equivalent beam model can be applied to other types of flexure hinges. The equivalent beam model is also applied for the simulation optimal design of a bridge-type compliant mechanism and the results show that this modle has good accuracy and high efficiency and is suitable for the optimal design of inchworm actuator’s complinat mechanisms.
     In order to verify the above mentioned model, special drive controller for piezoelectric inchworm actuator is designed, which is used to build the test system of inchworm actuator. Experimental tests are carried out in order to test and analysis the performance parameters of the actuator. Experiments results show that the proposed actuator is feasible and has good performance after further optimized, which provides the basis for further research.
     The new walker type inchworm actuator is a low-cost easy-assembly adjustable precision actuator while ensuring the travel, output force, speed and accuracy requirements and has certain positive significance for promoting the practical development and industrialization, which overcomes the shortcomings of traditional walker type inchworm actuators. The theoretical analysis method used in inchworm actuator compliant mechanism with direct coupling can also be used in planar compliant mechanism, so it has good generality
引文
1赵淳生.超声电机技术与应用.科学技术出版社, 2007:1~19 312~315 534~553
    2赵宏伟.尺蠖型压电驱动器基础理论与试验研究.吉林大学博士学位论文. 2006:2~6 113~114 101~110
    3杨宜民,李传芳,程良伦.仿生型步进式直线驱动器的研究.机器人, 1994, 16(1):7~39
    4赵淳生,李朝东.日本超声电机的产业化、应用和发展.振动、测试与诊断, 1999, 19(1):1~7
    5 T. S. Glemm, N. W. Hagood. Development of A Two-Sided Piezoelectric Rotary Ultrasonic Motor for High Torque. Proceedings of SPIE, 1997, 3041: 3~6
    6赵淳生.面向21世纪的超声电机技术.中国工程科学, 2002, 4(2):86~91
    7赵淳生.世界超声电机技术的新进展.振动、测试与诊断, 2004, 24(1):1~5
    8 T. Hemsel, J. Wallaschek. Survey of the Present State of the Art of Piezoelectric Linear Motors. Ultrasonics, 2000, 38:37~40
    9 J. Zumeris. Ceramic Motor. U.S. Patent 6064140, 2000
    10 Nanomotion Ltd. Ultra-Precision Ceramic Motor Model HR-8. http://www.nanomotion.com
    11 Nanomotion Ltd. HRI Ultrasonic Motor User Manual. http://www.nanomotion.com
    12 High Speed Piezoelectric Micropositioning Motor Model PDA130. http://www.edoceramic.com
    13 SQUIGGLE Motor Review. http://www.newscaletech.com/downloads.html
    14辜承林,董干.双π型压电超声波直线电机.中国电机工程学报, 1998, 18(2):226~330
    15李朝东,金龙,赵淳生.复合振子型大推力行程直线超声电机特性研究.声学学报, 1999, 24(6):653~654
    16赵淳生,李朝东.直线型超声电机及其驱动振子.中国发明专利, ZL9811128.2, 1998
    17刘剑.基于薄板面内振动的直线型超声电机的研究.南京航空航天大学硕士学位论文, 2001
    18刘剑,赵淳生.弯扭耦合型驻波超声马达定子的研究.应用力学学报, 1998, 15(SI):159~163
    19赵淳生,金家楣.方板式直线型超声电机及其电激励方式.中国发明专利, CN200710020965.7, 2007
    20赵淳生,周凤琣,金家楣.圆柱结构双轮足驱动直线超声电机及电激励方式.中国发明专利, CN200710020963.8, 2007
    21 M. K. Kurosawa. Transducer For High Speed and Large Thrust Ultrasonic Linear Motor Using Two Sandwich-Type Vibrations. IEEE Transactions on Ultrasonic Ferroelctrics and Frequency Control, 1998, 45(5):1186~1195
    22李玉宝,时运来,赵淳生,等.高速大推力直线型超声电机的设计与实验研究.中国电机工程学报, 2008, 28(33):49~53
    23 S. B. Choi, S. S. Han, Y. S. Lee. Fine Motion Control of A Moving Stage Using A Piezoactuator Associated with A Displacement Amplifier. Smart Materials and Structures, 2005, 14:222~230
    24刘建芳.压电步进精密驱动器理论及实验研究.吉林大学博士学位论文, 2005:4~6 24~30 47~50
    25刘国嵩.压电步进二维精密驱动器理论及实验研究.吉林大学博士学位论文. 2006:3~6 36~44
    26华顺明.压电式粘滑精密运动机构驱动理论与实验研究.吉林大学博士学位论文. 2005:6~12
    27杨志刚,陈西平.压电双晶片式管内移动机构的振动解析.压电与声光, 2000, 22(6):410~413
    28刘华,颜国正,丁国清.惯性式压电陶瓷驱动器的研究.压电与声光, 2001, 23(4):275~278
    29 Y. Yamagata, T. Higuchi. A Micropositioning Device for Precision Automatic Assembly Using Impact Force of Piezoelectric Elements. Proceedings of the IEEE International Conference on Robotics and Automation, 1995:666~671
    30 Automatic Micro Manipulation System for Cell Manipulation. http://www.aml.t.u-tokyo.ac.jp/research/manipulator/manipulator_e.html
    31章海军,黄峰.压电陶瓷冲击驱动机构在微细进给与操作中的应用.浙江大学学报, 2000, 34(5):519~522
    32 H. Zhang, H. Higuchi, N. Nishioki. Dual Tunneling Unit Scanning Tunneling Microscope for Length Measurement Based on Crystalline Lattice. Journal of Vacuum Science and Technology, 1997, 15:174~178
    33章海军,黄文浩,林松.与光学显微镜结合的原子力显微镜及其冲击式微位移机构.仪器仪表学报, 1996, 17(1):364~368
    34杨志欣.微小管道机器人用惯性式压电执行器的研究.大连理工大学博士学位论文, 2008:1~4
    35 T. Idogaki, H. Kanayama, N. OHYA, et al. Characteristics of Piezoelectric Locomotive Mechanism for An in-Pipe Micro Inspection Machine. Sixth International Symposium on Micro Machine and Human Science, 1997:73~78
    36 K. Shinichiro, I. Toshiki, O. Nobuyuki, et al. Multi-Layered Piezoelectric Bimorph Actuator. 1997 International Symposium on Micromachine and Human Science, 1997:73~77
    37 H. Nishikawa, T. Sasaya, T. Shibata, et al. In-Pipe Wireless Micro Locomotive System. 1999 International Symposium on Micro Machine and Human Science, 1999:141~147
    38王辉静.内窥镜诊疗微型机器人发展概述.大众科技, 2008, 104(4):132~135
    39郭彤,李江雄,柯映林.微型管道机器人钹形压电复合驱动器的结构设计及优化.机械工程学报, 2005, 16(8):10~12
    40 L. Juhas, A. Vujanic, N. Adamovie, et al. A Platform for Micropositioning Based on Piezo Legs. Mechatronics, 2001, 11:869~897
    41赵淳生.微小型压电超声马达的发展及其在航天领域中的应用前景.微小卫星应用微型技术讨论会议论文集.北京, 1997:289~298
    42 J. N. Kudva. Overview of the DAPRA Smart Wing Project. Journal of Intelligent Material Systems and Structures, 2004, 15:261~269
    43 D. Jonathan. Development of High-Rate Adaptive Trailing Edge Control Surface for the Smart Wing Phase-Wind Tunnel Model. Journal of Intelligent Material Systems and Structures, 2004, 15:279~292
    44张煦.光的微电机系统在光通讯网的应用.光通讯技术, 2002, 126(5):22~29
    45 D. Henderson, S. Ragona. Nanometer Precision Robot for Active Photonics Alignment Using Inchworm Motors. Proceedings of SPIE, 4290:136~144
    46 http://documents.exfo.com/Investors/efoshighlights.pdf
    47 C. M. Laird, S. Nick, P. Dan, et al. An Adaptive Optics Survey of M8-M9 Stars: Discovery of Four Very Low Mass Binaries with at Least One System Containing a Brown Dwarf Companion. Astrophysical Letters, 2002:478~497
    48 G. Powers, Q. Xu, J. Fasick, et al. Nanometer Resolution Actuator with Multi-Millimeter Range and Power-Off Hold. Industrial and Commercial Applications of Smart Structures Technologies, 2003, 5054:108~117
    49 G. Powers, Q. Xu, J. Smith. The Next Generation of Inchworm Actuators Evolves with Nanometer Resolution, Multi-Millimeter Range and Power-Off Hold. Industrial and Commercial Applications of Smart Structures Technologies, 2004, 5388:155~166
    50 http://documents.exfo.com/Investors/Annual2005/eng/PhotonicDivision.pdf
    51 K. Takemura, N. Kojima, T. Maeno. Development of A Bar-Shaped Ultrasonic Motor for Three Degrees-Freedom Motion. Proceedings of International Conference on Motion and Vibration Control, 1998:195~200
    52 K. Takemura, T. Maeno. Characteristics of An Ultrasonic Motor Capable of Generating A Multi-Degrees of Freedom Motion. Proceedings of IEEE International Conference on Robotics and Automation, 2000:3660~3665
    53 K. Takemura, D. Harada, T. Maeno. A Master-Salve System Using A Multi-DOF Ultrasonic Motor and Its Controller Designed Consider Measured and Simulated Driving Characteristics. Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robotics and Systems, 2001:1977~1982
    54 K. Takemura, T. Maeno. Design and Control of An Ultrasonic Motor Capable of Generating Multi-DOF Motion. IEEE/ASME Transactions on Mechatronics, 2001, 6(4):499~506
    55张修科.柔性铰链的理论设计及其有限元分析.燕山大学硕士学位论文. 2003:1~2
    56 I. Schneider. Micro tools for Medicine. Genetic Engineering News, 2003, 23(12):68~69
    57 M. Koch, N. Harris, A. G. R. Evans, et al. A Novel Micromachined Pump Based on Thick-Film Piezoelectric Actuation. Sensors and Actuators A, 1998, 70:98~103
    58李荣彬.光学微结构的超精密加工技术.纳米技术与精密工程, 2003, 12(1):58~61
    59 T. Makoto. Development of Desktop Machining Microfactory. RIKEN Review, 2001, 34:46~49
    60 P. Krippner, P. Mohr, V. Sai1e. Electromagnetically Driven Microchopper for Integration into Microspectrometers Based on the LIGA Technology. SPIE Conference on Miniaturized Systems with Micro-Optics and MEMS, 1999:144~154
    61 K. E. Drexler. Nanomachinery: Atomically Precise Gears and Bearings. http://www.aeiveos.com/~bradbury/Authors/Engineering/Drexler-KE/NAPGaB.html
    62 I. H. H. Janocha. Microactuators-Principles, Applications, Trends. http://www.lpa.uni-saarland.de/pdf/a2-1.pdf
    63黄亚楼,卢桂章.微机器人和精微操作的研究与发展.机器人, 1992,(7):53~59
    64 H. N. Kwon, J. H. Lee. Characterization of A Micromachined Inchworm Motor with Thermoelastic Linkage Actuators. IEEE Proceedings of MEMS, 2002:586~589
    65 S. K. Nah, Z. W. Zhong. A Micro Gripper Using Piezoelectric Actuation for Micro-Object Manipulation. Sensors and Actuators A, 2007, 133:218~224
    66金龙,朱美玲,赵淳生.国外超声马达的发展与应用.振动、测试与诊断, 1996, 16(1):4~10
    67 C. D. Li, C. S. Zhao. Research and Applications of Linear Ultrasonic Motors. Journal of Southeast University, 1997, 27(5):123~126
    68胡敏强.超声电动机的研究及其应用.微特电机, 2000, 28(5):8~11
    69黄国庆,刘群亭,黄卫清,等.直线型超声电机研究的现状.微特电机, 2003, 31(2):24~26
    70赵淳生.对发展我国超声电机技术的若干建议.微电机, 2006, 39(2):64~67
    71赵美蓉,温丽梅,林玉池,等.大行程纳米级步距压电电动机.机械工程学报, 2004, 40(8):119~122
    72刘鹏.压电步进式直线精密驱动器的结构研究.吉林大学硕士学位论文. 2007:25~34
    73 G. R. Stibitz. Incremental Feed Mechanisms. U.S. Patent 3138749, 1964
    74 S. K. Hsu. Transducer. U.S. Patent 3292019, 1966
    75 A. D. Brisbane. Position Control Device. U.S. Patent 3377489, 1968
    76 G. V. Galutva. Device for Precision Displacement of A Solid Body. U.S. Patent 3684904, 1972
    77 W. G. May. Piezoelectric Electromechanical Translation Apparatus. U.S. Patent 3902084, 1975
    78 R. A. Bizzigotti. Electromechanical Translational Apparatus. U.S. Patent 3902085, 1975
    79 C. G. O’Neill. Electromotive Actuator. U.S. Patent 4219755, 1980
    80 T. Fujimoto. Linear Motor Driving Device. U.S. Patent 4736131, 1988
    81 J. Li, S. Ramin, D. Javad. Design and Development of A New Piezoelectric Linear Inchworm Actuator. Mechatronics, 2005, 15:651~681
    82李勇,胡敏,周兆英,等.提高输出推力的蠕动式微进给定位机构.压电与声光, 1999, 21(5):407~410
    83 D. Roberts. Development of A Linear Piezoelectric Motor Based Upon the Inchworm Model. Proceedings of SPIE, 1999, 3668:705~716
    84 P. E. Tenzer, R. B. Mrad. On Amplification in Inchworm Precision Positioners. Mechatronics, 2004, 14:515~531
    85 B. Zhang, Z. Zhu. Development A Linear Piezomotor with Nanometer Resolution and High Stiffness. IEEE/ASME Transaction on Mechatronics, 1997, 2(1):22~29
    86 J. Ni, Z. Zhu. Design of A Linear Piezomotor with Ultra-High Stiffness and Nanoprecision. IEEE/ASME Transactions on Mechatronics, 2000, 5(4):441~443
    87 P. E. Tenzer, R. B. Mrad. A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners. IEEE/ASME Transactions on Mechatronics, 2004, 9:427~435
    88 T. Galante, J. Frank, J. Bernard, et al. Design, Modeling and Performance of A High Force Piezoelectric Inchworm Motor. Proceedings of SPIE SmartStructures & Integrated Systems, 1998, 329:756~767
    89 J. Frank, G. H. Koopmann, W. Chen, et al. Design and Performance of A High Force Piezoelectric Inchworm Motor. Proceedings of SPIE Smart Structures and Integrated Systems, 1999, 3668:717~723
    90 J. J. Loverich. Development of A New High Specific Power Piezoelectric Actuator. The Pennsylvania State University, 2004:77~79
    91 T. Murata. Drive Apparatus and Motor Unit Using the Same. U.S. Patent 4947077, 1990
    92 Q. F. Chen, D. J. Yao, C. Jin, et al. Frequency Response of An Inchworm Motor Fabricated with Micro Machined Interlocking Surface Mesoscale Actuator Device. Proceedings of SPIE, 1998, 3329:768~779
    93 J. Park, S. Keller, G. P. Carman, et al. Development of A Compact Displacement Accumulation Actuator Device for Both Large Force and Large Displacement. Sensors and Actuators, 2001, 90(1):191~202
    94 Q. F. Chen, D. J. Yao, C. Jin, et al. Frequency Response of An Inchworm Motor Fabricated with Micro Machined Interlocking Surface Mesoscale Actuator Device[J]. Proceedings of SPIE, 1998, 3329:768~779
    95 Q. F. Chen, D. J. Yao, C. Jin, et al. Mesoscale Actuator Device: Micro Interlocking Mechanism to Transfer Macro Load. Sensors and Actuators, 1999, 73(1):30~36
    96 Q. F. Chen, D. J. Yao, G. P. Carman. Influence of Fabrication and Crystal Orientation on MEMS Components Strength. Proceedings of ASME International Mechanical Engineering Congress and Exposition, 1998, 66:413~420
    97 L. H. Chu, Q. F. Chen, G. P. Carman. Strength Predictions for Interlocking Microridges Fabricated with Different Geometries. IEEE Transactions on Microelectromechanical Systems, 2001, 10(2):310~316
    98 K. P. Mohanchandra, K. H. Ken, G. P. Carman. Electrical Characterization of NiTi Film on Silicon Substrate. Intelligent Material Systems and Structures, 2004, 15:387~392
    99 http://aml.seas.ucla.edu/research/areas
    100 D. A. Henderson, J. C. Fasick, Q. Xu. Linear Incremental Bi-Directional Motor. U.S. Patent 6380661, 2002
    101 S. X. Dong, L. T. Li, Z. L. Gui. A Piezoelectric-Electrorheological Linear Stepper Motor. Chinese Patent 9210523214, 1992
    102 S. X. Dong, L. T. Li, Z. L. Gui. A New Type of Linear Piezoelectric Stepper Motor. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 1995, 18(2):257~260
    103 J. Kim, J. D. Kim, S. B. Choi. A Hybrid Inchworm Linear Motor. Mechatronics, 2002, 12:525~42
    104 E. Benjamin, F. Mary, G. John. Dynamic Modeling of An Innovative Piezoelectric Actuator for Minimally Invasive Surgery. Journal of Intelligent Material Systems and Structures, 2000, 11:765~770
    105 S. P. Salisbury, D. F. Waechter, R. B. Mrad, et al. Design Considerations for Complementary Inchworm Actuators. IEEE/ASME Transactions on mechatronics, 2006, 11(3):265~272
    106 S. P. Salisbury, D. F. Waechter, R. B. Mrad, et al. Closed-Loop Control of A Complementary Clamp Piezoworm Actuator. IEEE/ASME Transactions on mechatronics, 2007, 12(6):590~598
    107 G. Power, J. Fasick, Q. Xu. Controlled Motion, and Enable Technology for Photonics Applications. Proceedings of SPIE, 2002, 4698:479~487
    108 G. Power, Q. Xu, T. Guidarelli, et al. High-Power Inchworm? Actuators for Extended-Range Precision Positioning. Proceedings of SPIE, 2005, 5762:287~298
    109 A. Abhari. Development of Controller Strategies for Ultra-Precision Piezoceramic Actuated Positioners. University of Toronto, 2002:62~112
    110 M. Chanwoo, L. Sungho, J. K. Chung. New Inchworm Type Actuator with I/Q Heterodyne Interferometer Feedback for A Long Stroke Precision Stage. Journal of Precision Engineering and Manufacturing, 2005, 6(2):34~39
    111徐峰,李庆祥.精密机械设计.清华大学出版社, 2005:361~392 218~229
    112 M. E. Vaughan. The Design, Fabrication, and Modeling of a Piezoelectric Linear Motor. Virginia Polytechnic Institute and State University, 2001:24~25
    113张强,卢泽生.基于有限元分析的纳米级微进给工作台的设计.航空精密制造技术, 2005, 41(1):6~9
    114于靖军.全柔性机器人机构分析及设计方法研究.北京航空航天大学博士学位论文, 2002:35~44
    115 Y. L. Tian, B. Shirinzadeh, D. W. Zhang, et al. Development and Dynamic Modelling of A Flexure-Based Scott–Russell Mechanism for Nano-Manipulation. Mechanical Systems and Signal Processing, 2009, 23:957~978
    116 Y. K. Yong, S. S. Aphale, S. O. R. Moheimani. Design, Identification, and Control of A Flexure-Based XY Stage for Fast Nanoscale Positioning. IEEE Transactions on Nanotechnology, 2009, 8:46~54
    117 N. Lobontiu. Compliant Mechanisms: Design of Flexue Hinges. CRC Press. 2003
    118 K. Y. Yuen, T. F. Lu, C. H. Daniel. Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations. Precision Engineering, 2008, 32:63~70
    119 J. Paros, L. Weisbord. How to Design Flexure Hinge Machine Design. 1965, 37:151~156
    120 Y. F. Wu, Z. Y. Zhou. Design of Flexure Hinges. Engineering Mechanics, 2002, 19(6):136~140
    121 Y. Tseytlin. Notch Flexure Hinges: An Effective Theory. Review of Scientific Instruments, 2002, 73(9):3363~3368
    122 S. Smith, D. Chetwynd, D. Bowen. Design and Assessment of Monolithic High Precision Translation Mechanisms. Journal of Physics E: Scientific Instruments, 1987, 20:977~983
    123 W. Schotborgh, F. G. M. Kokkeler, H. Trager H, et al. Dimensionless Design Graphs for Flexure Elements and A Comparison between Three Flexure Elements. Precision Engineering, 2005, 29:41~47
    124 S. L. Zhang, E. D. Fasse. A Finite-Element-Base Method to Determine the Spatial Stiffness Properties of A Notch Hinge. Journal of Mechanical Design, 2001, 123:141~147
    125 N. Lobontiu, J. S. N. Paine, E. Garcia, et al. Corner-Filleted Flexure Hinges. Journal of Mechanical Design, 2001, 123:346~352
    126 N. Lobontiu, S. N. P. Jeffrey. Design of Symmetric Conic Section Flexure Hinges Based on Closed Form Compliance Equations. Mechanism and Machine Theory, 2002, 37:477~498
    127 S. T. Smith, V. Badami, J. Dale, et al. Elliptical Flexure Hinges. Review of Scientific Instruments, 1997, 68(3):1474~1483
    128 P. Gao, H. Tan, Z. J. Yuan. The Design and Characterization of A Piezo-Driven Ultra-Precision Stepping Positioner. Measurement Science and Technology, 2000, 11:15~19
    129辛洪兵,郑伟智,赵罘.弹性铰链研究.光学精密工程, 2003, 11(1):89~93
    130 Y. Okazaki. A Micro-Positioning Tool Post Using A Piezoelectric Actuator for Diamond Turning Machines. Precision Engineering, 1990, 12(3):151~156
    131 H. Yamada, T. Fujii, K. Nakayama. Linewidth Measurement by A New Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1989, 28(11):2402~2404
    132 B. Zettl, W. Szyszkowski, W. J. Zhang. Accurate Low DOF Modeling of A Planar Compliant Mechanism with Flexure Hinges: the Equivalent Beam Methodology. Precision Engineering, 2005, 29(2):237~245
    133 H. W. Ma, S. M. Yao, L. Q. Wang, et al. Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge. Sensors and Actuators A, 2006, 132:730~736
    134 L. Nicolae, G. Ephrahim. Analytical Model of Displacement Amplification and Stiffness Optimization for A Class of Flexure-Based Compliant Mechanisms. Computers and Structures, 2003, 81:2797~2810
    135 J. W. Ryu. 6-Axis Ultraprecision Positioning Mechanism Design and Positioning control. Korea Advanced Institute of Science and Technology, 1997
    136 J. H. Kim, S. H. Kim, Y. K. Kwak. Development and Optimization of 3-D Bridge-Type Hinge Mechanisms. Sensors and Actuators A, 2004, 116:530~538
    137王勇,刘志刚,薄锋,等.大行程高分辨率微定位机构的设计分析.机械设计, 2005, 22(5):22~24
    138 J. Li. Design and Development of Piezoelectric Linear Actuator for Smart Structures. Concordia University, 2004:41~44
    139 S. Salisbury, D. Waechter, R.B. Mard, R. Blacow, et al. Design Tools forPiezoelectric Actuated Inchworm Positioners. Proceedings of 6th CanSmart Workshop Smart Materials and Structures, 2003:169~175
    140 B. Zettl, W. Szyszkowski, W. J. Zhang. On Systematic Errors of Two-Dimensional Finite Element Modeling of Right Circular Planar Flexure Hinges. Journal of Mechanical Design, 2005, 127:782~787
    141 B. Zettl. Effective Finite Element Modelling of Micro-Positioning Systems. The University of Saskatchewan, 2003:56~77
    142 Y. K. Yong. Kinetostatic Modelling of Compliant Micro-motion Stages with Circular Flexure Hinges. The University of Adelaide, 2007:33~60
    143 W. Xu, T. G. King. Flexure Hinges for Piezo-Actuator Displacement Amplifiers: Flexibility, Accuracy and Stress Considerations. Precision Engineering, 1996, 19:4~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700