行波型超声波电机的模型仿真与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波电机(Ultrasonic Motor,简称USM)是一种全新概念的电机,它突破了传统电磁感应电机的概念,利用压电陶瓷的逆压电效应以及电机定子和转子的摩擦耦合来进行电能与机械能间的能量转换。超声波电机的发展历史较短,涉及到多个学科,有关超声波电机运行机理的更深层次研究还处在探索和不断完善的阶段,因此需要在学术研究和工业应用中做更多的工作。
     论文围绕超声波电机特别是行波型超声波电机进行模型仿真,采用三种分析方法对其不同特性进行研究,并对这些电机运行性能进行了测试。论文最后还介绍了两种新结构电机的设计。
     论文共分8章。第1章主要介绍了超声波电机的发展历史、特点、分类、应用以及研究现状,并结合国内外超声波电机技术的发展趋势,阐述了本论文的研究意义和研究内容。第2章,首先介绍了行波型超声波电机中压电陶瓷的逆压电效应,然后将电机定子等效成一个圆环形薄板,分析了电机定子的横向弯曲固有振动,并给出两种行波型超声波电机的工作模态的振型。最后,根据振动分析结果,简要分析了电机定子表面运动以及定子和转子间的接触情况。在第3章中,作者利用有限元分析方法对行波型超声波电机进行仿真,并介绍了行波型超声波电机定子的模态分析、谐响应分析以及阻抗特性分析,对直径为60mm和100mm的电机定子进行了仿真计算,并利用有限元方法对100mm电机的定子支撑进行了优化。本章的最后介绍了电机转子的有限元分析:包括转子的模态分析、静力学分析以及接触分析,在此基础上对转子结构进行了优化。第4章中对直径为60mm的行波型超声波电机的定子和转子的接触模型进行研究,将电机定子等效成一个复合梁,分析定子表面的质点运行规律,并且研究考虑齿的放大作用时的定子和转子间接触情况。最后将接触模型与转子运行方程结合,建立了基于二维线性接触的仿真模型,并用于实际电机。在第5章中,作者通过对电机定子振型的假设,利用Hamilton能量变分原理,建立了完整的行波型超声波电机动力学仿真模型。根据实际电机参数,计算出电机仿真模型的参数,利用Matlab对电机的动力学仿真模型进行了求解,给出了仿真得到的行波型超声波电机的起动过程,并分析了预压力和驱动频率对电机性能的影响。第6章主要介绍了电机的输入阻抗、起动过程以及运行特性的测试方法,并利用这些方法对实际电机进行了测试,将测试结果与前面各章内仿真计算得到的结果进行比较。最后设计实验,测试了电机在不同预压力下的工作特性以及电机的微步进运行。在第7章中,作者介绍了圆柱定子三自由度超声波电机和基于薄板面内振动的直线型超声波电机的设计,并对三自由度超声波电机结构进行了优化,提出在实际电机调试中,这两种电机工作模态共振频率调整的结构动力学修正方法。第8章是全文的总结部分,简要介绍了本论文的贡献,以及下一步研究方向。
The ultrasonic motor (USM) is a new kind of conceptual electrical machine. Breaking through the principle of the traditional electro-magnetic motor, ultrasonic motors utilize the converse piezoelectric effect and the friction coupling operation of the stator/rotor to perform the energy conversion between the electric energy and the mechanical energy. The research of USM is related to many fields, and its history is not long. The profound research of the USM operation mechanism is exploring and optimizing, so the further study of the USM should be taken.
     In this dissertation, three methods are used to study the operation characteristics of the traveling wave type ultrasonic motor (TWUM), and some performance tests are done. At the last, the design method of two types of USM is introduced.
     The dissertation contains eight chapters. In 1st chapter, the USM’s developing history, features, classification, application and present research state are introduced respectively, as well as the content and purpose of this dissertation. In 2nd chapter, the converse piezoelectric effect of ceramic is introduced. Simplified with the equivalent ring type plate, the lateral bending vibration and operation mode of USM’s stator is presented. The operation mechanism of USM is also introduced in this chapter. In 3rd chapter, the finite element analysis (FEA) method is used to simulate USMs. The model analysis, harmonic analysis and impedance analysis are used to study the USMs’stator with 60mm and 100mm in diameter. The optimum design is applied to the structure of stator and rotor in USM with 100mm in diameter. With the optimum structure stator and rotor, the USM’s operation performance is improved. In 4th chapter, taking into account the USM with 60mm in stator diameter, the contact model between stator and rotor is studied. In this model, the stator is simplified as an equivalent composite beam, and the teeth on the stator are also considered. In the end of the chapter, the motion equations of the rotor are combined with the contact model, and the 2D linear contact simulation model is established. By using that model, the operation performance of USM is calculated. In 5th chapter, with the assumed vibration model shape of USM stator, using the Hamilton energy variation principle, the complete dynamics simulation model of USM is established. According to the actual structure parameters of USM, the model parameters are calculated. By studying that dynamic model, the starting process is obtained, and the effect of pre-pressure and driving frequency on operation performance is also presented. In 6th chapter, the input impedance, starting process and the test method of USM’s operation performance are presented. By using that method, the testing results are obtained and compared with the simulation results. In this chapter, the test of pre-pressure’s effect and the USM micro-stepping characteristic is also introduced, and the test results are presented. In 7th chapter, the design and optimization of the cylinder stator 3-freedom USM and the piezoelectric ceramic linear USM is presented. And the structure dynamics correcting methods of the two types USM are brought forward. The last chapter is the summary of this dissertation.
引文
1 A. Williams, W. Brown. Piezoelectric motor. US Patent 2439499, Aug. 1948
    2 H. V. Brath. Ultrasonic motor driven. IBM technical disclosure bulletin, 1973, 16(7): 2263
    3 S. UEHA, Y. Tomikawa. Ultrasonic motors – theory and application. Oxford science publications, 1993
    4 T. Sashida. Japanese Patent Disclosure, 58-148682
    5 K. Uchino, J. Giniewicz. Micromechatronics. Marcel Dekker, Inc. New York/Basel, 2002
    6 J.R. Friend, J. Satonobu, et al. A single-element tuning fork piezoelectric linear actuator. IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50(2): 179-186
    7 K. T. Chau, B. Shi, et al. Design and control of a new ultrasonic stepping motor. Industry Applications Conference, 2002. 37th IAS Annual Meeting. 2002, 4: 2259 -
    8 K. T. Chau, B. Shi, et al. A new design method and half-step operation for ultrasonic stepping motors. IEEE Transaction on Industry Applications, 2003, 39(4):953-960
    9 袁小红, 刘俊标等. 一种新型驻波直线超声电机的研究. 压电与声光, 2001, 23(3): 198-201
    10 M. Kurosawa, S. Ueha, et al. Excitation condition of flexural traveling wave for a reversible ultrasonic motor. J. Acoust. Soc. Amer., 1985, 77(4): 1431-1435
    11 M. Nagai, N. Endo, et al. Fundamental characteristics of linear ultrasonic motor driven by traveling wave. IEEE International Workshop on Intelligent Motion Control, 1990: 649-654
    12 M. Kurosawa, K. Nakamura, et al. An ultrasonic motor using bending vibrations of a short cylinder. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 1989, 36(5): 517-521
    13 K. Ohnishi. A novel ultrasonic linear actuator. IEEE 7th International Symposium on, Applications of Ferroelectrics, 1990, 1990: 206 - 212
    14 Yung Ting,Jeng-Shen Huan, et al. Dynamic analysis and optimal design of a piezoelectric motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 2003, 50(6):601-613
    15 Meng-Shiun Tsai, Cheng-Hsueh Lee, et al. Dynamic modeling and analysis of a bimodal ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(3): 245-256
    16 R.J. Wal, C.M. Lin, et al. Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor. IEE. Proc. -Control Theory Appl., 2003, 150(3): 221-232
    17 Ya-Fu Peng, Rong-Jong Wai, et al. Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor. IEEE Transactions on Industrial Electronics, 2004, 51(1): 35-48
    18 B. Koc, P. Bouchilloux, et al. Piezoelectric micromotor using a metal- ceramic composite structure. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(4): 836-843
    19 M. Umeda, T. Nakazawa, et al. Positioning characteristics of ultrasonic rotary actuator with two mode operation. Ultrasonics Symposium, IEEE Proceedings, 1990, 3: 1201-1204
    20 K. Nakamura, M. Kurosawa, et al. Characteristics of a hybrid transducer-type ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1991, 38(3): 188-193
    21 蒋宁. 佳能 EF28-105mm f/3.5-4.5 USM 变焦镜头使用体会. 照相机, 1996, 5: 19-20
    22 梁祖厚. Nikon D1: 迈向新世纪的 274 万像素高性价比专业数字照相机. 照相机, 2000, 1: 9-12
    23 F. Oohira, M. Iwase, et al. Self-hold and precisely controllable optical cross- connect cwitches using ultrasonic micro motors. IEEE Journal of Selected Topics in Quantum Electrics, 2004, 10(3) :551-557
    24 A. Iino, K. Suzuki, et al. Development of a self-oscillating ultrasonic micro-motor and its application to a watch. Ultrasonics, 2000, 38: 54–59
    25 T. Takano, Y. Tomikawa, et al. Same phase drive-type ultrasonic motors using two degenerate bending vibration modes of a disk. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(2): 13–19
    26 N. Fukaya, S. Toyama, et al. Design of the TUAT/Karlsruhe humanoid hand. Proceeding of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000: 1754-1759
    27 S. Toyama, S. Hatae, et al. Development of multi-degree of freedom spherical ultrasonic motor. 5th International Conference on Advanced Robotics - '91 ICAR, 1991: 55-60
    28 B.H. Choi, H.R.Choi. A semi-direct drive hand exoskeleton using ultrasonic motor. IEEE International Workshop on Robot and Human Interaction, 1999: 285-290
    29 B.H. Choi, H.R.Choi. SKK Hand Master-hand exoskeleton driven by ultrasonic motors. Proceeding of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000: 1131-1136
    30 I. amano, K. Takemura, et al. Development of a robot finger for five-fingered hand using ultrasonic motors. Proceeding of the 2003 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2003: 2648-2653
    31 http://www.elliptec.com/appl_toys.htm
    32 王大春. 表面波型电机(一). 压电与声光, 1986, 8(1),
    33 王大春. 表面波型电机(二). 压电与声光, 1986, 8(2): 1-7
    34 Dongzhe Bai, T. Ishii, et al. An ultrasonic motor driven by the phase-velocity difference between two traveling waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(6): 680-685
    35 Puu-An Juang,Da-Wei Gu. Finite element simulation for a new disc-type ultrasonic stator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(4):368-375
    36 Puu-An Juang, W. Brenner The transfer function of a new disc-type ultrasonic motor. Sensors and Actuators, 2002, 100: 272–280
    37 T. Amano, T. Ishii, et al. An ultrasonic actuator with multi-degree of freedom using bending and longitudinal vibrations of a single stator. Proc. IEEE Ultrasonics Symposium, 1998, 1: 667-670
    38 K. Takemura, T. Maeno. Design and control of an ultrasonic motor capable of generating multi-DOF motion. IEEE/ASME Transactions on Mechatronics, 2001, 6(4): 499-506
    39 金龙, 胡敏强等. 一种新型圆柱定子 3 自由度球形压电超声电机. 东南大学学报(自然科学版), 2002, 32(4): 620:623
    40 M. Aoyagi, S.P. Beeby. A novel multi-degree-of-freedom thick-film ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(2): 151-158
    41 S. Shimoda, M. Ueyama, et al. Design of 2-DOF pyramid type ultrasonic motor. Proceeding of the 2001 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2001:19971-1976
    42 K. Takemura, Y. Ohno, et al. Design of a plate type multi-dof ultrasonic motor and its driving characteristics. Proceedings of the 2003 IEEE/ASME, International Conference on Advanced Intelligent Mechatronics, 2003: 1309-1304
    43 R. Rajkumar, T. Nogai. A new method of improving the torque of a travelling wave ultrasonic motor. Proceedings of the 1999 IEEE/ASME, International Conference on Advanced Intelligent Mechatronics, 1999: 109-113
    44 Longtu Li, Zengping Xing, et al. A method of improving the resolution and torque of stepper ultrasonic motor. IEEE International Symposium on Applications of Ferroelectrics, 2002: 323-325
    45 Shuxiang Dong, Shuxin Wang, et al. A miniature piezoelectric ultrasonic motor based on circular bending vibration mode. IEEE/ASME Transactions on Mechatronics, 2000, 5(4): 325-330
    46 T. Maeno, T. Tsukimoto, et al. The contact mechanism of an ultrasonic motor. IEEE 7th International Symposium on Applications of Ferroelectrics, 1990: 535 - 538
    47 T. Maeno, T. Tsukimoto, et al. Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(6): 668-674
    48 R. Lerch. Simulation of piezoelectric devices by two- and three- dimensional finite elements. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1990, 37(2): 233-247
    49 Y. Kagawa, T. Tsuchiya, et al. Finite element simulation of dynamic responses of piezoelectric actuators. Journal of Sound and Vibration, 1996, 191(4): 519-538
    50 N. Lamberti, A. Iula, et al. A piezoelectric motor using flexural vibration of a thin piezoelectric membrane. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(1): 23-29
    51 J.W. Krome, J.Wallaschek. Novel disk type ultrasonic traveling wave motor for high torque. IEEE Ultrasonics Symposium, 1997: 385-390
    52 T. Maeno, D.B. Bogy. Effect of the hydrodynamic bearing on rotor/stator contact in a ring-type ultrasonic motor. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1991, 39(6): 675 - 682
    53 H. Hirata, S. Ueha. Characteristics estimation of a traveling wave type ultrasonic motor. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1993, 40(4): 402-406
    54 H. Hirata, S. Ueha. Design of a traveling wave type ultrasonic motor. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(2): 225-231
    55 O.Y. Zharii, A. F. Ulitko. Smooth contact between the running rayleigh wave and a rigid strip. Transactions of the ASME, Journal of Applied Mechanics, 1995, 62: 362-367
    56 O. Y. Zharii. Adhesive contact between the surface wave and a rigid strip. Transactions of the ASME, Journal of Applied Mechanics, 1995, 62: 368-371
    57 N. Hagood, J. Andrew. Modeling of a Piezoelectric Rotary Ultrasonic Motor. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(2): 210-224
    58 J. Maas, H. Grotstollen. Dynamic analysis of inverter-fed ultrasonic motors. IEEE PESC’96, 1780-1786
    59 J. Maas, P. Ide, et al, Simulation model for ultrasonic motors powered by resonant converters. IEEE IAS’95, 111-120
    60 J. R. Friend, D. S. Stutts. The dynamics of an annular piezoelectric motor stator. Journal of sound and vibration, 1997, 204(3): 421-437
    61 J. Wallaschek. Contact mechanics of piezoelectric ultrasonic motors. Smart Material and Structure, 1998, .7: 369–381
    62 Zhu Meiling. Contact analysis and mathematical modeling of traveling wave ultrasonic motors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(6): 668-679
    63 刘锦波, 陈永校. 超声波电机定子和转子接触的摩擦传动模型及其实验研究. 中国电机工程学报, 2000, 20(4): 59-63
    64 李华峰, 赵淳生等. 行波型超声波电机定子和转子接触模型的研究. 华中科技大学学报(自然科学版), 2004, 32(10): 57-59
    65 夏长亮, 史婷娜等. 行波接触型超声波电机定子齿对电机性能的影响. 电工电能新技术, 2002, 21(1): 9-12
    66 赵向东, 赵淳生. 行波超声马达带齿定子固有振动频率解析. 振动、测试与诊断, 1998, 18(4): 243-248
    67 张福学, 王丽坤. 现代压电学(下册). 北京: 科学出版社, 2002
    68 栾桂东, 张金铎等. 压电换能器和换能器阵. 北京: 北京大学出版社,1990
    69 陈永校, 郭吉丰. 超声波电动机. 浙江: 浙江大学出版社, 1994
    70 顾菊平, 胡敏强等. 超声波电机谐振升压式驱动技术研究. 中国电机工程学报, 2002, 22(8), 49-52
    71 R.J. Wal, C.M. Lin, et al. Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor. IEE Proc.-Control Theory Appl. 2003, 150(3): 221-232
    72 R.J. Wal. Robust control of linear ceramic motor drive with LLCC resonant technique. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(7): 911-920
    73 Faa-Jeng Lin. Fuzzy Adaptive Model-Following Position Control for Ultrasonic Motor. IEEE Trans. on Power Electronic, 1997, 12(2): 261-268
    74 T. Senjyu, S Yokoda. Speed control of ultrasonic motors by adaptive control with a simplified mathematical model. IEEE Trans. on Power electronics, 1998, 145(3): 180-184.
    75 T. Senjyu, S. Yokoda, et al. Position control of ultrasonic motors using sliding mode control with multiple control inputs. Applied Power Electronics Conference and Exposition. APEC'98. 13 (2): 597-602.
    76 T. Senjyu, H. Miyazato, et al. Speed control of ultrasonic motors using neural network. IEEE Trans. on Power Electronics, 1998, 13(3): 381-387.
    77 王树昕. 压电陶瓷材料对超声电动机性能的影响. 压电与声光, 2000, 22(1):23-29
    78 莫岳平, 胡敏强. 材料对超声电动机性能的影响及其选择. 微电机, 2002,35(1): 41-44
    79 李宝库. 超声波电机功能性化工材料研制进展. 微特电机, 1998, (3): 32-33.
    80 曲建俊, 齐毓霖等. 超声马达摩擦学及其摩擦材料研究进展. 摩擦学学报, 1998, 18(1): 80-87
    81 曲建俊, 张凯等. 超声马达转子摩擦材料磨损特性研究. 摩擦学学报, 2001, 21(4): 283-287
    82 栗大超, 靳世久等. 微型超声波电机接触界面的摩擦学模型与摩擦材料. 微特电机, 2001, 1: 9-11
    1 张福学, 王丽坤. 现代压电学(上册). 北京: 科学出版社, 2002
    2 王矜奉, 姜组桐等. 压电振动. 北京: 科学出版社, 1989
    3 栾桂东, 张金铎等. 压电换能器和换能器阵. 北京: 北京大学出版社, 1990
    4 应崇福等. 超声学. 北京: 科学出版社, 1990
    5 倪振华. 振动力学. 西安: 西安交通大学出版社, 1989
    6 屈维德. 机械振动手册. 北京: 机械工业出版社, 1992
    7 曹志远. 板壳振动理论. 北京: 中国铁道出版社, 1989
    8 王一平, 周邦寅等. 数学物理方程. 北京: 电子工业出版社, 1993
    9 谢鸿政, 杨枫林. 数学物理方程. 北京: 科学出版社, 2001
    1 H. Allik, J. Hughes, Finite element for piezoelectric vibration. International Journal Numerical Methods of Engineering, 1970, 2: 151-157
    2 莫岳平, 胡敏强等. 超声波电机振动模态有限元分析. 中国电机工程学报, 2002, 22(11): 92-96
    3 ANSYS, Inc. Theory Reference, Release 5.7
    4 电子陶瓷情报网编,压电陶瓷应用,山东大学出版社,1985 年 8 月
    5 陈永校, 郭吉丰. 超声波电动机. 浙江大学出版社, 1994
    6 魏守水, 田力军等. 超声电机阻抗匹配变压器的设计. 电机与控制学报, 2000, 4(1): 13-16
    7 彭太江, 常颖等. 超声减摩用压电换能器阻抗匹配的试验研究. 压电与声光, 2004, 26(1): 65-68
    8 N.W. Hagood, A.J. McFarland. Modeling of a Piezoelectric Rotary Ultrasonic motor. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 40(2): 210-224
    9 P. Le Moal, P. Cusin. Optimization of traveling wave ultrasonic motors using a three -dimensional analysis of the contact mechanism at the stator-rotor interface. European Journal of Mechanics - A/Solids, 1999, 18(6): 1061-1084
    10 莫岳平, 胡敏强等. 行波超声波电动机转子的设计. 微电机, 2002, 2: 9-13
    1 上羽贞行, 富川义郎著, 杨志刚, 郑学伦译. 超声波马达理论与应用. 上海: 上海科学技术出版社, 1997
    2 陈永校, 郭吉丰. 超声波电动机. 浙江: 浙江大学出版社, 1994
    3 倪振华. 振动力学. 西安: 西安交通大学出版社, 1989
    4 范钦珊. 材料力学. 北京: 高等教育出版社, 2000
    5 J. Maas, P. Ide, et al. Simulation Model for ultrasonic motors powered by resonant converters. Conf. Rec. IEEEIAS Annual Meeting, vol.1, Lake Buena Vista, FL, Oct. 1995, 111-120
    6 J. Wallaschek. Contact mechanics of piezoelectric ultrasonic motors. Smart Material and Structure, 1998, .7: 369–381
    7 M. Bullo, Y. Perriard. Performance analysis and optimization of the travelling wave ultrasonic motor, Industry Applications Conference. 2002. 37th IAS Annual Meeting, Vol 3, 1907-1913
    1 N. Hagood, J. Andrew. Modeling of a Piezoelectric Rotary Ultrasonic Motor. IEEE Trans. Ultrason. Ferroelectr. Frequency Control, 1995, 42(2): 210-224
    2 卓忠疆. 机电能量转换. 北京: 水利电力出版社, 1987
    3 N. E. Ghouti. Hybrid modeling of a traveling wave piezoelectric motor. Doctoral thesis, Aalborg University, Denmark, 2000
    4 刘延柱, 陈文良等. 振动力学. 北京: 高等教育出版社, 2002
    5 曹志远. 板壳振动理论. 北京: 中国铁道出版社, 1989
    6 S. UEHA, Y. Tomikawa. Ultrasonic motors – theory and application. Oxford science publications, 1993
    7 倪振华. 振动力学. 西安: 西安交通大学出版社, 1989
    8 范钦珊. 材料力学. 北京: 高等教育出版社, 2000
    9 徐芝纶. 弹性力学. 北京:高等教育出版社, 1990
    10 Zhu Meiling. Contact analysis and mathematical modeling of traveling wave ultrasonic motors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(6): 668-679
    11 J. Wallaschek. Contact mechanics of piezoelectric ultrasonic motors. Smart Material and Structure, 1998, .7: 369–381
    12 M. Bullo, Y. Perriard. Performance analysis and optimization of the travelling wave ultrasonic motor, Industry Applications Conference. 2002. 37th IAS Annual Meeting, Vol 3, 1907-1913
    1 顾菊平, 秦申蓓等. 基于 LabVIEW 超声马达谐振频率的实验研究. 中国电机工程学报, 2003, 23(8): 91-95
    2 Lionel Petit, Nicolas Rizet, et al. Frequency behaviour and speed control of piezomotors. Sensors and Actuators, 2000, 80: 45–52
    3 王心坚. 基于 DSP 的超声波电机控制技术的研究. 东南大学硕士学位论文, 2003
    4 楼顺天, 李博菡. 基于 MATLAB 的系统分析于设计――信号处理. 西安: 西安电子科技大学出版社, 1998
    1 T. Morita, M. Kurosawa and T. Higuchi, A Cylinder Micro-ultrasonic motor, Ultrasonics, 2000, 38(1), 33-36.
    2 Y. Yamayoshi and S. Hirose, Ultrasonic motor not using mechanical friction force, Inter. J. of Applied Electromagnetics in Materials, 1992,(3),179-182.
    3 Yung Ting,Jeng-Shen Huan, et al. Dynamic analysis and optimal design of a piezoelectric motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 2003, 50(6): 601-613
    4 Meng-Shiun Tsai, Cheng-Hsueh Lee, et al. Dynamic modeling and analysis of a bimodal ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(3): 245-256
    5 R.J. Wal, C.M. Lin, et al. Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor. IEE. Proc. -Control Theory Appl., 2003, 150(3): 221-232
    6 Ya-Fu Peng, Rong-Jong Wai, et al. Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor. IEEE Transactions on Industrial Electronics, 2004, 51(1): 35-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700