强流脉冲离子束辐照碳基第一壁材料模拟核聚变高热负荷实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用强流脉冲离子束技术对碳基材料进行高热负荷性能测试,模拟托卡马克核聚变反应堆装置中等离子体与壁材料的作用过程,研究核聚变装置第一壁材料在高热负荷和高粒子通量条件下的烧蚀行为,为第一壁材料的研发创造基础条件。
     采用TEMP-6型强流脉冲离子束装置,在加速电压300 kV,脉冲宽度75 ns,热流参数180-400 MWm-2s1/2,对核聚变第一壁备选材料——C/C复合材料、石墨、玻璃碳、SiC涂层材料进行1-10次辐照实验研究。采用电子天平、扫描电子显微镜、表面轮廓仪、X射线衍射仪及Raman光谱仪测试表征样品烧蚀率、表面形貌、粗糙度及相结构变化,分析碳基第一壁备选材料表面烧蚀影响因素,探讨其烧蚀机理,对比抗热流冲击能力,为择优选取材料提供实验依据。
     以45°、90°两种入射角辐照C/C复合材料和石墨试样。C/C复合材料表面碳纤维首先发生断裂与脱落,石墨基体随后产生裂纹。而石墨表面碎屑发生脱落,并因选择性烧蚀形成大量孔洞;随后转变为大面积均匀烧蚀,原始孔隙和空腔被重熔填实,辐照表面致密化,不同辐照角度对C/C复合材料的影响不显著,而石墨在斜入射离子辐照下的损伤比垂直入射更严重。经辐照两种材料的相结构均未发生明显变化。
     玻璃碳首先发生均匀烧蚀,出现均匀细小烧蚀颗粒,表面变粗糙,粗糙度由原始的nm级迅速上升至μm级。随后发生选择性起泡烧蚀,出现气泡状微凸,一些微凸表层破裂并剥落,粗糙度先增大后减小。高热负荷作用导致了玻璃碳的石墨化倾向。横向对比发现,玻璃碳的抗热流冲击能力最强。
     对SiC涂层进行辐照,原始疏松多孔的表面在孔边缘发生择优烧蚀,边缘圆滑化,随后大面积重熔,孔隙率下降,呈现较光滑表面,但是出现沟壑状大尺寸孔隙。表层由原始的C、SiC相转变为C、SiC和Si三相混合状态。研究表明,SiC涂层显著提高了石墨抗烧蚀性能。
High-intensity pulsed ion beam (HIPIB) technique was employed as a useful tool to simulate plasma-material interactions, especially material ablation and erosion in Tokamak for evaluating and developing the first-wall materials.
     In this study, first-wall candidate materials-C/C composite, graphite G347, glassy carbon and SiC coating were investigated in TEMP-6 HIPIB apparatus. Typical HIPIB parameters for the irradiation were heat flux parameter of 180-400 MWm-2s1/2, accelerating voltage of 300 kV, pulse width of 75 ns and 1-10 shots. Electronic balance, scanning electron microscopy, X-ray diffractometer and Raman spectroscope were used to characterize weight loss, surface morphology and phase structure, to evaluate the ablation behaviors of the carbon-based materials under high heat flux.
     C/C composite and graphite G347 samples were irradiated with shot angle of 45°and 90°. Fracture and exfoliation of carbon fibers were observed at first in C/C composite, obvious ablation of graphite matrix were also found and noticeable cracking occurred on the graphite matrix when increasing the shot number. The irradiated graphite G347 presented a surface of selective ablation firstly, then turned to uniform ablation on a larger scale. It is difficult to estimate the influence of shot angle on the irradiated C/C composite, but it is easier to generate damage on graphite G347 at smaller angle. X-ray diffraction analysis showed that the phase structure of both materials had little change after irradiation.
     The irradiated glassy carbon presented uniform ablation and many homogeneous fine particles on the whole surface at first. Surface roughness increased from nm degree toμm degree. Then blebs, some of which bursted and exfoliated, appeared because the ablation form changed into selective bubbly ablation. Surface roughness increased, then decreased. So the resistance of ablation enhanced. Raman spectroscope analysis showed that the glassy carbon seemed like to change into graphite. we found the glassy carbon has the best resistance of high heat flux in these three materials.
     The SiC coatings irradiated by HIPIB also. The original loose and multihole-surface presented preferential ablation on the edge of holes firstly so that the edge became smooth. Then surface was remelted on a large scale under multi-shot exposure. The porosity fall down, but a lot of small tuber formed. X-ray diffraction analysis showed that the phase structure of SiC coatings changed from C, SiC into C,SiC and Si.
引文
[1]Chen J L, Gao F, Li J G, Fang Q F. Limiter material experiments towards long pulse operation in the HT-7 superconducting tokamak[J]. Journal of Nuclear Materials 363-365 (2007) 1334-1339
    [2]Brooks J N, Allain J P, Doerner R P, Hassanein A, Nygren R, Rognlien T D, Whyte D G. Plasma-surface interaction issues of an all-metal ITER[J]. Nuclear Fusion 49 (2009) 035007
    [3]Rodig M, Ishitsuka E, Gervash A, Kawamura H, Linke J, Litunovski N, Merola M. High heat flux performance of neutron irradiated plasma facing components[J]. Journal of Nuclear Materials 307 (2002) 53-59, Part A
    [4]Roth Joachim, Tsitrone E, Loarer A et al. Recent analysis of key plasma wall interactions issues for ITER[J]. Journal of Nuclear Materials 390-391 (2009) 1-9
    [5]Wu C H, Bonal J P, Werle H. Neutron effects on properties and annealing of low-Z materials[J]. Fusion Engineering and Design 49 (2000) 383-388
    [6]Guo Q G, Li J G, Noda N. Selection of candidate doped graphites as plasma facing components for HT-7U[C].15th Plasma Surface Interactions international conference, Gifu,2002.
    [7]Barabash V, Federici G, Matera R, Raffray A R. Armour materials for the ITER plasma facing components[J]. Physica Scripta T81 (1999) 74-83
    [8]陈俊凌,李建刚,辜学茂等.HT-7U第一壁材料在HT-7装置中的辐照实验研究[J].核聚变与等离子体物理,2002年第22卷第2期:105-110
    [9]汪峰涛,吴玉程,王涂根,陈俊凌.W-Cu面对等离子体梯度热沉材料的制备和性能[J].复合材料学报,2008年4月第25卷第2期:91-97
    [10]Neu R, Dux R, Geier A et al. Tungsten as plasma-facing material in ASDEX Upgrade[J]. Fusion Engineering and Design 65 (2003) 367-374
    [11]ITER group. ITER final design report[C]. ITER-EDA Documentation Series. Vienna, IAEA,1999.
    [12]周张健,钟志宏,沈卫平,葛昌纯.聚变堆中面向等离子体材料的研究进展[J].材料导报,2005年12月第19卷第12期
    [13]Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K. Plasma facing and high heat flux materials-needs for ITER and beyond[J]. Journal of Nuclear Materials 307-311 (2002) 43-52
    [14]魏孔芳,王志光.用离子辐照模拟研究反应堆结构材料中金属/金属界面原子扩散行为[J].原子核物理评论,2006年第23卷第2期:215-210
    [15]王志光.利用高能离子模拟研究反应堆结构材料中的辐照效应[J].原子核物理评论,2006年第23卷第2期:155-160
    [16]Linke J, Escourbiac F, Mazul I V, Nygren R, Rodig M, Schlosser J, Suzuki S. High heat flux testing of plasma facing materials and components-Status and perspectives for ITER related activities [J]. Journal of Nuclear Materials 367-370 (2007) 1422-1431
    [17]李鹏远,钱家傅,刘翔,吕琳,张经国.激光模拟等离子体破裂热脉冲研究石墨材料的热负荷特性[J].应用激光,2003年第13卷第1期:224-229
    [18]Bayazitov R M, Zakirzyanova L Kh, Khaibullin I B, Remnev G E. Formstion of heavily doped semiconductor layers by pulsed ion beam treatment[J]. Nuclear Instruments and Methods in Physics
    Reserch B,122(1997)35-38
    [19]Davis H A, Remnev G E, Stinnett R W et al. Intense ion-beam treatment of materials[J]. MRS Bulletin 21 (1996)58-62
    [20]Rej D J, Davis H A, Nastasi M et al. Surface modification of AISI-4620 steel with intense pulsed ion beams. Nuclear Instruments and Methods in Physics Research B 127/128(1997) 987-991
    [21]Klimov N, Podkovyrov V, Zhitlukhin A et al. Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA[J]. Journal of Nuclear Materials 390-391 (2009) 721-726
    [22]种法力,陈俊凌,李建刚VPS-EBW法制备W/Cu功能梯度材料及热负荷实验研究[J].稀有金属材料与工程.2006,35(9):1509-1512
    [23]韩晓光.强流脉冲离子束辐照表面的烧蚀改性研究[D].辽宁:大连理工大学,2009
    [24]高燕,宋怀河,陈晓红.C/C复合材料的研究进展[J].材料学报.2002年第七期:44-47
    [25]廖晓玲,徐文峰.C/C复合材料的疲劳性能及损伤研究现状[J].材料工程.2008:301-304
    [26]Niwase K, Tanabe T. Deffect structure and amorphization of graphite irradiated by D+and He+[J]. Materials Transactions.34 (1993) 1111-1121
    [27]张家嵻.碳材料工程基础[M].北京:冶金工业出版社,1992
    [28]王君林,黄可心,孙国恩,邹广田.玻璃碳结构形成过程分析[J].东北师大学报自然科学版.1998年第4期:63-66
    [29]沈曾民.新型碳材料[M].北京:化学工业出版社,2003
    [30]汤精明,王小明,CVI法制备SiCp/SiC复合材料的力学性能研究[J].兵器材料科学与工程.2007年第11期:53-56
    [31]Yu J N, Chen Y R, Wang Y Z, Zhang W, Xu S Y, Noda Tetsuji. Research on plasma-facing component materials[J]. Journal of Nuclear Materials 2X-237 (1996) 771-775
    [32]Barabash V, Akiba M, Bonal J P et al. Carbon fiber composites application in ITER plasma facing components[J]. Journal of Nuclear Materials 258 (1998) 149-159, Part A
    [33]Zhu X P, Liu C, Lei M K. High heat flux testing of doped and coated graphite using high-intensity pulsed ion beam[J]. Acta Physica Polonica A 115 (2009) 1177-1179
    [34]Rej D J, Davis H A, Olson J C et al. Materials processing with intense pulsed ion beams[J]. J.Vac Sci.Technol 15(1997), Part A
    [35]Robertson J. Diamond-like amorphous carbon[J]. Materials Science and Engineering 37 (2002) 129-281
    [36]Angoni K. Remarks on dle structure of carbon materials on the basis of Raman spectra[J]. Carbon 31 (1993)531-547
    [37]Andrea C. Ferrari, John Robertson. Raman spectroscopy in carbons:from nanotubes to diamond[M].化学工业出版社.2007年6月
    [38]Nakarmizo M. Laser Raman studies on carbon[J]. Carbon 12 (1974) 259-267
    [39]Fitzer E. Laser Raman spectroscopy for determination of c-c bonding length in carbon[J]. Carbon 26(1988)594-595
    [40]Fitzer E. Some remarks on Raman spectroscopy of carbon Structures[J]. High Temperature-High pressures 20 (1988) 449-454
    [41]武安华,葛晶纯,李江涛,曹文斌.面向等离子体SiC/C功能梯度材料的研究[J].材料工程.2002年第6期:25-28
    [42]张国兵,郭全贵,刘朗,史景利,宋进仁.SiC/C功能梯度材料的设计、制备及性能[J].宇航材料工艺,2006增刊:60-65
    [43]Liu Z J, Guo Q G, Song J R, Liu L, Chen J L, Li J G. Application researches on doped graphites as plasma facing materials[J]. Nuclear Fusion and Plasma Physics 26 (2006) 318-322
    [44]Wu A H, Cao W B, Ge C C, Li J F, Kawasaki A. Characterization of plasma facing SiC/C functionally graded material[J]. Functionally graded materials 423-424 (2003) 167-170
    [45]Koizumi M. FGM activities in Japan[J]. Composites part B-Engineering 28 (1997) 1-4
    [46]Fujii K, Nakano J, Shindo.M. Evaluation of characteristic properties of a newly developed graphite material with a SiC/C composition gradient.3rd International Symposium on Structural and Functional Gradient Materials[C].541-7, (1995)
    [47]Sasaki M, Hirai T. Fabrication and properties of functionally gradient materials[J]. Nippon seramikkusu kyokai gakujutsu ronbunshi-Journal of the Ceramic Society of Japan 99 (1991) 1002-1013
    [48]洪文玉,唐素筠,常淑莽,关虹宇.HL-1装置中SiC涂层辐照实验的表面分析[J].维普资讯
    [49]熊器,杨斌,刘耀光,汪德志,黄宁康,雷家荣.H+辐照前后C—SiC涂层的XPS分析[J].南昌航空工业学院学报(自然科学版).2002年9月第16卷第3期:33-37
    [50]Garcia Rosales C, Roth J, Philips V et al. Search for Low Erosion Carbon Materials[J]. Journal of Nuclear Materials 573 (1992) 196-198
    [51]Wang J L, Guan Z Z. Structural analysis during manufacturing process of glass carbon[J]. Journal of Northeast Normal University 3 (1995)246-231
    [52]Ge C C, Li J T, Zhou Z J et al. Development of functionally graded plasma-facing materials[J]. Journal of Nuclear Materials 283-287 (2000) 1116-1120
    [53]Kucinski J, Langner J, Piekoszewski J, Adami M, Miotello A, Guzman L. Glazing of ceramic surfaces with high-intensity pulsed ion beams. Surfaces and Coatings Technology 84 (1996) 329-333.
    [54]Piekoszewski J, Werner Z, Szymczyk W. Application of high intensity pulsed ion and plasma beams in modification of materials. Vacuum 63 (2001) 475-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700