基于功能神经成像面孔感知神经特异性及面孔top-down加工神经机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面孔是人类社会生活中非常重要的一类视觉刺激物,人与人之间的交流方式在很大程度上依赖于面孔信息的加工,并且人们拥有高超的面孔加工技能。面孔加工如何在大脑中实现一直是多个学科领域的研究热点,随着研究的深入,在这个问题上取得了不少成果,但是其神经机制仍然很不清楚。本文的目的是利用fMRI成像技术来研究面孔认知加工中的若干问题,希望能够推动面孔加工研究的进展。
     近年来,采用多种成像技术对面孔加工脑激活模态的研究都有一致的发现:相对于其他视觉刺激物,面孔总能引起梭状回中部区域很强的激活,并定义该区域为梭状回面孔区(FFA)。目前对该区域功能的解释存在两种对立理论:一种理论认为该区域就为面孔特有的加工区域;而另外一种解释理论认为该区域的激活是由于人们是面孔加工的专家而导致的。在本文第一个研究中,我们分析了提出这些理论的研究中所使用的视觉刺激控制物,发现它们同面孔不匹配。为此,我们通过改进对比控制物来研究面孔加工神经区域特异性的问题。对中国人而言,汉字字符在特征属性多个维度上同面孔相似,它是面孔最理想的对比条件。因此,汉字在本文研究中被选择为面孔的对比控制物。研究结果表明,面孔和汉字引起双侧梭状回的激活模式有非常强的相似性和相关性,这个结果应该由面孔和汉字在特征属性多维度相似而导致的。但是,面孔对比汉字引发右侧梭状回很强的激活,而汉字对比面孔在双侧梭状回都没有引起激活。这个结果有力的支持了FFA区域存在对面孔加工特异性神经细胞的假设。
     面孔加工有两种实现方式:bottom-up和top-down方式。由于bottom-up方式下面孔加工实验易于实现和控制,故已有的面孔加工研究主要集中在该方式下。对于面孔top-down加工的研究,由于面孔top-down加工信号流的提取易受到bottom-up方式下的面孔加工信号的干扰,因而设计合理有效的实验范式来提取面孔top-down加工信号流成为首要一步。在本文第二个研究中,一个新颖的实验范式被设计出来研究面孔top-down加工神经机制:经过训练的被试从纯噪声图片中感知虚幻面孔。由于所感知的噪声图片物理属性一致,被试从中感知到的虚幻面孔完全由top-down方式产生,因而能提纯到面孔top-down加工脑激活模式。
     在此实验范式应用的基础上,传统Pearson时间序列相关分析,以及对其进行改进的心理生理交互作用(PPI)分析被用来获取top-down方式下的面孔加工神经网络。该面孔加工网络除了包括传统方式下得到的分布式面孔加工网络的核心系统区域外,同时也包括了用于处理视觉刺激低频信息的脑区,决策的脑区,以及用于工作记忆和注意力调节的脑区。紧接着,采用动态因果模型(DCM)分析方法来推断该网络中梭状回面孔区(FFA)、枕部面孔区(OFA)、眶额叶皮层(OFC)和顶下小叶(IPL)之间的有效连通模型,已有的研究认为这四个脑区在面孔加工或者top-down处理中起着重要作用。最优网络模型表明,OFC和IPL在top-down虚幻面孔加工中有着重要作用,它们能够规整OFA的激活模式:OFC能够为OFA提供可能面孔的低频特征信息;IPL能够施加top-down注意力到OFA,以协助OFA根据OFC提供的信息从纯噪声图片提取类似面孔的特征信息;然后,OFA在对这些特征信息进行初步加工后,提供给FFA做进一步的面孔整体相关信息的加工。
     面孔加工神经机制一直是多个学科领域的研究热点,也在各个研究领域中取得许多显著成果。然而,面孔加工神经机制是什么这个问题的研究亟待深入。借助多学科交叉优势,能够推动面孔感知神经机制研究的进展,能够为人类面孔加工缺陷的疾病提供治疗手段,同时也能为模式识别中面孔识别技术提供新的思路和解决方法。在本文第三个研究中,首先回顾了在面孔感知研究中有着重要影响的功能认知模型以及分布式面孔感知神经模型。然后综合当前采用各种先进技术及实验范式的研究成果,推导出面孔加工神经网络可能的时间模式和空间分布模式,希望能够对以后面孔加工神经机制进一步深入研究提供解决思路。
Faces are one of the upmost important visual stimuli in the human’s social lives; the means of communication among people rely heavily on processing the information contained in the faces, and humans are exceptionally skilled at face perception. How the face processing is performed in the brain has been the research focus in numerous disciplines. With the development of neuroscience, many achievements on this question have been gained. However, it is still unclear what the neural mechanisms of face processing are. Therefore, the goal of this article is to study a number of cognitive issues of face processing based on fMRI, hoping to promote this research progress.
     In recent years, converging evidences, which come from the studies of activation patterns in face processing using a variety of functional imaging technologies, have provided a very consistent finding, which is that faces always lead strong activation in the fusiform gyrus when compared to other visual stimuli. This area is defined as the fusiform face area (FFA). At present, there are two distinct different explanations on the function of this region: one theory interprets that this area is just specialized for face processing, but the other one considers that this area is responsible for faces as human are the experts in face processing. In our first study, we find that the control stimuli used in the previous studies are not matched with the faces. Thus, we improve the experimental control stimuli of face to study the neural specificity of face perception. For literate Chinese adults, the characters should be the ideal contrast condition for face stimuli, because it is similar to the face in multi-dimensions. Hence, in the first study, characters are chosen as the comparison stimuli of faces. The results in this study indicate that the activation patterns of bilateral fusiform gyrus induced by faces and characters are very similar and strong correlative,which is attributed to the similar multi-dimensions between the faces and characters. However, it is found that the right fusiform gyrus is strongly activated when faces relative to characters. On the opposite, bilateral fusiform gyrus is not active when characters comparing to faces. Those results convincingly support the hypothesis that the neurons specified for face processing exist in this region.
     Face processing can be achieved through two means: bottom-up and top-down. For the experimental approach of bottom-up face processing is easily to be implemented and controlled, most of previous studies of face processing have focused on this means of face processing. In the study of top-down face processing, as the information coming from the bottom-up face processing easily interferes to extract the brain activation patterns of top-down face processing, it is the first key step to design a logical and effective paradigm to obtain the signal flow of top-down face processing. In the second study, a novel experimental paradigm is designed to study the neural substrate of top-down face processing. Subjects are trained to perceive illusory faces from the pure noise images. Since the physical properties of all noise images are identical and illusory face processing carried by subjects is formed entirely under the top-down approach.
     Based on the experimental paradigm, the traditional Pearson correlation analysis of time series and improved Psychophysiological Interactions analysis are used to obtain the distributed neural network of top-down face processing. This network not only contains the regions of core system in the distributed face processing network defined by previous studies, but also the brain regions involved in the processing of low-frequency information of visual stimuli, making decision, as well as in working memory and attention regulation. Further researches use the method of dynamic causal model (DCM) analysis to infer the effective connectivity network of the regions of the fusiform face area (FFA), the occipital face area (OFA), the inferior parietal lobule (IPL) and the orbitofrontal cortex(OFC), which are contained in the top-down face processing network. The four regions are considered to play a crucial role in the face processing or top-down processing manner. The optimal network model indicates that the OFC and IPL play crucial roles in the top-down face processing by regulating the activities of the OFA. The OFC can offer OFA the low-frequency information of faces and OFA can search the pure noise images for face-like features under directing top-down visual attention exerted by IPL. After the initial processing by OFA, the face-like featured information is transmitted to FFA for further holistic face processing.
     The neural substrate of face processing is always the hot field in many disciplines, and many significant results have been achieved in relative research fields. Nevertheless, this issue is still not well understood. It could take advantage of the interdisciplinary efforts to promote the progress of neural mechanisms study of face perceptions, to provide the proper treatment ways for face processing diseases, and also to provide new methods and ideas to solve the bottleneck problems of face identification in pattern recognition field. In the third study of this article, those most influential functional cognitive models and neural distributed network models of face processing are primarily presented. Then recent findings using novel methods and advanced technologies to study the neural mechanism of face processing are accumulated to investigate spatiotemporal relation among the neural regions involved in face processing, hoping to provide new ideas for our further studies of face processing after this review.
引文
[1] Engel S A, Looking into the Black Box: New Directions in Neuroimaging, [J]. Neuron, 1996, 17(3): 375-378.
    [2] Raichle M E, Mintun M A, Brain work and brain imaging, [J]. Annual Review of Neuroscience, 2006, 29:449-476.
    [3] Phelps M E, Mazziotta J C, Positron emission tomography: human brain function and biochemistry, [J]. Science, 1985, 228(4701): 799-809.
    [4] Watson J D, Images of the working brain: understanding human brain function with positron emission tomography, [J]. Journal of Neuroscience Methods, 1997, 74(2): 245-256.
    [5] Warwick J M, Imaging of Brain Function Using SPECT, [J]. Metabolic Brain Disease, 2004, 19(1): 113-123.
    [6] Darvas F, Pantazis D, Kucukaltun-Yildirim E, et al., Mapping human brain function with MEG and EEG: methods and validation, [J]. NeuroImage, 2004, 23 Suppl 1(S2):89-99.
    [7] Villringer A, Planck J, Hock C, et al., Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults, [J]. Neuroscience Letters, 1993, 154(1-2): 101-104.
    [8] Kwong K K, Belliveau J W, Chesler D A, et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, [J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12): 5675-5679.
    [9] Shulman R G, Blamire A M, Rothman D L, et al., Nuclear magnetic resonance imaging and spectroscopy of human brain function, [J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(8): 3127-3133.
    [10] Siebner H R, Bergmann T O, Bestmann S, et al., Consensus paper: Combining transcranial stimulation with neuroimaging, [J]. Brain Stimulation, 2009, 2(2): 58-80.
    [11] Gazzaniga M S, Ivry R B, Mangun G R, Eds., Cognitive Neuroscience. W. W. Norton & Company, 2002, Pages 748.
    [12] Kanwisher N, McDermott J, Chun M M, The fusiform face area: a module in human extrastriate cortex specialized for face perception, [J]. Journal ofNeuroscience, 1997, 17(11): 4302-4311.
    [13] Tarr M J, Gauthier I, FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise, [J]. Nature Neuroscience, 2000, 3(8): 764-769.
    [14] Gauthier I, Tarr M J, Moylan J, et al., The fusiform "face area" is part of a network that processes faces at the individual level, [J]. Journal of Cognitive Neuroscience, 2000, 12(3): 495-504.
    [15] Haxby J V, Hoffman E A, Gobbini M I, The distributed human neural system for face perception, [J]. Trends in Cognitive Sciences, 2000, 4(6): 223-233.
    [16]冯晓源, MRI技术发展十年回顾, [J].继续医学教育, 2007, 21(25): 119-125.
    [17] Wright G A, Magnetic resonance imaging, [J]. Signal Processing Magazine, IEEE, 1997, 14(1): 56-66.
    [18] Buxton R B, Introduction to functional magnetic resonance imaging: principles and techniques, [M]. London: Cambridge University Press, 2002.
    [19] Ogawa S, Lee T M, Kay A R, et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation, [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(24): 9868-9872.
    [20] Huettel S A, song A W, McCarthy G, Functional Magnetic Resonance Imaging [M]. Sinauer Associates 2004.
    [21] Arthurs O J, Boniface S, How well do we understand the neural origins of the fMRI BOLD signal?, [J]. Trends in Neurosciences, 2002, 25(1): 27-31.
    [22] Desmond J E, Glover G H, Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses, [J]. Journal of Neuroscience Methods, 2002, 118(2): 115-128.
    [23] Visscher K M, Miezin F M, Kelly J E, et al., Mixed blocked/event-related designs separate transient and sustained activity in fMRI, [J]. NeuroImage, 2003, 19(4): 1694-708.
    [24] Talairach J, Tournoux P, Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging [M]. Thieme, 1988.
    [25] Evans A C, Collins D L, Mills S R, et al., "3D statistical neuroanatomical models from 305 MRI volumes," in Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record., 1993, pp. 1813-1817 vol.3.
    [26] K. J. Friston A P H, K. J. Worsley, J. P. Poline, C. D. Frith, R. S. J. Frackowiak,Statistical parametric maps in functional imaging: A general linear approach, [J]. Human Brain Mapping, 1994, 2(4): 189-210.
    [27] Boynton G M, Engel S A, Glover G H, et al., Linear systems analysis of functional magnetic resonance imaging in human V1, [J]. Journal of Neuroscience, 1996, 16(13): 4207-4221.
    [28] Friston K J, Fletcher P, Josephs O, et al., Event-related fMRI: characterizing differential responses, [J]. NeuroImage, 1998, 7(1): 30-40.
    [29] Kanwisher N, Domain specificity in face perception, [J]. Nature Neuroscience, 2000, 3(8): 759-763.
    [30] Kanwisher N, Yovel G, The fusiform face area: a cortical region specialized for the perception of faces, [J]. Philosophical Transactions of the Royal Society of London B Biological Sciences, 2006, 361(1476): 2109-2128.
    [31] Yovel G, Kanwisher N, Face perception: domain specific, not process specific, [J]. Neuron, 2004, 44(5): 889-898.
    [32] Xu Y, Liu J, Kanwisher N, The M170 is selective for faces, not for expertise, [J]. Neuropsychologia, 2005, 43(4): 588-597.
    [33] Tsao D Y, Freiwald W A, Tootell R B, et al., A cortical region consisting entirely of face-selective cells, [J]. Science, 2006, 311(5761): 670-674.
    [34] Downing P E, Chan A W, Peelen M V, et al., Domain specificity in visual cortex, [J]. Cerebral Cortex, 2006, 16(10): 1453-1461.
    [35] O'Toole A J, Jiang F, Abdi H, et al., Partially distributed representations of objects and faces in ventral temporal cortex, [J]. Journal of Cognitive Neuroscience, 2005, 17(4): 580-590.
    [36] Hanson S J, Matsuka T, Haxby J V, Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area?, [J]. NeuroImage, 2004, 23(1): 156-166.
    [37] Haxby J V, Gobbini M I, Furey M L, et al., Distributed and overlapping representations of faces and objects in ventral temporal cortex, [J]. Science, 2001, 293(5539): 2425-2430.
    [38] Downing P E, Jiang Y, Shuman M, et al., A cortical area selective for visual processing of the human body, [J]. Science, 2001, 293(5539): 2470-2473.
    [39] Farah M J, Rabinowitz C, Quinn G E, et al., EARLY COMMITMENT OF NEURAL SUBSTRATES FOR FACE RECOGNITION, [J]. Cognitive Neuropsychology, 2000, 17(1): 117 - 123.
    [40] Epstein R, Kanwisher N, A cortical representation of the local visualenvironment, [J]. Nature, 1998, 392(6676): 598-601.
    [41] Aguirre G K, Detre J A, Alsop D C, et al., The parahippocampus subserves topographical learning in man, [J]. Cerebral Cortex, 1996, 6(6): 823-829.
    [42] Tanaka J W, The entry point of face recognition: evidence for face expertise, [J]. Journal of Experimental Psychology General, 2001, 130(3): 534-543.
    [43] Tarr M J, Cheng Y D, Learning to see faces and objects, [J]. Trends in Cognitive Sciences, 2003, 7(1): 23-30.
    [44] Gauthier I, Skudlarski P, Gore J C, et al., Expertise for cars and birds recruits brain areas involved in face recognition, [J]. Nature Neuroscience, 2000, 3(2): 191-197.
    [45] Gauthier I, Tarr M J, Anderson A W, et al., Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects, [J]. Nature Neuroscience, 1999, 2(6): 568-573.
    [46] Robbins R, McKone E, No face-like processing for objects-of-expertise in three behavioural tasks, [J]. Cognition, 2007, 103(1): 34-79.
    [47] Carmel D, Bentin S, Domain specificity versus expertise: factors influencing distinct processing of faces, [J]. Cognition, 2002, 83(1): 1-29.
    [48] Ge L, Wang Z, McCleery J P, et al., Activation of face expertise and the inversion effect, [J]. Psychol Sci, 2006, 17(1): 12-16.
    [49]刘建刚,基于功能成像的面孔感知神经特异性和情绪加工神经机制的研究, [D].博士,自动化研究所,中国科学院,北京, 2007.
    [50] Liu J, Tian J, Li J, et al., Similarities in neural activations of face and Chinese character discrimination, [J]. Neuroreport, 2009, 20(3): 273-277.
    [51] Liu J, Tian J, Lee K, et al., A study on neural mechanism of face processing based on fMRI, [J]. Progress in Natural Science, 2008, 18(2): 201-207.
    [52] Cohen M S, Parametric analysis of fMRI data using linear systems methods, [J]. NeuroImage, 1997, 6(2): 93-103.
    [53] Ding G, Perry C, Peng D, et al., Neural mechanisms underlying semantic and orthographic processing in Chinese-English bilinguals, [J]. Neuroreport, 2003, 14(12): 1557-1562.
    [54] Kuo W J, Yeh T C, Lee J R, et al., Orthographic and phonological processing of Chinese characters: an fMRI study, [J]. NeuroImage, 2004, 21(4): 1721-1731.
    [55] Peng D L, Ding G S, Perry C, et al., fMRI evidence for the automatic phonological activation of briefly presented words, [J]. Brain Res Cogn Brain Res, 2004, 20(2): 156-164.
    [56] Dietz N A, Jones K M, Gareau L, et al., Phonological decoding involves left posterior fusiform gyrus, [J]. Human Brain Mapping, 2005, 26(2): 81-93.
    [57] McCandliss B D, Cohen L, Dehaene S, The visual word form area: expertise for reading in the fusiform gyrus, [J]. Trends in Cognitive Sciences, 2003, 7(7): 293-299.
    [58] Puce A, Allison T, Asgari M, et al., Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study, [J]. Journal of Neuroscience, 1996, 16(16): 5205-5215.
    [59] Gros H, Boulanouar K, Viallard G, et al., Event-related functional magnetic resonance imaging study of the extrastriate cortex response to a categorically ambiguous stimulus primed by letters and familiar geometric figures, [J]. Journal of Cerebral Blood Flow & Metabolism, 2001, 21(11): 1330-1341.
    [60] Cohen L, Dehaene S, Naccache L, et al., The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients, [J]. Brain, 2000, 123 ( Pt 2): 291-307.
    [61] Cohen L, Dehaene S, Specialization within the ventral stream: the case for the visual word form area, [J]. NeuroImage, 2004, 22(1): 466-476.
    [62] Marsolek C J, Burgund E D, Dissociable neural subsystems underlie visual working memory for abstract categories and specific exemplars, [J]. Cognitive Affective & Behavioral Neuroscience, 2008, 8(1): 17-24.
    [63] Rossion B, Dricot L, Devolder A, et al., Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus, [J]. Journal of Cognitive Neuroscience, 2000, 12(5): 793-802.
    [64] Koutstaal W, Wagner A D, Rotte M, et al., Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex, [J]. Neuropsychologia, 2001, 39(2): 184-199.
    [65] Yeh S L, Li J L, Role of structure and component in judgments of visual similarity of Chinese characters, [J]. Journal of Experimental Psychology Human Perception and Performance, 2002, 28(4): 933-947.
    [66] McNeil J E, Warrington E K, Prosopagnosia: a face-specific disorder, [J]. Q J Exp Psychol A, 1993, 46(1): 1-10.
    [67] Henke K, Schweinberger S R, Grigo A, et al., Specificity of face recognition: recognition of exemplars of non-face objects in prosopagnosia, [J]. Cortex, 1998, 34(2): 289-296.
    [68] Sergent J, Signoret J L, Varieties of functional deficits in prosopagnosia, [J].Cerebral Cortex, 1992, 2(5): 375-388.
    [69] Moscovitch M, Winocur G, Behrmann M, What is special about face recognition? nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition, [J]. J. Cognitive Neuroscience, 1997, 9(5): 555-604.
    [70] Fairhall S L, Ishai A, Effective connectivity within the distributed cortical network for face perception, [J]. Cerebral Cortex, 2007, 17(10): 2400-2406.
    [71] Gobbini M I, Haxby J V, Neural systems for recognition of familiar faces, [J]. Neuropsychologia, 2007, 45(1): 32-41.
    [72] Ishai A, Let's face it: It's a cortical network, [J]. NeuroImage, 2008, 40(2): 415-419.
    [73] Ishai A, Schmidt C F, Boesiger P, Face perception is mediated by a distributed cortical network, [J]. Brain Research Bulletin, 2005, 67(1-2): 87-93.
    [74] Kveraga K, Boshyan J, Bar M, Magnocellular projections as the trigger of top-down facilitation in recognition, [J]. Journal of Neuroscience, 2007, 27(48): 13232-13240.
    [75] Kveraga K, Ghuman A S, Bar M, Top-down predictions in the cognitive brain, [J]. Brain and Cognition, 2007, 65(2): 145-168.
    [76] Summerfield C, Egner T, Greene M, et al., Predictive codes for forthcoming perception in the frontal cortex, [J]. Science, 2006, 314(5803): 1311-1314.
    [77] Summerfield C, Egner T, Mangels J, et al., Mistaking a house for a face: neural correlates of misperception in healthy humans, [J]. Cerebral Cortex, 2006, 16(4): 500-508.
    [78] Zhang H, Liu J, Huber D E, et al., Detecting faces in pure noise images: a functional MRI study on top-down perception, [J]. Neuroreport, 2008, 19(2): 229-233.
    [79] Miller B T, D'Esposito M, Searching for "the top" in top-down control, [J]. Neuron, 2005, 48(4): 535-538.
    [80] Johnson M R, Mitchell K J, Raye C L, et al., A brief thought can modulate activity in extrastriate visual areas: Top-down effects of refreshing just-seen visual stimuli, [J]. NeuroImage, 2007, 37(1): 290-299.
    [81] Mechelli A, Price C J, Friston K J, et al., Where bottom-up meets top-down: neuronal interactions during perception and imagery, [J]. Cerebral Cortex, 2004, 14(11): 1256-1265.
    [82] Tong F, Nakayama K, Moscovitch M, et al., Response properties of the humanfusiform face area, [J]. Cognitive Neuropsychology, 2000, 17(1): 257 - 280.
    [83] He A G, Tan L H, Tang Y, et al., Modulation of neural connectivity during tongue movement and reading, [J]. Human Brain Mapping, 2003, 18(3): 222-232.
    [84] Liu Y, Gao J H, Liotti M, et al., Temporal dissociation of parallel processing in the human subcortical outputs, [J]. Nature, 1999, 400(6742): 364-367.
    [85] Koshino H, Carpenter P A, Minshew N J, et al., Functional connectivity in an fMRI working memory task in high-functioning autism, [J]. NeuroImage, 2005, 24(3): 810-821.
    [86] Friston K J, Frith C D, Liddle P F, et al., Functional connectivity: the principal-component analysis of large (PET) data sets, [J]. Journal of Cerebral Blood Flow & Metabolism, 1993, 13(1): 5-14.
    [87] McKeown M J, Makeig S, Brown G G, et al., Analysis of fMRI data by blind separation into independent spatial components, [J]. Human Brain Mapping, 1998, 6(3): 160-188.
    [88] Mitra P P, Ogawa S, Hu X, et al., The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging, [J]. Magnetic Resonance in Medicine, 1997, 37(4): 511-518.
    [89] Greicius M D, Krasnow B, Reiss A L, et al., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis, [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(1): 253-258.
    [90] Fransson P, Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis, [J]. Human Brain Mapping, 2005, 26(1): 15-29.
    [91] Allison T, Puce A, Spencer D D, et al., Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli, [J]. Cerebral Cortex, 1999, 9(5): 415-430.
    [92] Press W H, Teukolsky S A, Vetterling W T, et al., Numerical Recipes in C: The Art of Scientific Computing, [M]. Second ed.: Cambridge University Press, UK, 1992.
    [93] Rossion B, Schiltz C, Crommelinck M, The functionally defined right occipital and fusiform "face areas" discriminate novel from visually familiar faces, [J]. NeuroImage, 2003, 19(3): 877-883.
    [94] Kim J, Horwitz B, Investigating the neural basis for fMRI-based functionalconnectivity in a blocked design: application to interregional correlations and psycho-physiological interactions, [J]. Magn Reson Imaging, 2008, 26(5): 583-93.
    [95] Friston K J, Buechel C, Fink G R, et al., Psychophysiological and modulatory interactions in neuroimaging, [J]. NeuroImage, 1997, 6(3): 218-229.
    [96] Gitelman D R, Penny W D, Ashburner J, et al., Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution, [J]. NeuroImage, 2003, 19(1): 200-207.
    [97] Stephan K E, On the role of general system theory for functional neuroimaging, [J]. Journal of Anatomy, 2004, 205(6): 443-470.
    [98] Baumgartner T, Speck D, Wettstein D, et al., Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children, [J]. Front Hum Neurosci, 2008, 2: 8.
    [99] Rossion B, Caldara R, Seghier M, et al., A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing, [J]. Brain, 2003, 126(Pt 11): 2381-2395.
    [100] Steeves J K, Culham J C, Duchaine B C, et al., The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area, [J]. Neuropsychologia, 2006, 44(4): 594-609.
    [101] Ishai A, Haxby J V, Ungerleider L G, Visual imagery of famous faces: effects of memory and attention revealed by fMRI, [J]. NeuroImage, 2002, 17(4): 1729-1741.
    [102] Ishai A, Ungerleider L G, Haxby J V, Distributed neural systems for the generation of visual images, [J]. Neuron, 2000, 28(3): 979-990.
    [103] Leveroni C L, Seidenberg M, Mayer A R, et al., Neural systems underlying the recognition of familiar and newly learned faces, [J]. Journal of Neuroscience, 2000, 20(2): 878-886.
    [104] Haxby J V, Ungerleider L G, Horwitz B, et al., Face encoding and recognition in the human brain, [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(2): 922-7.
    [105] Ranganath C, D'Esposito M, Medial temporal lobe activity associated with active maintenance of novel information, [J]. Neuron, 2001, 31(5): 865-73.
    [106] Breiter H C, Etcoff N L, Whalen P J, et al., Response and habituation of the human amygdala during visual processing of facial expression, [J]. Neuron,1996, 17(5): 875-887.
    [107] Fitzgerald D A, Angstadt M, Jelsone L M, et al., Beyond threat: amygdala reactivity across multiple expressions of facial affect, [J]. NeuroImage, 2006, 30(4): 1441-1448.
    [108] Ishai A, Pessoa L, Bikle P C, et al., Repetition suppression of faces is modulated by emotion, [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9827-9832.
    [109] Sander D, Grafman J, Zalla T, The human amygdala: an evolved system for relevance detection, [J]. Reviews in the Neurosciences, 2003, 14(4): 303-16.
    [110] Ishai A, Sex, beauty and the orbitofrontal cortex, [J]. International Journal of Psychophysiology, 2007, 63(2): 181-185.
    [111] Kranz F, Ishai A, Face perception is modulated by sexual preference, [J]. Current Biology, 2006, 16(1): 63-68.
    [112] O'Doherty J, Kringelbach M L, Rolls E T, et al., Abstract reward and punishment representations in the human orbitofrontal cortex, [J]. Nature Neuroscience, 2001, 4(1): 95-102.
    [113] Bar M, A cortical mechanism for triggering top-down facilitation in visual object recognition, [J]. Journal of Cognitive Neuroscience, 2003, 15(4): 600-609.
    [114] Bar M, Kassam K S, Ghuman A S, et al., Top-down facilitation of visual recognition, [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(2): 449-454.
    [115] Bush G, Vogt B A, Holmes J, et al., Dorsal anterior cingulate cortex: a role in reward-based decision making, [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 523-528.
    [116] Kennerley S W, Walton M E, Behrens T E, et al., Optimal decision making and the anterior cingulate cortex, [J]. Nature Neuroscience, 2006, 9(7): 940-947.
    [117] Walton M E, Croxson P L, Behrens T E, et al., Adaptive decision making and value in the anterior cingulate cortex, [J]. NeuroImage, 2007, 36 Suppl 2(T1): 42-54.
    [118] Owen A M, McMillan K M, Laird A R, et al., N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies, [J]. Human Brain Mapping, 2005, 25(1): 46-59.
    [119] Wager T D, Smith E E, Neuroimaging studies of working memory: a meta-analysis, [J]. Cognitive Affective & Behavioral Neuroscience, 2003, 3(4):255-274.
    [120] Cabeza R, Dolcos F, Prince S E, et al., Attention-related activity during episodic memory retrieval: a cross-function fMRI study, [J]. Neuropsychologia, 2003, 41(3): 390-399.
    [121] Kanwisher N, Wojciulik E, Visual attention: insights from brain imaging, [J]. Nature Reviews Neuroscience, 2000, 1(2): 91-100.
    [122] Andrews T J, Schluppeck D, Neural responses to Mooney images reveal a modular representation of faces in human visual cortex, [J]. NeuroImage, 2004, 21(1): 91-98.
    [123] Hasson U, Hendler T, Ben Bashat D, et al., Vase or face? A neural correlate of shape-selective grouping processes in the human brain, [J]. Journal of Cognitive Neuroscience, 2001, 13(6): 744-753.
    [124] Gosselin F, Schyns P G, Bubbles: a technique to reveal the use of information in recognition tasks, [J]. Vision Research, 2001, 41(17): 2261-2271.
    [125] Wild H A, Busey T A, Seeing faces in the noise: stochastic activity in perceptual regions of the brain may influence the perception of ambiguous stimuli, [J]. Psychonomic Bulletin & Review, 2004, 11(3): 475-481.
    [126] Li J, Liu J, Liang J, et al., A distributed neural system for top-down face processing, [J]. Neuroscience Letters, 2009, 451(1): 6-10.
    [127] Friston K J, Harrison L, Penny W, Dynamic causal modelling, [J]. NeuroImage, 2003, 19(4): 1273-1302.
    [128] Zhang H, Tian J, Liu J, et al., Intrinsically organized network for face perception during the resting state, [J]. Neuroscience Letters, 2009, 454(1): 1-5.
    [129] Frey S, Kostopoulos P, Petrides M, Orbitofrontal contribution to auditory encoding, [J]. NeuroImage, 2004, 22(3): 1384-1389.
    [130] Frey S, Petrides M, Orbitofrontal cortex: A key prefrontal region for encoding information, [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8723-8727.
    [131] Bar M, The proactive brain: memory for predictions, [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1521): 1235-1243.
    [132] Johnson M H, Subcortical face processing, [J]. Nature Reviews Neuroscience, 2005, 6(10): 766-774.
    [133] Corbetta M, Shulman G L, Control of goal-directed and stimulus-driven attention in the brain, [J]. Nature Reviews Neuroscience, 2002, 3(3): 201-215.
    [134] Corbetta M, Patel G, Shulman G L, The reorienting system of the human brain: from environment to theory of mind, [J]. Neuron, 2008, 58(3): 306-324.
    [135] Giesbrecht B, Woldorff M G, Song A W, et al., Neural mechanisms of top-down control during spatial and feature attention, [J]. NeuroImage, 2003, 19(3): 496-512.
    [136] Hopfinger J B, Buonocore M H, Mangun G R, The neural mechanisms of top-down attentional control, [J]. Nature Neuroscience, 2000, 3(3): 284-291.
    [137] Schenkluhn B, Ruff C C, Heinen K, et al., Parietal stimulation decouples spatial and feature-based attention, [J]. Journal of Neuroscience, 2008, 28(44): 11106-11110.
    [138] Silvanto J, Muggleton N, Lavie N, et al., The perceptual and functional consequences of parietal top-down modulation on the visual cortex, [J]. Cerebral Cortex, 2009, 19(2): 327-330.
    [139] Baddeley A, Recent developments in working memory, [J]. Current Opinion in Neurobiology, 1998, 8(2): 234-238.
    [140] Wagner A D, Shannon B J, Kahn I, et al., Parietal lobe contributions to episodic memory retrieval, [J]. Trends in Cognitive Sciences, 2005, 9(9): 445-453.
    [141] Constantinidis C, Procyk E, The primate working memory networks, [J]. Cognitive Affective & Behavioral Neuroscience, 2004, 4(4): 444-465.
    [142] Rawley J B, Constantinidis C, Neural correlates of learning and working memory in the primate posterior parietal cortex, [J]. Neurobiology of Learning and Memory, 2009, 91(2): 129-138.
    [143] Stephan K E, Kasper L, Harrison L M, et al., Nonlinear dynamic causal models for fMRI, [J]. NeuroImage, 2008, 42(2): 649-662.
    [144] Penny W D, Stephan K E, Mechelli A, et al., Comparing dynamic causal models, [J]. NeuroImage, 2004, 22(3): 1157-1172.
    [145] Frackowiak R S J, Ashburner J T, Penny W D, et al., Eds., Human Brain Function. London: Academic Press, 2004, Pages 1144.
    [146] McIntosh A R, Towards a network theory of cognition, [J]. Neural Networks, 2000, 13(8-9): 861-870.
    [147] Friston K, Beyond phrenology: what can neuroimaging tell us about distributed circuitry?, [J]. Annual Review of Neuroscience, 2002, 25: 221-250.
    [148] Horwitz B, Tagamets M A, McIntosh A R, Neural modeling, functional brain imaging, and cognition, [J]. Trends in Cognitive Sciences, 1999, 3(3): 91-98.
    [149] McIntosh A R, Gonzalez-Lima F, Structural equation modeling and itsapplication to network analysis in functional brain imaging, [J]. Human Brain Mapping, 1994, 2(1-2): 2-22.
    [150] Buchel C, Friston K J, Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI, [J]. Cerebral Cortex, 1997, 7(8): 768-778.
    [151] Harrison L, Penny W D, Friston K, Multivariate autoregressive modeling of fMRI time series, [J]. NeuroImage, 2003, 19(4): 1477-1491.
    [152] Roebroeck A, Formisano E, Goebel R, Mapping directed influence over the brain using Granger causality and fMRI, [J]. NeuroImage, 2005, 25(1): 230-242.
    [153] Kiebel S J, Kloppel S, Weiskopf N, et al., Dynamic causal modeling: a generative model of slice timing in fMRI, [J]. NeuroImage, 2007, 34(4): 1487-1496.
    [154] Bitan T, Booth J R, Choy J, et al., Shifts of effective connectivity within a language network during rhyming and spelling, [J]. Journal of Neuroscience, 2005, 25(22): 5397-5403.
    [155] Friston K J, Glaser D E, Henson R N, et al., Classical and Bayesian inference in neuroimaging: applications, [J]. NeuroImage, 2002, 16(2): 484-512.
    [156] Acs F, Greenlee M W, Connectivity modulation of early visual processing areas during covert and overt tracking tasks, [J]. NeuroImage, 2008, 41(2): 380-388.
    [157] Booth J R, Mehdiratta N, Burman D D, et al., Developmental increases in effective connectivity to brain regions involved in phonological processing during tasks with orthographic demands, [J]. Brain Research, 2008, 1189: 78-89.
    [158] Stephan K E, Penny W D, Moran R J, et al., Ten simple rules for dynamic causal modeling, [J]. NeuroImage, 2010, 49(4): 3099-3109.
    [159] Raftery A E, Bayesian model selection in social research, [J]. Sociological methodology, 1995, 25: 111-163.
    [160] Stephan K E, Weiskopf N, Drysdale P M, et al., Comparing hemodynamic models with DCM, [J]. NeuroImage, 2007, 38(3): 387-401.
    [161] Ethofer T, Anders S, Erb M, et al., Cerebral pathways in processing of affective prosody: a dynamic causal modeling study, [J]. NeuroImage, 2006, 30(2): 580-7.
    [162] Garrido M I, Kilner J M, Kiebel S J, et al., Dynamic causal modelling of evoked potentials: a reproducibility study, [J]. NeuroImage, 2007, 36(3):571-580.
    [163] Grill-Spector K, Knouf N, Kanwisher N, The fusiform face area subserves face perception, not generic within-category identification, [J]. Nature Neuroscience, 2004, 7(5): 555-562.
    [164] Bisley J W, Goldberg M E, Neural correlates of attention and distractibility in the lateral intraparietal area, [J]. Journal of Neurophysiology, 2006, 95(3): 1696-1717.
    [165] Calder A J, Young A W, Understanding the recognition of facial identity and facial expression, [J]. Nature Reviews Neuroscience, 2005, 6(8): 641-651.
    [166] Pitcher D, Walsh V, Yovel G, et al., TMS evidence for the involvement of the right occipital face area in early face processing, [J]. Current Biology, 2007, 17(18): 1568-1573.
    [167] Plailly J, Howard J D, Gitelman D R, et al., Attention to odor modulates thalamocortical connectivity in the human brain, [J]. Journal of Neuroscience, 2008, 28(20): 5257-5267.
    [168] Rotshtein P, Henson R N, Treves A, et al., Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain, [J]. Nature Neuroscience, 2005, 8(1): 107-113.
    [169] Schiltz C, Rossion B, Faces are represented holistically in the human occipito-temporal cortex, [J]. NeuroImage, 2006, 32(3): 1385-1394.
    [170] Bruce V, Influences of familiarity on the processing of faces, [J]. Perception, 1986, 15(4): 387-397.
    [171] Breen N, Caine D, Coltheart M, Models of Face Recognition and Delusional Misidentification: A Critical Review, [J]. Cognitive Neuropsychology, 2000, 17: 55-71.
    [172] Ellis H D, Lewis M B, Capgras delusion: a window on face recognition, [J]. Trends in Cognitive Sciences, 2001, 5(4): 149-156.
    [173] de Gelder B, Frissen I, Barton J, et al., A modulatory role for facial expressions in prosopagnosia, [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22): 13105-13110.
    [174] Bruce V, Young A, Understanding face recognition, [J]. British Journal of Psychology, 1986, 77(Pt 3): 305-327.
    [175] Puce A, Allison T, Bentin S, et al., Temporal cortex activation in humans viewing eye and mouth movements, [J]. Journal of Neuroscience, 1998, 18(6): 2188-2199.
    [176] Wicker B, Michel F, Henaff M A, et al., Brain regions involved in the perception of gaze: a PET study, [J]. NeuroImage, 1998, 8(2): 221-227.
    [177] Allison T, Puce A, McCarthy G, Social perception from visual cues: role of the STS region, [J]. Trends in Cognitive Sciences, 2000, 4(7): 267-278.
    [178] Hoffman E A, Haxby J V, Distinct representations of eye gaze and identity in the distributed human neural system for face perception, [J]. Nature Neuroscience, 2000, 3(1): 80-84.
    [179] Hooker C I, Paller K A, Gitelman D R, et al., Brain networks for analyzing eye gaze, [J]. Cognitive Brain Research, 2003, 17(2): 406-418.
    [180] Pelphrey K A, Singerman J D, Allison T, et al., Brain activation evoked by perception of gaze shifts: the influence of context, [J]. Neuropsychologia, 2003, 41(2): 156-170.
    [181] Bristow D, Rees G, Frith C D, Social interaction modifies neural response to gaze shifts, [J]. Soc Cogn Affect Neurosci, 2007, 2(1): 52-61.
    [182] Adams R B, Jr., Gordon H L, Baird A A, et al., Effects of gaze on amygdala sensitivity to anger and fear faces, [J]. Science, 2003, 300(5625): 1536.
    [183] Grosbras M H, Laird A R, Paus T, Cortical regions involved in eye movements, shifts of attention, and gaze perception, [J]. Human Brain Mapping, 2005, 25(1): 140-154.
    [184] Itier R J, Batty M, Neural bases of eye and gaze processing: the core of social cognition, [J]. Neuroscience & Biobehavioral Reviews, 2009, 33(6): 843-863.
    [185] Nummenmaa L, Calder A J, Neural mechanisms of social attention, [J]. Trends in Cognitive Sciences, 2009, 13(3): 135-143.
    [186] Burton A M, Young A W, Bruce V, et al., Understanding covert recognition, [J]. Cognition, 1991, 39(2): 129-166.
    [187] Ellis H D, Delusions: A suitable case for imaging?, [J]. International Journal of Psychophysiology, 2007, 63(2): 146-151.
    [188] de Gelder B, Vroomen J, Pourtois G, et al., Non-conscious recognition of affect in the absence of striate cortex, [J]. Neuroreport, 1999, 10(18): 3759-3763.
    [189] Morris J S, DeGelder B, Weiskrantz L, et al., Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field, [J]. Brain, 2001, 124(Pt 6): 1241-1252.
    [190] Sorger B, Goebel R, Schiltz C, et al., Understanding the functional neuroanatomy of acquired prosopagnosia, [J]. NeuroImage, 2007, 35(2): 836-852.
    [191] Rossion B, Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia, [J]. NeuroImage, 2008, 40(2): 423-426.
    [192] Pasley B N, Mayes L C, Schultz R T, Subcortical discrimination of unperceived objects during binocular rivalry, [J]. Neuron, 2004, 42(1): 163-172.
    [193] Williams M A, Morris A P, McGlone F, et al., Amygdala responses to fearful and happy facial expressions under conditions of binocular suppression, [J]. Journal of Neuroscience, 2004, 24(12): 2898-2904.
    [194] Grill-Spector K, Kushnir T, Hendler T, et al., The dynamics of object-selective activation correlate with recognition performance in humans, [J]. Nature Neuroscience, 2000, 3(8): 837-843.
    [195] Bar M, Tootell R B H, Schacter D L, et al., Cortical Mechanisms Specific to Explicit Visual Object Recognition, [J]. Neuron, 2001, 29(2): 529-535.
    [196] Pessoa L, To what extent are emotional visual stimuli processed without attention and awareness?, [J]. Current Opinion in Neurobiology, 2005, 15(2): 188-196.
    [197] Jones E G, Burton H, A projection from the medial pulvinar to the amygdala in primates, [J]. Brain Research, 1976, 104(1): 142-147.
    [198] Doron N N, Ledoux J E, Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat, [J]. Journal of Comparative Neurology, 1999, 412(3): 383-409.
    [199] Linke R, De Lima A D, Schwegler H, et al., Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: possible substrates of a subcortical visual pathway to the amygdala, [J]. Journal of Comparative Neurology, 1999, 403(2): 158-170.
    [200] Shi C, Davis M, Visual pathways involved in fear conditioning measured with fear-potentiated startle: behavioral and anatomic studies, [J]. Journal of Neuroscience, 2001, 21(24): 9844-9855.
    [201] Sewards T V, Sewards M A, Innate visual object recognition in vertebrates: some proposed pathways and mechanisms, [J]. Comp Biochem Physiol A Mol Integr Physiol, 2002, 132(4): 861-891.
    [202] Horn G, Pathways of the past: the imprint of memory, [J]. Nature Reviews Neuroscience, 2004, 5(2): 108-120.
    [203] Romanski L M, LeDoux J E, Bilateral destruction of neocortical and perirhinal projection targets of the acoustic thalamus does not disrupt auditory fear conditioning, [J]. Neuroscience Letters, 1992, 142(2): 228-232.
    [204] Critchley H, Daly E, Phillips M, et al., Explicit and implicit neural mechanisms for processing of social information from facial expressions: a functional magnetic resonance imaging study, [J]. Human Brain Mapping, 2000, 9(2): 93-105.
    [205] Halgren E, Raij T, Marinkovic K, et al., Cognitive response profile of the human fusiform face area as determined by MEG, [J]. Cerebral Cortex, 2000, 10(1): 69-81.
    [206] Mnatsakanian E V, Tarkka I M, Familiar-face recognition and comparison: source analysis of scalp-recorded event-related potentials, [J]. Clinical Neurophysiology, 2004, 115(4): 880-886.
    [207] Eimer M, McCarthy R A, Prosopagnosia and structural encoding of faces: evidence from event-related potentials, [J]. Neuroreport, 1999, 10(2): 255-259.
    [208] Eimer M, Event-related brain potentials distinguish processing stages involved in face perception and recognition, [J]. Clinical Neurophysiology, 2000, 111(4): 694-705.
    [209] Bentin S, Sagiv N, Mecklinger A, et al., Priming visual face-processing mechanisms: electrophysiological evidence, [J]. Psychol Sci, 2002, 13(2): 190-193.
    [210] Latinus M, Taylor M J, Face processing stages: impact of difficulty and the separation of effects, [J]. Brain Research, 2006, 1123(1): 179-187.
    [211] Adolphs R, Neural systems for recognizing emotion, [J]. Current Opinion in Neurobiology, 2002, 12(2): 169-177.
    [212] Eimer M, Holmes A, An ERP study on the time course of emotional face processing, [J]. Neuroreport, 2002, 13(4): 427-431.
    [213] Rossion B, Joyce C A, Cottrell G W, et al., Early lateralization and orientation tuning for face, word, and object processing in the visual cortex, [J]. NeuroImage, 2003, 20(3): 1609-1624.
    [214] Ashley V, Vuilleumier P, Swick D, Time course and specificity of event-related potentials to emotional expressions, [J]. Neuroreport, 2004, 15(1): 211-216.
    [215] Wong T K, Fung P C, McAlonan G M, et al., Spatiotemporal dipole source localization of face processing ERPs in adolescents: a preliminary study, [J]. Behav Brain Funct, 2009, 5: 16.
    [216] Halit H, de Haan M, Johnson M H, Modulation of event-related potentials by prototypical and atypical faces, [J]. Neuroreport, 2000, 11(9): 1871-1875.
    [217] Itier R J, Taylor M J, Inversion and contrast polarity reversal affect bothencoding and recognition processes of unfamiliar faces: a repetition study using ERPs, [J]. NeuroImage, 2002, 15(2): 353-372.
    [218] Latinus M, Taylor M J, Holistic processing of faces: learning effects with Mooney faces, [J]. Journal of Cognitive Neuroscience, 2005, 17(8): 1316-1327.
    [219] Kotsoni E, Csibra G, Mareschal D, et al., Electrophysiological correlates of common-onset visual masking, [J]. Neuropsychologia, 2007, 45(10): 2285-2293.
    [220] Mercure E, Dick F, Johnson M H, Featural and configural face processing differentially modulate ERP components, [J]. Brain Research, 2008,
    [221] Morita Y, Morita K, Yamamoto M, et al., Effects of facial affect recognition on the auditory P300 in healthy subjects, [J]. Neuroscience Research, 2001, 41(1): 89-95.
    [222] Campanella S, Gaspard C, Debatisse D, et al., Discrimination of emotional facial expressions in a visual oddball task: an ERP study, [J]. Biological Psychology, 2002, 59(3): 171-186.
    [223] Eger E, Jedynak A, Iwaki T, et al., Rapid extraction of emotional expression: evidence from evoked potential fields during brief presentation of face stimuli, [J]. Neuropsychologia, 2003, 41(7): 808-817.
    [224] Curran T, Tucker D M, Kutas M, et al., Topography of the N400: brain electrical activity reflecting semantic expectancy, [J]. Electroencephalogr Clin Neurophysiol, 1993, 88(3): 188-209.
    [225] Caldara R, Jermann F, Arango G L, et al., Is the N400 category-specific? A face and language processing study, [J]. Neuroreport, 2004, 15(17): 2589-2593.
    [226] Balconi M, Pozzoli U, Morphed facial expressions elicited a N400 ERP effect: a domain-specific semantic module?, [J]. Scand J Psychol, 2005, 46(6): 467-474.
    [227] Barbeau E J, Taylor M J, Regis J, et al., Spatio temporal dynamics of face recognition, [J]. Cerebral Cortex, 2008, 18(5): 997-1009.
    [228] Batty M, Taylor M J, Early processing of the six basic facial emotional expressions, [J]. Brain Res Cogn Brain Res, 2003, 17(3): 613-620.
    [229] Liu J, Higuchi M, Marantz A, et al., The selectivity of the occipitotemporal M170 for faces, [J]. Neuroreport, 2000, 11(2): 337-341.
    [230] Pizzagalli D A, Lehmann D, Hendrick A M, et al., Affective judgments of faces modulate early activity (approximately 160 ms) within the fusiform gyri, [J]. NeuroImage, 2002, 16(3 Pt 1): 663-677.
    [231] Itier R J, Taylor M J, Source analysis of the N170 to faces and objects, [J]. Neuroreport, 2004, 15(8): 1261-1265.
    [232] Bentin S, Deouell L Y, STRUCTURAL ENCODING AND IDENTIFICATION IN FACE PROCESSING: ERP EVIDENCE FOR SEPARATE MECHANISMS, [J]. Cognitive Neuropsychology, 2000, 17: 35-55.
    [233] Luo Q, Holroyd T, Jones M, et al., Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG, [J]. NeuroImage, 2007, 34(2): 839-847.
    [234] Vuilleumier P, Armony J L, Driver J, et al., Distinct spatial frequency sensitivities for processing faces and emotional expressions, [J]. Nature Neuroscience, 2003, 6(6): 624-631.
    [235] Vuilleumier P, Richardson M P, Armony J L, et al., Distant influences of amygdala lesion on visual cortical activation during emotional face processing, [J]. Nature Neuroscience, 2004, 7(11): 1271-1278.
    [236] Bauer R M, Autonomic recognition of names and faces in prosopagnosia: a neuropsychological application of the Guilty Knowledge Test, [J]. Neuropsychologia, 1984, 22(4): 457-469.
    [237] Tranel D, Damasio A R, Damasio H, Intact recognition of facial expression, gender, and age in patients with impaired recognition of face identity, [J]. Neurology, 1988, 38(5): 690.
    [238] De Haan E H, Bauer R M, Greve K W, Behavioural and physiological evidence for covert face recognition in a prosopagnosic patient, [J]. Cortex, 1992, 28(1): 77-95.
    [239] Ellis H D, Young A W, Accounting for delusional misidentifications, [J]. British Journal of Psychiatry, 1990, 157: 239-248.
    [240] Hirstein W, Ramachandran V S, Capgras syndrome: a novel probe for understanding the neural representation of the identity and familiarity of persons, [J]. Proceedings Royal Society of London. Biological sciences, 1997, 264(1380): 437-444.
    [241] Ellis H D, Young A W, Quayle A H, et al., Reduced autonomic responses to faces in Capgras delusion, [J]. Proceedings Royal Society of London. Biological sciences, 1997, 264(1384): 1085-1092.
    [242] Johnson M K, Kim J K, Risse G, Do alcoholic Korsakoff's syndrome patients acquire affective reactions?, [J]. Journal of Experimental Psychology Learning Memory and Cognition, 1985, 11(1): 22-36.
    [243] Tranel D, Damasio A R, The covert learning of affective valence does not require structures in hippocampal system or amygdala, [J]. Journal of Cognitive Neuroscience, 1993, 5(1): 79-88.
    [244] Hefter R L, Manoach D S, Barton J J, Perception of facial expression and facial identity in subjects with social developmental disorders, [J]. Neurology, 2005, 65(10): 1620-1625.
    [245] Campbell J, Burke D, Evidence that identity-dependent and identity-independent neural populations are recruited in the perception of five basic emotional facial expressions, [J]. Vision Research, 2009, 49(12): 1532-1540.
    [246] Ellamil M, Susskind J M, Anderson A K, Examinations of identity invariance in facial expression adaptation, [J]. Cognitive Affective & Behavioral Neuroscience, 2008, 8(3): 273-281.
    [247] Dobel C, Geiger L, Bruchmann M, et al., On the interplay between familiarity and emotional expression in face perception, [J]. Psychological Research-Psychologische Forschung, 2008, 72(5): 580-586.
    [248] Fox C J, Moon S Y, Iaria G, et al., The correlates of subjective perception of identity and expression in the face network: An fMRI adaptation study, [J]. NeuroImage, 2009, 44(2): 569-580.
    [249] Ganel T, Goshen-Gottstein Y, Effects of familiarity on the perceptual integrality of the identity and expression of faces: the parallel-route hypothesis revisited, [J]. Journal of Experimental Psychology Human Perception and Performance, 2004, 30(3): 583-597.
    [250] Puce A, Allison T, Gore J C, et al., Face-sensitive regions in human extrastriate cortex studied by functional MRI, [J]. Journal of Neurophysiology, 1995, 74(3): 1192-1199.
    [251] Andrews T J, Ewbank M P, Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe, [J]. NeuroImage, 2004, 23(3): 905-913.
    [252] Winston J S, Henson R N, Fine-Goulden M R, et al., fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception, [J]. Journal of Neurophysiology, 2004, 92(3): 1830-1839.
    [253] Loffler G, Yourganov G, Wilkinson F, et al., fMRI evidence for the neural representation of faces, [J]. Nature Neuroscience, 2005, 8(10): 1386-1390.
    [254] Gilaie-Dotan S, Malach R, Sub-exemplar shape tuning in human face-relatedareas, [J]. Cerebral Cortex, 2007, 17(2): 325-338.
    [255] Damasio A R, Damasio H, Van Hoesen G W, Prosopagnosia: anatomic basis and behavioral mechanisms, [J]. Neurology, 1982, 32(4): 331-341.
    [256] Barton J J, Press D Z, Keenan J P, et al., Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia, [J]. Neurology, 2002, 58(1): 71-78.
    [257] Hadjikhani N, de Gelder B, Neural basis of prosopagnosia: an fMRI study, [J]. Human Brain Mapping, 2002, 16(3): 176-182.
    [258] Schiltz C, Sorger B, Caldara R, et al., Impaired face discrimination in acquired prosopagnosia is associated with abnormal response to individual faces in the right middle fusiform gyrus, [J]. Cerebral Cortex, 2006, 16(4): 574-586.
    [259] Sergent J, Ohta S, MacDonald B, Functional neuroanatomy of face and object processing. A positron emission tomography study, [J]. Brain, 1992, 115 Pt 1: 15-36.
    [260] Kuskowski M A, Pardo J V, The role of the fusiform gyrus in successful encoding of face stimuli, [J]. NeuroImage, 1999, 9(6 Pt 1): 599-610.
    [261] Nakamura K, Kawashima R, Sato N, et al., Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study, [J]. Brain, 2000, 123 ( Pt 9): 1903-1912.
    [262] Sugiura M, Kawashima R, Nakamura K, et al., Activation reduction in anterior temporal cortices during repeated recognition of faces of personal acquaintances, [J]. NeuroImage, 2001, 13(5): 877-890.
    [263] Tsukiura T, Mochizuki-Kawai H, Fujii T, Dissociable roles of the bilateral anterior temporal lobe in face-name associations: an event-related fMRI study, [J]. NeuroImage, 2006, 30(2): 617-626.
    [264] Gainotti G, Barbier A, Marra C, Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy, [J]. Brain, 2003, 126(Pt 4): 792-803.
    [265] Bukach C M, Bub D N, Gauthier I, et al., Perceptual expertise effects are not all or none: spatially limited perceptual expertise for faces in a case of prosopagnosia, [J]. Journal of Cognitive Neuroscience, 2006, 18(1): 48-63.
    [266] Kriegeskorte N, Formisano E, Sorger B, et al., Individual faces elicit distinct response patterns in human anterior temporal cortex, [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51): 20600-20605.
    [267] Fox C J, Iaria G, Barton J J, Defining the face processing network: Optimization of the functional localizer in fMRI, [J]. Human Brain Mapping, 2008, 30(5): 1637-1651.
    [268] Thomas C, Avidan G, Humphreys K, et al., Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia, [J]. Nature Neuroscience, 2009, 12(1): 29-31.
    [269] Catani M, Jones D K, Donato R, et al., Occipito-temporal connections in the human brain, [J]. Brain, 2003, 126(Pt 9): 2093-2107.
    [270] Vuilleumier P, How brains beware: neural mechanisms of emotional attention, [J]. Trends in Cognitive Sciences, 2005, 9(12): 585-594.
    [271] Wicker B, Keysers C, Plailly J, et al., Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust, [J]. Neuron, 2003, 40(3): 655-664.
    [272] Critchley H D, Wiens S, Rotshtein P, et al., Neural systems supporting interoceptive awareness, [J]. Nature Neuroscience, 2004, 7(2): 189-195.
    [273] Singer T, Critchley H D, Preuschoff K, A common role of insula in feelings, empathy and uncertainty, [J]. Trends in Cognitive Sciences, 2009, 13(8): 334-340.
    [274] Saxe R, Xiao D K, Kovacs G, et al., A region of right posterior superior temporal sulcus responds to observed intentional actions, [J]. Neuropsychologia, 2004, 42(11): 1435-1446.
    [275] Calder A J, Beaver J D, Winston J S, et al., Separate coding of different gaze directions in the superior temporal sulcus and inferior parietal lobule, [J]. Current Biology, 2007, 17(1): 20-25.
    [276] Carr L, Iacoboni M, Dubeau M C, et al., Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas, [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5497-5502.
    [277] Schulte-Ruther M, Markowitsch H J, Fink G R, et al., Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy, [J]. Journal of Cognitive Neuroscience, 2007, 19(8): 1354-1372.
    [278] Jabbi M, Keysers C, Inferior frontal gyrus activity triggers anterior insula response to emotional facial expressions, [J]. Emotion, 2008, 8(6): 775-780.
    [279] Seitz R J, Schafer R, Scherfeld D, et al., Valuating other people's emotionalface expression: a combined functional magnetic resonance imaging and electroencephalography study, [J]. Neuroscience, 2008, 152(3): 713-722.
    [280] Shamay-Tsoory S G, Aharon-Peretz J, Perry D, Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions, [J]. Brain, 2009, 132(Pt 3): 617-627.
    [281] Wicker B, Fonlupt P, Hubert B, et al., Abnormal cerebral effective connectivity during explicit emotional processing in adults with autism spectrum disorder, [J]. Soc Cogn Affect Neurosci, 2008, 3(2): 135-143.
    [282] Aharon I, Etcoff N, Ariely D, et al., Beautiful faces have variable reward value: fMRI and behavioral evidence, [J]. Neuron, 2001, 32(3): 537-551.
    [283] O'Doherty J, Winston J, Critchley H, et al., Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness, [J]. Neuropsychologia, 2003, 41(2): 147-155.
    [284] LeDoux J E, Emotion circuits in the brain, [J]. Annual Review of Neuroscience, 2000, 23: 155-184.
    [285] Ward R, Danziger S, Bamford S, Response to visual threat following damage to the pulvinar, [J]. Current Biology, 2005, 15(6): 571-3.
    [286] Williams L M, Das P, Liddell B J, et al., Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear, [J]. Journal of Neuroscience, 2006, 26(36): 9264-9271.
    [287] Frith U, Happe F, Autism spectrum disorder, [J]. Current Biology, 2005, 15(19): R786-790.
    [288] Fecteau S, Lepage J-F, Théoret H, Autism Spectrum Disorder: Seeing Is Not Understanding, [J]. Current Biology, 2006, 16(4): R131-R133.
    [289] Hughes J R, Autism: the first firm finding = underconnectivity?, [J]. Epilepsy Behav, 2007, 11(1): 20-24.
    [290] Fox C J, Iaria G, Barton J J, Disconnection in prosopagnosia and face processing, [J]. Cortex, 2008, 44(8): 996-1009.
    [291] Kleinhans N M, Richards T, Sterling L, et al., Abnormal functional connectivity in autism spectrum disorders during face processing, [J]. Brain, 2008, 131(Pt 4): 1000-1012.
    [292] Conturo T E, Williams D L, Smith C D, et al., Neuronal fiber pathway abnormalities in autism: an initial MRI diffusion tensor tracking study of hippocampo-fusiform and amygdalo-fusiform pathways, [J]. Journal of theInternational Neuropsychological Society, 2008, 14(6): 933-946.
    [293] Smith C D, Lori N F, Akbudak E, et al., MRI diffusion tensor tracking of a new amygdalo-fusiform and hippocampo-fusiform pathway system in humans, [J]. Journal of Magnetic Resonance Imaging, 2009, 29(6): 1248-1261.
    [294] Rosenbaum R S, Furey M L, Horwitz B, et al., Altered connectivity among emotion-related brain regions during short-term memory in Alzheimer's disease, [J]. Neurobiology of Aging, 2008, 31(5): 780-786.
    [295] Bleich-Cohen M, Strous R D, Even R, et al., Diminished neural sensitivity to irregular facial expression in first-episode schizophrenia, [J]. Human Brain Mapping, 2009, 30(8): 2606-2616.
    [296] Liang X, Zebrowitz L A, Aharon I, Effective connectivity between amygdala and orbitofrontal cortex differentiates the perception of facial expressions, [J]. Social Neuroscience, 2009, 4(2): 185-196.
    [297] Rich B A, Fromm S J, Berghorst L H, et al., Neural connectivity in children with bipolar disorder: impairment in the face emotion processing circuit, [J]. Journal of child psychology and psychiatry, and allied disciplines, 2008, 49(1): 88-96.
    [298] Almeida J R, Versace A, Mechelli A, et al., Abnormal Amygdala-Prefrontal Effective Connectivity to Happy Faces Differentiates Bipolar from Major Depression, [J]. Biological Psychiatry, 2009,
    [299] Lacruz M E, Garcia Seoane J J, Valentin A, et al., Frontal and temporal functional connections of the living human brain, [J]. European Journal of Neuroscience, 2007, 26(5): 1357-7130.
    [300] Leppanen J M, Nelson C A, Tuning the developing brain to social signals of emotions, [J]. Nature Reviews Neuroscience, 2009, 10(1): 37-47.
    [301] Morris J S, Ohman A, Dolan R J, A subcortical pathway to the right amygdala mediating "unseen" fear, [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1680-1685.
    [302] Maunsell J H, Nealey T A, DePriest D D, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, [J]. Journal of Neuroscience, 1990, 10(10): 3323-3334.
    [303] Shapley R, Visual sensitivity and parallel retinocortical channels, [J]. Annual Review of Psychology, 1990, 41: 635-658.
    [304] Merigan W H, Maunsell J H, How parallel are the primate visual pathways?, [J]. Annual Review of Neuroscience, 1993, 16: 369-402.
    [305] Merigan W H, Maunsell J H, Macaque vision after magnocellular lateral geniculate lesions, [J]. Visual Neuroscience, 1990, 5(4): 347-352.
    [306] Bullier J, Nowak L G, Parallel versus serial processing: new vistas on the distributed organization of the visual system, [J]. Current Opinion in Neurobiology, 1995, 5(4): 497-503.
    [307] Chen Y, Geisler W S, Seidemann E, Optimal decoding of correlated neural population responses in the primate visual cortex, [J]. Nature Neuroscience, 2006, 9(11): 1412-1420.
    [308] Klier E M, Wang H, Crawford J D, The superior colliculus encodes gaze commands in retinal coordinates, [J]. Nature Neuroscience, 2001, 4(6): 627-32.
    [309] Sparks D L, Gandhi N J, Single cell signals: an oculomotor perspective, [J]. Progress in Brain Research, 2003, 142: 35-53.
    [310] Romanski L M, Giguere M, Bates J F, et al., Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey, [J]. Journal of Comparative Neurology, 1997, 379(3): 313-332.
    [311] Shipp S, The functional logic of cortico-pulvinar connections, [J]. Philosophical Transactions of the Royal Society of London B Biological Sciences, 2003, 358(1438): 1605-1624.
    [312] Shipp S, Corticopulvinar connections of areas V5, V4, and V3 in the macaque monkey: a dual model of retinal and cortical topographies, [J]. Journal of Comparative Neurology, 2001, 439(4): 469-490.
    [313] Weller R E, Steele G E, Kaas J H, Pulvinar and other subcortical connections of dorsolateral visual cortex in monkeys, [J]. Journal of Comparative Neurology, 2002, 450(3): 215-240.
    [314] Leh S E, Chakravarty M M, Ptito A, The connectivity of the human pulvinar: a diffusion tensor imaging tractography study, [J]. Int J Biomed Imaging, 2008, 2008: 789539.
    [315] Rosenberg D S, Mauguiere F, Catenoix H, et al., Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain, [J]. Cerebral Cortex, 2009, 19(6): 1462-1473.
    [316] Casanova C, Merabet L, Desautels A, et al., Higher-order motion processing in the pulvinar, [J]. Progress in Brain Research, 2001, 134: 71-82.
    [317] Shipp S, The brain circuitry of attention, [J]. Trends in Cognitive Sciences, 2004, 8(5): 223-230.
    [318] Villeneuve M Y, Kupers R, Gjedde A, et al., Pattern-motion selectivity in thehuman pulvinar, [J]. NeuroImage, 2005, 28(2): 474-480.
    [319] Ward R, Calder A J, Parker M, et al., Emotion recognition following human pulvinar damage, [J]. Neuropsychologia, 2007, 45(8): 1973-1978.
    [320] Goebel R, van Atteveldt N, Multisensory functional magnetic resonance imaging: a future perspective, [J]. Experimental Brain Research, 2009, 198(2-3): 153-164.
    [321] Liu Z, Ding L, He B, Integration of EEG/MEG with MRI and fMRI, [J]. IEEE Engineering in Medicine and Biology Magazine, 2006, 25(4): 46-53.
    [322] Silvanto J, Muggleton N G, New light through old windows: moving beyond the "virtual lesion" approach to transcranial magnetic stimulation, [J]. NeuroImage, 2008, 39(2): 549-552.
    [323]甄宗雷,多元统计方法在fMRI数据分析中的应用, [D].博士,自动化研究所,中国科学院,北京, 2007.
    [324] Andersen A H, Gash D M, Avison M J, Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework, [J]. Magn Reson Imaging, 1999, 17(6): 795-815.
    [325] Calhoun V D, Adali T, Pearlson G D, et al., Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms, [J]. Human Brain Mapping, 2001, 13(1): 43-53.
    [326] McIntosh A R, Bookstein F L, Haxby J V, et al., Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares, [J]. NeuroImage, 1996, 3(3): 143-157.
    [327] McIntosh A R, Chau W K, Protzner A B, Spatiotemporal analysis of event-related fMRI data using partial least squares, [J]. NeuroImage, 2004, 23(2): 764-775.
    [328] Goutte C, Toft P, Rostrup E, et al., On clustering fMRI time series, [J]. NeuroImage, 1999, 9(3): 298-310.
    [329] Fadili M J, Ruan S, Bloyet D, et al., A multistep unsupervised fuzzy clustering analysis of fMRI time series, [J]. Human Brain Mapping, 2000, 10(4): 160-178.
    [330] Wang Z, A hybrid SVM-GLM approach for fMRI data analysis, [J]. NeuroImage, 2009, 46(3): 608-615.
    [331] Mourao-Miranda J, Friston K J, Brammer M, Dynamic discrimination analysis: a spatial-temporal SVM, [J]. NeuroImage, 2007, 36(1): 88-99.
    [332] Freire A, Lee K, Symons L A, The face-inversion effect as a deficit in theencoding of configural information: direct evidence, [J]. Perception, 2000, 29(2): 159-170.
    [333] Le Grand R, Mondloch C J, Maurer D, et al., Neuroperception. Early visual experience and face processing, [J]. Nature, 2001, 410(6831): 890.
    [334] Leder H, Bruce V, When inverted faces are recognized: the role of configural information in face recognition, [J]. Q J Exp Psychol A, 2000, 53(2): 513-536.
    [335] Mondloch C J, Le Grand R, Maurer D, Configural face processing develops more slowly than featural face processing, [J]. Perception, 2002, 31(5): 553-566.
    [336] Tanaka J W, Farah M J, Parts and wholes in face recognition, [J]. Q J Exp Psychol A, 1993, 46(2): 225-245.
    [337] Young A W, Hellawell D, Hay D C, Configurational information in face perception, [J]. Perception, 1987, 16(6): 747-759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700