硫属铋化物及铋属相关双金属纳米晶的形貌调控和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铋化物是一种功能性较强的半导体纳米晶材料,已在各种光学、电学器件领域有着重要的应用。因而,发展便捷、普适和环境友好的纳米晶方法,获得具有特定尺寸结构的纳米材料,构建功能化纳米结构体系,研究它们的理化生性质,同时探索纳米晶的成核与生长的机制,实现形貌结构的有效控制,都有着深远意义。本文对铋属化合物的两个分支的调控合成进行了深入系统的研究。并采用X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)等对相关产物形貌结构进行了表征,用紫外-可见吸收光谱、光致发光(PL)光谱分析对产物的光学性质进行了测定,采用电化学工作站对产物的电学性能进行了研究。
     在硫属铋化物/锑化物的合成部分,发展了一种纳米晶的普适油相热注入合成方法。这种方法在对硫化铋的形貌尺寸有着精确可控的特点。同时对其在光催化降解染料罗丹明B方面进行了研究,结果表明,硫化铋对罗丹明B的光降解作用具有一定的尺寸依赖性。
     在铋属及其他双金属化合物的合成部分,同样将合成方法普适化,尤其是锑化镍的锂电池性能有了较大的改善。这种以聚乙二醇400为溶剂的晶种扩散方法,成本低、易操作,对今后发展普通金属二元化合物的锂电性能有指导意义。与此同时,将两部分的方法结合起来,并加以特殊的后处理手续,在十八胺体系中成功合成了钯镉合金超细纳米线。
Bismuthide are kinds of Semiconductor Nanocrystals meterials with outstanding functionality. They are widely used in optical and electrical devices. In order to obtain materials with particular compositions, sizes and shapes, it is essential to create simple, general and invironment friendly synthetic methods, and study the growth mechanism of nanocrystals. Assembling the nanocrystals into advanced functional structure system also paves the way for the practical applications. In this paper, two branch of the bismuthide has been done deeply research on their synthesis with organization. The size and morphology of the products characterized by X-Ray Diffractomer (XRD),Transmission electron microscopy (TEM) and scanning electron microscope(SEM).The optical properties was tested by Ultraviolet and visible absorption spectroscopy (UV-VIS) and photo luminescence (PL). We also use electrochemical workstation to measure their Li-ion battery performance.
     In the part of bismuthide/antimonide synthesis, a general route of synthesis nanocrystals by hot-injection in oil phase has been exploited. This method for bismuth sulfide can make accurate controllability on shape and size feasible. Photocatalytic degradation of rhodamine B has been investigated on the as-obtain nanocrystals. The results show that the degradation efficiency on rhodamine B has size-dependence.
     In the part of Bi/Sb-base bimetallic and other compounds synthesis, we also get a gerneral process to prepare. In them, the Li-ion battery properties of the nickelantimonide made through this way has largely enhanced. Due to the lower cost and Settable, this solvent system----polyethylene glycol 400(PEG400) by seed spreading is illuminated for bimetallic compounds development on Li-battery in the future. After this, combine with two parts of synthetic method above, Pd-Cd alloy ultrathin nanowires has been obtained successfully in octadecylamine system, adding some special post treatment.
引文
[1]Lu, W.& Lieber, C. M. Semiconductor nanowires. J. Phys. D-Appl. Phys.2006,39, R387-R406.
    [2]Lu, W.& Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater.2007,6, 841-850.
    [3]Yang, C. M., Sheu, H. S.& Chao, K. J. Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48. Adv. Funct. Mater. 2002,12,143-148.
    [4]Lee, H. J., Habas, S. E., Somorjai, G. A. et al. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc. 2008,130,5406
    [5]Dresselhaus, M. S., Chen, G., Tang, M. Y. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater.2007,19,1043-1053.
    [6]Gomar-Nadal, E., Puigmarti-Luis, J.& Amabilino, D. B. Assembly of functional molecular nanostructures on surfaces. Chem. Soc. Rev.2008,37,490-504.
    [7]Wang, W. U., Chen, C., Lin, K. H. et al. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U. S. A.2005,102,3208-3212.
    [8]Song, J. H., Kim, F., Kim, D. et al. Crystal overgrowth on gold nanorods:Tuning the shape, facet, aspect ratio, and composition of the nanorods. Chem.-Eur. J.2005,11, 910-916.
    [9]Willets, K. A.& Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.2007,58,267-297.
    [10]Law, M., Sirbuly, D. J.& Yang, P. D. Chemical sensing with nanowires using electrical and optical detection. Int. J. Nanotechnol.2007,4,252-262.
    [11]Huang, Y., Duan, X. F., Cui, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 2001,294,1313-1317.
    [12]Yang, P. D., Deng, T., Zhao, D. Y. et al. Hierarchically ordered oxides. Science 1998,282, 2244-2246.
    [13]Lieber, C. M. Nanoscale science and technology:Building a big future from small things. MRS Bull.2003,28,486-491.
    [14]Patolsky, F., Timko, B. P., Zheng, G. F. et al. Nanowire-based nanoelectronic devices in the life sciences. MRS Bull.2007,32,142-149.
    [15]Cozzoli, P. D., Pellegrino, T.& Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev.2006,35,1195-1208.
    [16]Zhao, X. M., Xia, Y. N.& Whitesides, G. M. Soft lithographic methods for nano-fabrication. J. Mater. Chem.1997,7,1069-1074.
    [17]Huang, Y., Duan, X. F., Cui, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 2001,294,1313-1317.
    [18]Clark, J. H.& Macquarrie, D. J. Environmentally friendly catalytic methods. Chem. Soc. Rev.1996,25,303.
    [19]Somers, R. C., Bawendi, M. G.& Nocera, D. G. CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev.2007,36,579-591.
    [20]Wang, X. W., Xu, X. F.& Choi, S. U. S. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf.1999,13,474-480.
    [21]Kiely, C. J., Fink, J., Brust, M. et al. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 1998,396,444-446.
    [22]Ebenstein, Y., Mokari, T.& Banin, U. Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl. Phys. Lett.2002,80,4033-4035.
    [23]Siegel R W, Fougere G E.Mechanical properties of nanophase metals.Nanostruct. Mater.1995,6(1-4):205-216
    [24]Brus L E.Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. J. Chem. Phys. 1984,809:4403-4409
    [25]De, G., Licciulli, A., Massaro, C. et al. Silver nanocrystals in silica by sol-gel processing. J. Non-Cryst. Solids 1996,194,225-234.
    [26]CostaKramer, J. L. Conductance quantization at room temperature in magnetic and nonmagnetic metallic nanowires. Phys. Rev. B 1997,55, R4875-R4878.
    [27]Xu, D. S., Shi, X. S., Guo, G. L. et al. Electrochemical preparation of CdSe nanowire arrays. J. Phys. Chem. B 2000,104,5061-5063.
    [28]Kang, J. W.& Hwang, H. J. Mechanical deformation study of copper nanowire using atomistic simulation. Nanotechnology,2001,12,295-300
    [29]Sawada, S.& Hamada, N. Energetics of Carbon Nanotubes. Solid State Commun. 1992,83,917-919.
    [30]Kreuter, J. Peroral Administration of Nanoparticles. Adv. Drug Deliv. Rev.1991,7, 71-86.
    [31]Qadri, S. B., Skelton, E. F., Hsu, D. et al. Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B 1999,60,9191-9193.
    [32]Norris, D. J., Yao, N., Charnock, F. T. et al. High-quality manganese-doped ZnSe nanocrystals. Nano Lett.2001,1,3-7.
    [33]Banin, U.& Millo, O. Tunneling and optical spectroscopy of semiconductor nanocrystals. Annu. Rev. Phys. Chem.2003,54,465-492.
    [34]Huang, Y., Duan, X. F., Cui, Y. et al. Gallium nitride nanowire nanodevices. Nano Lett.2002,2,101-104.
    [35]Li, W. Z., Xie, S. S., Qian, L. X. et al. Large-scale synthesis of aligned carbon nanotubes. Science 1996,274,1701-1703.
    [36]Requicha, A. A. G., Meltzer, S., Arce, F. P. T. et al. Manipulation of nanoscale components with the AFM:Principles and applications. Proceedings of the 2001 1st Ieee Conference on Nanotechnology 2001,81-86.
    [37]Harnack, O., Pacholski, C., Weller, H. et al. Rectifying behavior of electrically aligned ZnO nanorods. Nano Lett.2003,3,1097-1101.
    [38]Larsen, T. H., Sigman, M., Ghezelbash, A. et al. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J. Am. Chem. Soc.2003,125,5638-5639.
    [39]Ajayan, P. M., Ichihashi, T.& Iijima, S. Distribution of Pentagons and Shapes in Carbon Nanotubes and Nanoparticles. Chem. Phys. Lett.1993,202,384-388.
    [40]Ajayan, P. M., Ebbesen, T. W., Ichihashi, T. et al. Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature 1993,362,522-525.
    [41]Huang, Y., Duan, X. F., Cui, Y. et al. Gallium nitride nanowire nanodevices. Nano Lett.2002,2,101-104.
    [42]Lei, Y., Zhang, L. D.& Fan, J. C. Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett.2001,338,231-236.
    [43]Li, C. Z., Bogozi, A., Huang, W. et al. Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 1999,10,221-223.
    [44]Kwan, S., Kim, F., Akana, J. et al. Synthesis and assembly of BaWO4 nanorods. Chem. Commun.2001,447-448.
    [45]Zewail, A. H.4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem.2006,57,65-103.
    [46]Haynes, C. L.& Van Duyne, R. P. Nanosphere lithography:A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001,105,5599-5611.
    [47]Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater.2006,18,393-403.
    [48]Shevchenko, E. V., Talapin, D. V., Murray, C. B. et al. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 2006,128,3620-3637.
    [49]Ewers, T. D., Sra, A. K., Norris, B. C. et al. Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices. Chem. Mat.2005, 17,514-520.
    [50]Shevchenko, E. V., Talapin, D. V., Kotov, N. A. et al. Structural diversity in binary nanoparticle superlattices. Nature 2006,439,55-59.
    [51]Valden M,Lai X,Goodman D W.Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science,1998,281(5383):1647-1650
    [52]Bruchez M,Moronne M,Gin P,et al.Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016
    [53]Peng X.G.,Liberato Manna, Yang W.D., Juanata Wickham, Erik Scher Andreas Kadavanich, A.P.Alrvisatos Shape control of CdSe nanocrystals, Nature 404 (2000)59-61
    [54]X. H. Zhong, Y. Feng, L. Ingo, W. Knoll, Non-Hydrolytic Alcoholysis Route to Morphology-Controlled ZnO Nanocrystals. Small 2007,3,1194-1199.
    [55]X. H. Zhong, Y. Feng, Y. Zhang, Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution. J. Phys. Chem. C 2007,111,526-531
    [56]X. H. Zhong, Y. Feng, Y. Zhang, Z. Gu, L. Zou, A facile route to violet- to orange-emitting CdxZnl-xSe alloy nanocrystals via cation exchange reaction Nanotechnology,2007,18, 385606
    [57]X. H. Zhong, M. Han, Z. Dong, T. White, W. Knoll, Composition-tunable ZnxCd1-xSe alloy nanocrystals with high luminescence and stability J. Am. Chem. Soc.2003,125,8589-8594
    [58]X. H. Zhong, Y. Feng, W. Knoll, M. Han, Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc.2003,125,13559-13563
    [59]X. H. Zhong, Y. Feng, S.-L. Ong, J. Hu, W.-J. Ng, Z. Wang, Strong optical limiting capability of a triosmium cluster bonded indium porphyrin complex [(TPP)InOs3(μ-H)2(CO)9(μ-η2-C5H4N)]. Chem. Commun.2003,15,1882-1883
    [60]X. H. Zhong, W. Knoll, Morphology-controlled large-scale synthesis of ZnO nanocrystals from bulk ZnO. Chem. Commun.2005,9,1158-1160
    [61]Z. Fang, L. Liu, L. Xu, X. Yin, X. H. Zhong, Synthesis of highly stable dihydrolipoic acid capped water-soluble CdTe nanocrystals. Nanotechnology,2008,19(23),235603
    [62]Z. Fang, Y. Zhang, F. Du, X. H. Zhong, Growth of anisotropic platinum nanostructures catalyzed by gold seed nanoparticles. Nano Res.2008,1,249-257
    [63]L. Zou, Z. Gu, N. Zhang, Y. Zhang, Z. Fang, W. Zhu, X. H. Zhong, Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase. J. Mater. Chem.2008,18,2807-2815
    [64]Zhou, K. B., Wang, X., Sun, X. M. et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal.2005,229,206-212.
    [65]Lee, H. J., Habas, S. E., Somorjai, G. A. et al. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc.2008, 130,5406-+.
    [66]Bratlie, K. M., Lee, H., Komvopoulos, K. et al. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett.2007,7,3097-3101.
    [67]Zhang, Y. W., Grass, M. E., Kuhn, J. N. et al. Highly selective synthesis of cataytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc.2008,130,5868-+.
    [68]Wang, X., Zhuang, J., Peng, Q. et al. A general strategy for nanocrystal synthesis. Nature 2005,437,121-124.
    [69]Law, M., Sirbuly, D. J.& Yang, P. D. Chemical sensing with nanowires using electrical and optical detection. Int. J. Nanotechnol.2007,4,252-262.
    [70]Wang, J. W.& Li, Y. D. Hydrothermal synthesis of M2S3 (M=Sb, Bi) bulk single crystals and nanorods. Mater. Chem. Phys.2004,87,420-423.
    [71]Lu, Z. G., Liu, J. F., Tang, Y. et al. Hydrothermal synthesis of CaSnO3 cubes. Inorg. Chem. Commun.2004,7,731-733.
    [72]Pal, U.& Santiago, P. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B 2005,109,15317-15321.
    [73]Wang, X., Zhuang, J., Peng, Q. et al. Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg. Chem.2006,45,6661-6665.
    [74]Zhuang, Z. B., Peng, Q., Zhuang, J. et al. Controlled hydrothermal synthesis and structural characterization of a nickel selenide series. Chem.-Eur. J.2006,12,211-217.
    [75]Kong, X. H., Liu, X. B., He, Y. D. et al. Hydrothermal synthesis of P-nickel hydroxide microspheres with flakelike nanostructures and their electrochemical properties. Mater. Chem. Phys.2007,106,375-378.
    [76]Wang, C., Li, Y.D., Wang, J. W. et al. Solvothermal processes to indium selenide precursors and their conversion to phase-pure polycrystalline In2Se3. Main Group Met. Chem.2001, 24,21-26.
    [77]Li, Y.D., Wang, Z.Y., Duan, X.F. et al. Solvothermal reduction synthesis of InSb nanocrystals. Adv. Mater.2001,13,145-148.
    [78]Chen, M., Xie, Y., Lu, J. et al. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem.2002,12,748-753.
    [79]Yu, D. B., Yu, S. H., Zhang, S. Y. et al. Metastable hexagonal In2O3 nanofibers templated from InOOH nanofibers under ambient pressure. Adv. Funct. Mater.2003,13,497-501.
    [80]Xu, J., Ge, J.P.& Li, Y.D. Solvothermal synthesis of monodisperse PbSe nanocrystals. J. Phys. Chem. B 2006,110,2497-2501.
    [81]Gomar-Nadal, E., Puigmarti-Luis, J.& Amabilino, D.B. Assembly of functional molecular nanostructures on surfaces. Chem. Soc. Rev.2008,37,490-504.
    [82]Huo, Z.Y., Chen,C.& Li, Y.D. Self-assembly of uniform hexagonal yttrium phosphate nanocrystals. Chem. Commun.2006,3522-3524.
    [83]Michel, M., Taylor, A., Sekol, R. et al. High-performance nanostructured membrane electrode, assemblies for fuel cells made by layer-by-layer assembly of carbon nanocolloids. Adv. Mater.2007,19,3859-+.
    [84]Rele, S., Song, Y. H., Apkarian, R. P. et al. D-periodic collagen-mimetic microfibers. J. Am. Chem. Soc.2007,129,14780-14787.
    [85]Gazit, E. Self-assembled peptide nanostructures:the design of molecular building blocks and their technological utilization. Chem. Soc. Rev.2007,36,1263-1269.
    [86]Shi, Y. T., Yuan, R., Chai, Y. Q. et al. Amplification of antigen-antibody interactions via back-filling of HRP on the layer-by-layer self-assembling of thionine and gold nanoparticles films on titania nanoparticles/gold nanoparticles-coated Au electrode. J. Electroanal. Chem.2007,604,9-16.
    [87]Du, W. M., Qian, X. F., Ma, X. D. et al. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chem.-Eur. J.2007,13, 3241-3247.
    [88]Krishnan, R. S., Mackay, M. E., Duxbury, P. M. et al. Self-assembled multilayers of nanocomponents. Nano Lett.2007,7,484-489.
    [89]Javey, A., Nam, S., Friedman, R. S. et al. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett.2007,7,773-777.
    [90]Tao, A. R., Huang, J. X.& Yang, P. D. Langmuir-Blodgettry of Nanocrystals and Nanowires. Accounts Chem. Res.2008,41,1662-1673.
    [91]Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature,1999,402 (6760):393-395
    [92]Sun S.H., Murray C B,Weller D,et al.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science,2000,287(5460):1989-1992
    [93]Shevchenko E V,Talapin D V,Kotov N A,et al.Structural diversity in binary nanoparticle superlattices. Nature,2006,439(7072):55-59
    [94]Shevchenko E V,Talapin D V,Murray C B,et al.Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.J Am Chem Soc, 2006,128(11):3620-3637
    [95]Kalsin A M,Fialkowski M,Paszewski M,et al.Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science,2006,312(5772): 420-424
    [96]Bai F,Wang D S,Huo Z Y,et al.A versatile bottom-up assembly approach to colloidal spheres from nanocrystals.Angew Chem Int Ed,2007,46(35):6650-6653
    [97]Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures:synthesis, characterization,and applications. Adv.Mater.2003,15,353-389
    [98]Hu J T,Odom T W,Lieber C M. Chemistry and Physics in one dimension:synthesis and properties of nanowires and nanotubes. Ace.Chem.Res., 1999,32:435-445
    [99]Huynh W U,Peng X G,Alivisatos A P. CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices. Adv.Mater.1999,11:923-927
    [100]Hu J T,Ouyang M,Yang P D,et al. Controlled growth and electrical properties of carbon nanotubes and silicon nanowires. Nature,1999,399:48-51
    [101]Wu Y Y,Fan R,Yang P D. Block-by block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett.2002,2:83-86
    [102]Choi H J,Johnson J C,He R R,et al. Self-organized GaN quantum wire UV lasers.J. Phys. Chem. B,2003,107(34):8721-8725
    [103]Johnson J. C., Yan H. Q.,Yang P. D.,et al. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B,2003,107(34):8816-8828
    [104]Maiti A, Rodriguez J A, Law M, et al. SnO2 nanoribbons as NO2 sensors:Insights from first principles calculations. Nano Lett.2003 3(8):1025-1028
    [105]Yan H Q, He R R, Johnson J, et al. Dendritic nanowire ultraviolet laser array. J.Am.Chem. Soc.2003,125(16):4728-4729
    [106]Johnson J C, Choi H J, Knutsen K R, et al. Single gallium nitride nanowire lasers. Nat.Mater.2002,1(2):106-110
    [107]Law M, Kind H, Messer B, et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew.Chem.Int.Edit.2002,41(13): 2405-2408
    [108]Yang P D, Yan H Q, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties. Adv.Funct.Mater.2002,12(5):323-331
    [109]Johnson J C, Yan H Q, Schaller R D, et al. Single nanowire lasers. J.Phys.Chem.B, 2001,105(46):11387-11390
    [110]Wang, D.S., Hao, CH, Zheng, W, et al. Bi2S3 Nanotubes:Facile Synthesis and Growth Mechanism. Nano Res.2009,2(2),130-134
    [111]Hua Zhang, Ping Wu, Yan Li, Lifang Liao, Zheng Fang and Xinhua Zhong. Preparation of Bismuth Oxide Quantum Dots and the Photocatalytic Activity in Homogeneous System.Chem. Cat. Chem.2010,2:1115
    [112]Wang, D.S., Li, Y.D. One-Pot Protocol for Au-Based Hybrid Magnetic Nanostructures via a Noble-Metal-Induced Reduction Process. J Am Chem Soc,2010, 132(18),6280-+
    [113]Chen, W; Yu, R; Li, LL, et al. A Seed-Based Diffusion Route to Monodisperse Intermetallic CuAu Nanocrystals. Angew.Chem.Int.Edit.,2010,49(16),2917-2921

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700