基于光谱技术的土壤、作物信息获取及其相互关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪90年代以来,随着全球定位系统(GPS)、地理信息系统(GIS)、遥感技术(RS)、变量处理设备(VRT)和决策支持系统(DS)等的发展,精细农业作为一种经营现代农业的新技术应运而生了。该技术的核心是获取农田小区作物产量和影响作物生长的环境因素(如土壤结构、地形、植物营养、含水量、病虫草害等)实际存在的空间和时间差异性信息,分析影响小区产量差异的原因,采取技术上可行、经济上有效的调控措施,区别对待,按需实施定位调控的“处方农作”。
     精细农业是现代高新技术,特别是信息技术在农业生产上的应用,是一系列高新技术的集成应用,主要包括信息获取系统、信息处理系统与智能化的农业机械作业。其中信息获取系统是开展精细操作实践的基础和依据,因此系统全面地研究适合我国精细农业实践的田间信息(土壤信息、作物信息、产量及品质信息)的获取技术和处理方法是非常必要的。
     本论文针对国内外在田间信息获取技术上存在的一些问题和不足,结合我国的实际情况,采用了3因素(氮、磷、钾肥)二次正交回归设计方法,对油菜田中的田间施肥情况设计了施肥水平,使三种营养元素分别处于偏少、正常和过量的状态。对油菜田中的土壤信息、油菜生长过程中的作物信息、土壤信息与作物中的叶绿素含量信息、土壤信息与油菜籽的产量和品质信息之间的关系进行了系统、深入的分析。主要研究内容和结论如下:
     1)采用ASD公司的便携式光谱仪研究了测量覆盖面积对土壤光谱特性和土壤含水率的影响。并从几何学的角度进行了理论分析,建立了通过测量几何位置确定测量覆盖面积的数学模型。为今后使用该仪器在田间测量时,减少背景信息,选取最佳测试几何位置奠定了基础。
     2)研究了采用尼高力公司NEXUS智能型傅立叶红外光谱仪采集的经简单处理过的土壤(模拟田间土样)光谱特性,建立了土壤光谱吸光度与土壤中的氮(N)、磷(P)、钾(K)、有机质(OM)和pH之间的定量分析模型。结果表明,采用近红外光谱仪经一阶导数处理可以很好地预测简单处理土样中的OM和pH含量,预测相关系数可以达到0.8以上。在对土壤OM含量的定量分析过程中,提出了将正交信号校正方法(OSC)作为谱图预处理方法,使预测相关系数达到0.89,大大提高了模型的预测精度。在对土壤中N含量的预测中,发现土壤颗粒大小严重影响到土壤N含量的预测能力。对P、K的预测效果并不是很好,预测样本的预测相关系数分别为0.661和0.721,还有待于进一步的研究。
     3)在对油菜生长状况的监测过程中,采用SPAD502叶绿素仪研究了同一叶片、同一植株不同测量部位SPAD值的分布情况,并采用ArcView 3.2地理信息系统软件中的空间分析模块直观、准确地对其进行了表达。结果表明测量部位不同,SPAD值也不同。根据本试验的要求,对从顶部算起的第三片叶进行了跟踪测量,系统、深入地分析了油菜叶片的SPAD值随生长阶段、施肥情况的变化规律。得出蕾苔期与开花期过渡时期是进行田间氮肥检测和管理的最佳时期。对今后该油菜田中的氮肥管理提供了一个参考基准。
     4)采用ASD公司的便携式光谱仪在室外分析了油菜叶片的光谱特性,找到其最佳敏感波段为676nm和684nm,相关系数达到0.923。对油菜叶片的SPAD含量与“红边位置”和“绿
With the development of GPS, GIS, RS, VRT and DS, precision agriculture as a new technology has emerged since 1990s. The kernel of this technology is to obtain the yield production of the small section, the spatial and temporal information of the environmental factors (soil structure, topographic form, crop nutrition, water content and plant diseases and insect pests et al.), which influence the growth of the crop, and then adopt the appropriate measurement to realize "prescription farming" by analyzing the reasons of these factors.Precision agriculture is an integrated application of the advanced technology, especially the information technology in the agricultural production. It consists of information obtain system, information treatment system, and intelligent mechanization of farming. Information obtain system is the base and thereunder of the precision agriculture in the practices of its operation, so it is very necessary to systemically and roundly analyze the obtain techniques and disposal methods of the field information (soil information, crop information, yield and quality information of the crops).Considering the actual situation of our country, and the problems and deficiencies of the present technology in the information obtain system, we systemically and roundly analyzed the soil information in the oilseed rape field, crop information in the growth of the oilseed rape, the relationships between the soil information and chlorophyll content, oilseed rape yield and quality information. Quadratic regression orthogonal design was applied in this research to design the fertilization level. Three factors (nitrogen fertilizer, phosphorus fertilizer, kalium fertilizer) were considered in this research, and the field was in the condition of deficiency fertilizer, normal fertilizer and excessive fertilizer manually. The main contents and conclusions were as follows:1) The influence of measurement area to soil spectral properties and water content prediction were analyzed in this research by using the handheld spectrophotometer (ASD). Geometric method was also been used to validate the above conclusion, and the mathematic model was founded according the position of the spectrophotometer to the object in the process of the measurement. This model can be applied in the outdoor measurement. It can estimate the measurement area according with the measurement height, or estimate the measurement height according with the measurement area. It is obviously that it can avoid the influence of the background information during the process of the spectra collection.2) Spectral properties of the raw soil samples (in the natural condition, soil samples was simply treatment) were analyzed by using NEXUS intelligent Fourier transform (FT) infrared spectorscopy, and the quantitative analysis model was founded to the soil nitrogen (N), available phosphorus (P), available kalium (K), organic matter (OM) content and pH. The result shows that it can predict OM content and pH value commendably with the l_(st) derivate spectra, and the correlation coefficient is up to 0.8. Orthogonal signal correction (OSC) method as a new pretreatment method to the spectra was
    applied in this research during the processes of the OM content prediction. It can improve the prediction ability greatly, and the correlation coefficient achieved to 0.89. During the analysis of the nitrogen content prediction, we found that particle size influence the nitrogen prediction ability greatly. The prediction ability to the P and K are not satisfied as our expected, the correlation coefficient is 0.661 and 0.721 respectively, so it needs a further research.3) SPAD 502-chlorophyll meter was used in this research to analyze the variability of chlorophyll content during the growth stage of the oilseed rape. Spatial analysis module of Arc View 3.2 software was used to analyze the spatial distribution rule of the SPAD values, which can reveal the distribution of SPAD intuitionisticly and accurately. The result shows that different measurement part has different SPAD values. The third leaves counted from the above were selected as our research object. The variation law of SPAD values in different growth stage and different fertilizers levels was detailed analyzed in this research. The result shows that interim of the bud and anthesis is the best time for nitrogen management. It will be helpful for the nitrogen management to this field.4) Spectral properties of oilseed rape leaves were analyzed in this research by using handheld spectrophotometer. The result shows that the sensitive brands to SPAD values are 676nm and 684nm, respectively, and the correlation coefficient is 0.923. The relationship between the SPAD value and the red edge and green edge was also analyzed. The result shows that two variables (red edge and green edge) can better predict the SPAD values of the oilseed rape leaves than the one variable (red edge).5) The quantitative analysis model was founded to soil fertilizer and SPAD values, and the result shows that nitrogen fertilizer is positively correlative to SPAD values. This result futherly demonstrated that SPAD could reflect the nitrogen fertilizer. The quantitative analysis model was also founded to soil fertilizer and yield of oilseed rape. The result shows that nitrogen fertilizer is positively correlative to the yield. The yield increased with the increase of the nitrogen fertilizer. Kalium fertilizer is sensitive to the yield when the kalium fertilizer is deficient, that is, when the kalium fertilizer is deficient, the yield is lower, while when it is in the normal or excessive condition, the yield has no more significant change. Phosphorus fertilizer has no more significant role to the yield in all stage.6 ) Quadratic regression orthogonal design was used to analyze the relationships between the oil content of oilseed rape, glucosinolate content, and erucic acid content and the fertilizer. The result shows that nitrogen fertilizer affected the oil content greatly. When the nitrogen fertilizer was excessive, nitrogen fertilizer is negative correlative to oil content and glucosinolate content. Excessive phosphorus fertilizer can reduce the glucosinolate content, and kalium fertilizer is significant to erucic acid at the 0.1 levels. Erucic acid content increased with the increase of the kalium fertilizer. The interaction of the fertilizer to oilseed rape quality was also analyzed in this paper. The result shows that interactions of the nitrogeous fertilizer and kalium fertilizer affect the oil content greatly, and the interactions of the phosphorus fertilizer and kalium fertilizer affect the glucosinolate content and erucic acid content greatly.
    7) To improve the yield and quality of the oilseed rape, nonlinear programming model was founded in this paper to find the best scheme of fertilizer. The result shows that different research object has different conclusions. Excessive nitrogen fertilizer can improve the yield of oilseed rape, while it will decrease the oil content and increase the glucosinolate content at the same time. Excessive phosphorus fertilizer can decrease the glucosinolate content, but it will affect the oil content of the oilseed rape. In order to realize the objective of the high yield and quality, this paper suggests that when the the urea (46%) is between the 22.23-29.87kg, superphosphate (powder, 16%) is between the 1.7-1.84kg, and potassium chloride (60%) is between the 1.71-16.67kg in a unit of area, the lower erucic acid content and higher oil content will be obtained, relatively. When the the urea (46%) is between the 28.53-48.76kg, superphosphate (powder, 16%) is between the 43.5-53.86kg, and potassium chloride (60%) is between the 23.1-31.62kg in a unit of area, the lower glucosinolate content and higher yield will be obtained, relatively.
引文
1.鲍一丹,汪开英,何勇,王立大,2005.基于虚拟仪器的精确灌溉信息系统的研究[J].农业 工程学报,21(4):7-10.
    2.薛利红,曹卫星,罗卫红,2005.基于冠层反射光谱的水稻产量预测模型[J].遥感学报,9 (1):101-106.
    3.陈沈斌,1998.种植业可持续发展的支持系统—农作物卫星遥感估产[J].地理科学进展,17(2):71—76.
    4.陈树人,尹建军,2003.GPS技术及其在农业工程中的应用[J].排灌工程,21(5):40-42.
    5.邓辉,周清波,2004.土壤水分遥感监测方法进展[J].中国农业资源与区划,25(3):46-49.
    6.董美对,何勇,赵云飞,2000.精确农业—21世纪的农业工程技术[J].浙江大学学报(农业与生命科学版),26(4):433~436.
    7.方慧,何勇,2005.基于Windows CE的农田信息快速采集技术[J].农业机械学报,36(1):92-96.
    8.方慧,邵永华,何勇,2003.基于掌上电脑的农田信息空间分析系统的研究[J].浙江大学学报(农业与生命科学版),29(6):679-683.
    9.何勇,2003.精细农业[M],浙江大学出版社.
    10.何勇,方慧,冯雷,2002.基于6PS和GIS的精细农业信息处理系统研究[J].农业工程学报,18(1):145-149.
    11.何勇,林丽兰,俞海红,2004.基于虚拟仪器技术的土壤电导率测量仪器研究[J].农业工程学报,20(6):31-34.
    12.洪添胜,2000.法国精细农业研究概况[J].农机化研究,4:1-6.
    13.黄文江,黄木易,刘良云,王纪华,赵春江,王锦地,2005.利用高光谱指数进行冬小麦条锈病严重度的反演研究[J].农业工程学报,21(4):97-103.
    14.霍晓静,关贞珍,杨世风,钱东平,2002.虚拟仪器技术及其在农业工程中的应用[J].河北农业大学学报,25(增刊):271-273.
    15.焦险峰,杨邦杰,裴志远,王飞,2005.基于植被指数的作物产量监测方法研究[J].农业工程学报,21(4):104-108.
    16.景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江,2003.不同氮素营养条件下的冬小麦生理及光谱特性[J].应用技术,2:28-31.
    17.邝朴生,刘刚,邝继双,1999.精细农业技术体系初探[J].农业工程学报,15(3):1-4.
    18.李康吉,刘国海,2004.一种提高GPS定位精度的组合定位方法[J].东南大学学报(自然科学版),34(增刊):88-91.
    19.李民赞,2003.基于可见光光谱分析的土壤参数分析[J].农业工程学报,19(5):36-41.
    20.刘刚,2001.支持精细农业时间的农田空间分布信息处理的方法与试验研究[D].中国农业大学博士论文.
    21.刘根深,2000.GPS节水灌溉系统的研究[J].农业工程学报,16(2).24-27.
    22.罗锡文,张泰岭,洪添胜,2001.“精细农业”技术体系及其应用[J].农业机械学报,32(2):103-106.
    23.毛文华,王一鸣,张小超,王月青,2004.基于机器视觉的田间杂草识别技术研究进展[J].农业工程学报,20(5):43-46.
    24.孟志军,赵春江,王秀,陈立平,薛绪掌,2003.基于GPS的农田多源信息采集系统的研究与开发[J].农业工程学报,19(4):13-18.
    25.裴志远,杨邦杰,2000.多时相归一化植被指数NDVI的时空特征提取与作物长势模型设计[J].农业工程学报,16(5):20-22.
    26.彭望禄,Pierre Robert,程惠贤,2001.农业信息技术与精细农业的发展[J].农业工程学报,17(2):9-11.
    27.秦江林,2001.中国特色的精细农作的技术支持体系初探[J].农业工程学报,17(3):1-6.
    28.裘正军,2004.基于GPS,GIS及虚拟仪器技术的精细农业信息采集与处理技术的研究[D].博士论文.杭州,浙江大学.
    29.裘正军,何勇,葛晓峰,冯雷,2003.基于GPS定位的土壤水分快速测量仪的研制[J].浙江 大学学报(农业与生命科学版),29(2):135-138.
    30.裘正军,应霞芳,何勇,2005.基于GPS模块的便携式农田面积测量仪[J].浙江大学学报(农业与生命科学版),31(3):333-336.
    31.沙晋明,陈鹏程,陈松林,2003.土壤有机质光谱响应特性研究[J].水土保持研究,10(2):21-24.
    32.孙宇瑞,2002.土壤探针阻抗计算方法的理论分析与实验研究[J].土壤学报,39(1):127-127.
    33.唐延林,王人潮,黄敬峰,孔维妹,程乾,2004.不同供氮水平下水稻高光谱及其红边特征研究[J].遥感学报,8(2):185-192.
    34.田永超,朱艳,曹卫星,2005.用冠层反射光谱预测小麦叶片糖氮量及糖氮比[J].作物学报,31(3):355-360.
    35.吴炳方,张峰,刘成林,张磊,罗治敏,2004.农作物长势综合遥感监测方法[J].遥感学报,8(6):498-514.
    36.吴昀昭,田庆久,季峻峰,陈骏,惠凤鸣,2003.土壤光学遥感的理论、方法及应用[J].遥感信息,1:40-47.
    37.吴曙雯,王人潮,陈晓斌等,2002.稻叶瘟对水稻光谱特性的影响研究[J].上海交通大学学报(农业科学版),20(1):73-84.
    38.徐永明,蔺启忠,黄秀华,沈艳,王璐,2005.利用可见光/近红外反射光谱估算计算土壤总氮含量的实验研究[J].地理与地理信息科学,21(1):19-22.
    39.杨邦杰,1999.农作物长势的定义与遥感监测[J].农业工程学报,15(3):214-218.
    40.杨绍辉,王一鸣,冯磊,2005.土壤水分空间分布快速测试仪的开发[J].中国农业大学学报,10(2):23-25.
    41.易玲,杨小唤,江东,刘红辉.2003,农作物病虫害遥感监测研究进展[J].甘肃科学学报,15(3):58-63.
    42.于飞健,闵顺耕,巨晓棠,张福锁.2002,近红外光谱法分析土壤中的有机质和氮素[J].分析实验室,21(3):49-51.
    43.俞海红,陈素珊,何勇,2004.GPS定位试验及提高定位精度的方法研究.浙江大学学报(农业与生命科学版),30(6):662-667.
    44.王珂,沈掌泉,Abou-Ismail O,Yaghi A,王人潮,1997.不同钾营养水平的水稻冠层和叶片光谱特征研究初报[J].科技通报,13(4):211-214.
    45.王克林,李文祥,2000.精确农业发展与农业生态工程创新[J].农业工程学报,16(1):53-56.
    46.汪懋华,1999.“精细农业”的发展与工程科技创新[J].农业工程学报,15(1):1-8.
    47.王人潮,王珂,张金恒等,2003.高光谱与叶绿素计快速测定大麦氮素营养状况研究[J].麦类作物学报,23(1):63-66.
    48.王秀珍,王人潮,李云梅,沈掌泉,2001.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),27(3):301-306.
    49.张金恒,王珂,王人潮,郑洪福,周斌,2004.水稻叶片反射光谱诊断氮素营养敏感波段的研究[J].浙江大学学报(农业与生命科学版),30(3):340-346.
    50.张淑娟,2003.基于GPS和GIS的精细农业田间信息采集和处理方法的研究[D].博士学位论文.
    51.张淑娟,何勇,方慧,2003.人工神经网络在作物产量与空间分布信息关系中的应用[J].系统工程理论与实践,23(12):121-127.
    52.张晓阳,李劲峰,1995.利用垂直植被指数推算作物叶面积系数的理论模式[J].遥感技术与应用,10(3):13-18.
    53.张学礼,胡振琪,初士立,2005.土壤含水量测定方法研究进展[J].土壤通报,36(1):118-123.
    54.赵春江,王成,乔晓军,2004.电阻式土壤含水量传感器的设计与开发[J].农业工程技术,12:57-58.
    55.赵新,2002.GPS和GIS技术在草地资源调查中的应用[D].华南农业大学博士论文.
    56.赵锁劳,彭玉魁,2002.我国黄土区土壤水分、有机质和总氮的近红外光谱分析[J].分析化学,30(8):978-980.
    57.赵燕东,王一鸣,2005.智能化土壤水分分布速测系统[J].农业机械学报,36(2):76-78.
    58.朱习军,戴月明,郭守军,2005.基于小波分解的GPS监测数据消噪处理[J].山东科技大学学报(自然科学版),24(2):17-19.
    59.左月明,卫勇,王海昌等,2001.一种智能型电导率仪的设计与研究[J].农业工程学报,17(2):161-164.
    60. Adams M. L., Philpot W.D., Norvell W.A., et al. 1999. Yellowness indexes: an application of spectra second derivatives to estimate chlorosis of leaves in stressed vegetation [J]. International Journal of Remote Sensing, 20(18): 3663-3675.
    61. Ben-Dor E., Banin A., 1995, Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties [J]. Soil Sci Soc Am J, 59:364-372.
    62. Benedetti Roberto Paolo Rossini, 1993. On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimate and forecast in Emilia romagna [J]. Remote sensing. Environment, 45: 311-326.
    63. Blackmore B.S., 2000. Developing the Principles of Precision Farming. Proceeding of international Conference on Engineering and Technological Sciences. October 11, Beijing, China. pp: 133-136.
    64. Borregaard T., Nielsen H., Nergaard L., Have H., 2000.. Crop-weed Discrimination by Line Imaging spectroscopy [J]. Journal. agric. Engng research, 756: 389-400.
    65. Carlson Toby N., David A.Ripley.,1997. On the relation between NDVI, fractional vegetation cover, and leaf index. Remote sensing Environment, 62:241-252.
    66. Chang C., Laird D A., Mausbach M J., Hurburgh C R., 2001. Near-Infrared reflectance spectroscopy-principal components regression analyses of soil properties [J]. Soil Sci. Am. J. 65: 480-490.
    67. Chang C W., 2000. Near-infrared reflectance spectroscopic measurement of soil properties [D].
    68. Chen S.M., et al., 2003. Determination of nitrogen content in rice crop using multi-spectral imaging. ASAE, Paper number:031132.1-7.
    69. Daughtry C S T., Walthall C L., Kim M S., Brown de Colstoun E., McMurtrey Ⅲ J E., 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote sensing of environment, 74: 229-239.
    70. Doraiswamy P C., Cook P W., 1995. Spring wheat yield assessment using NOAA AVHRR date [J]. Canadian Journal of Remote Sensing, 11(1): 43-51.
    71. Earl R., Thomas G., Thomas G, Blackmore B. S., 2000. The potential role of GIS in automous fiel operations. Computers and Electronics in Agriculture, 25: 107-120.
    72. Ehsani M R., Upadhyaya S K., Fawcett W R., Protsailo L V., Slaughter D., 2001. Feasiblity of detecting soil nitrate content using a mid-infrared technique [J]. Transaction s of the ASAE. 44(6): 1931-1940.
    73. Ellis E A., Nair P K R., Linehan P E., 2002. A GIS-based database management application for agroforestry planning and tree selection [J]. Computers and Electronics in Agriculture, 27: 41-55.
    74. Feiho W., Wu Lianghuan., Xu Fuhua., 1998. ChlorophyⅡ meter to predict nitrogen sidedress requirements for short-season cotton (Gossypium hirsutum L.) [J]. Field crops research, 56: 309-314.
    75. Guyer D E., Miles G E., Schreiber M M., Mitchell O R., Vanderbilt V C., 1986. Machine vision and image processing for plant identification [J]. Transactions of the ASAE, 29(6): 1500-1507.
    76. Hansen P M., Schjoerring J K., 2003. Reflectance measurement of canopy hiomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote sensing of Environment, 86: 542-553.
    77. Hyun Kwon Noh, Qin Zhang, et al., 2003. Multispectral image sensor for detection of nitrogen deficiency in corn by using an empirical line method. ASAE. Paper number: 031135.1-1.
    78. Hummel J W., Sudduth K A., Hollinger S E., 2001. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor [J]. Computer and Electronics in Agriculture, 32: 149-165.
    79. Israel Broner, Carlton R. Comstock., 1997. Combining expert system and neural networks for learning site-specific conditions [J]. Computers and Electronics in Agriculture, 19: 37-53.
    80. Johnson R M., Bradow J M., 2000. Potential for precision management of cotton fiber quality. Proceedings of Fifth International Conference on Precision Agriculture (CD), July 16-19, Bloomington, MN, USA.
    81. Kano Y., McClure W F., Skaggs R W., 1985. A near infrared reflectance soil moisture meter [J]. Transactions of the ASAE, 28(6): 1852-1855.
    82. Keith B Matthews., Alan R Sibbald., Susan Craw., 1999. Implementation of a spatial decision support system for rural land use planning: Integrating geographic information system and environmental models with search and optimization algorithms [J]. Computers and Electronics in Agriculture, 23: 9-261999.
    83. Lee W S., Rao S Mylavarapu., Jung Seob Choe., Jodie D., 2001. Study on soil properties and Spectral characteristics in Florida. ASAE paper, 01-1179.1-12.
    84. Lee W S., Sanchez J F., Mylavarapu R S., Choe J S., 2003. Estimating chemical properties of Florida soil using spectral reflectance [J]. Transactions of the ASAE, 46(5): 1443-1453.
    85. Linda, Lilburne., Jim Watt., Keith Vincent., 1998. A prototype DSS to evaluate irrigation management plans [J]. Computers and Electronics in Agriculture, 21: 195-205.
    86. Malthus T J., Maderia A C., 1993. High resolution spectroradiometry: spectra reflectance of field bean leaves infected by botrytis fabae [J]. Remote sensing of Environ, 45: 107-116.
    87. Madeira A C., Mendonca A., Ferreira M E., 2000. Taborda MD Communication in Soil Science and Plant Analysis, 31(5-6): 631-643.
    88. Nemenyi. M., Mesterhazi P A., Peeeze Zs., Stepan Zs., 2003. The role of GIS and GPS in precision farming [J]. Computers and electronics in agriculture, 40: 45-55.
    89. Nordmeyer H., Hausler A., Niemann P., 1996. Weed mapping as a tool for patchy weed control. Second international weed congress, CoEenhagen, 119-124.
    90. Norris K H., 1964. Reports on design and development of anew moisture meter [J]. Agricultural Engineering, 45(7): 370-372.
    91. Paulo H F., Ronei J P., Joao Carlos de Andrade., 2002. Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy [J]. Analytica Chimica Acta, 453: 125-134.
    92. Pelletier S M., Upadhyaya G K., 2001. Sensing Soil Moisture Using NIR Spectroscopy [J]. Applied Engineering in Agriculture, 17(2): 241-247.
    93. Petry W., Kuhbauch W., 1989. Automatic discrimination of weeds on the basis of shape parameters using quantitative image analyses [J]. Journal of Agronomy and Crop Science, 163: 345-351.
    94. Richard E., 2001. Plant Site-specific management: the application of information technology to crop production [J]. Computers and Electronics in Agriculture, 30: 9-29.
    95. Rigobello M P., Cazzaro E, Seutari G., Bindoli A., 1999. Virtual instrumentation for pH measurements in biological systems [J]. Computer Methods and Programs in Biomedicine, 60: 55-64.
    96. Rinehart G L., Cathoun J H., Sehabbenberger O., 2002. Remote sensing of stripe patch and dollar spot on creeping bentgrass and annual bluegrass turf using visible and near-infrared spectroscopy [J]. Australian Turfgrass management.
    97. Robert P C., 1999. Precision Agriculture: An information revolution in agriculture [J]. Agriculture outlook forum, 1-5.
    98. Rosa U A., Upadhyaya S K., Koller M., etc. 2000. Precision farming in a tomato production system. Proceedings of Fifth International Conference on Precision Agriculture (CD), July 16~19, Bloomington, MN, USA.
    99. Runquist S., Zhang N., Taylor R., 2001. Development a field-level geographic information system [J]. Computers andlectronics in Agriculture, 31: 201-209.
    100. Skidmore E L., Dickerson J D., Schimmelpfenning H., 1975. Evaluating surface-soil water content by measuring reflectance. Proc. Soil Sci. Soc. Am, 39(2): 238-242.
    101. Slaughter D C., Pelletier M G., Upadhyaya S K., 2001. Sensing soil moisture using NIR spectroscopy [J]. American Scociety of Agricultural Engineers, 17(2): 241-247.
    102. Stafford J V., 2000. Implementing precision agriculture in the 21st century [J]. Journal of Agricultural Engineering Research, 76: 267-275.
    103. Sudduth K A., Hummel J., 1993a. Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer [J]. Transactions of the ASAE, 36(6): 1571-1582.
    104. Sudduth K A, Hummel J., 1993b. Portable Near-Infrared Speetrophotometer for rapid soil analysis [J] transactions of the ASAE, 36(1): 185-193.
    105. Toran E, Ramirez D., Navaho A. E., et al. 2001. Design of a virtual instrument for water quality monitoring across the Interact [J]. Sensors and Actuators B: chemical, 76(1-3): 281-285.
    106. Zhang N. Q., Wang M. H., Wang N., 2002. Precision agriculture—a worldwide overview [J]. Computers and Electronics in Agriculture, 36: 113-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700