虚拟战场环境中武器平台实体的地形跟踪匹配技术研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地形跟踪匹配技术是在虚拟环境中实现运动实体仿真逼真性的重要技术之一,在虚拟战场、虚拟城市、车辆驾驶训练系统、电脑游戏等应用领域都有着广泛的需求。
     人们要求在虚拟世界中获得与现实世界相似的视觉体验,那么行进中的地表运动实体(如:汽车、坦克)就应该紧贴地面行驶,随着地面的起伏而起伏颠簸,而不应该长时间地腾空飞行,或者钻入地形内部。实现这一目标的技术就被称为地形跟踪匹配技术。而地形内部的不可钻入特性,实际上也可以看成是地面固体物理特性的反映。
     地形跟踪匹配技术与地形表面绘制方法密切相关,本文简要介绍了快速的连续LOD地形表面绘制算法,并在此基础上提出了地面武器平台实体的地形跟踪匹配算法。基于MultiGen-Paradigm公司的视景仿真软件Vega,编制了运动战车地形跟踪匹配仿真试验程序,取得了良好的试验效果。本文还研究提出了水下武器平台实体的地形跟踪匹配算法。本文分析讨论了虚拟战场环境中与运动武器平台实体相关的碰撞检测问题,并部分实现了碰撞检测方法。
     本文的研究对于增强虚拟战场环境中运动武器平台仿真的逼真性有重要意义。
The Terrain Following and Matching Technology is one of the important technologies to implement simulating-fidelity of locomotive entities in virtual environment. It is widely required in many fields, such as virtual battlefield, virtual city, vehicles drive-training system and computer games.
    People hope to have a really visual experience in the virtual world just like in the real world. Thus the locomotive entities that should drive on the surface of the terrain should run just on the terrain. They should jounce according to the elevation change of the terrain. It is not wanted that they fly above the ground for much longer time or that they are driven into the terrain. The technology to reach these goals is named as terrain following and matching technology. And the characteristic that the terrain mustn't be penetrated can also be thought of as the solid physical characteristic of the terrain.
    The terrain following and matching technology has a close relationship with the technology of terrain rendering. In this thesis, a fast continuous LOD terrain-rendering algorithm [6,31] is presented. Based on this terrain surface rendering algorithm, a terrain following and matching algorithm of on-land weaponry platform entities is proposed and implemented. The landscape simulation software tool of MultiGen-Paradigm incorporated, Creator and Vega, is used. The whole simulation programs are composed of some characteristics of the software tool, our own terrain surface rendering algorithm and the terrain following and matching function. The simulation result is well and effective.
    In this thesis, the terrain following and matching algorithm of under-water weaponry platform entities is proposed, too. And the collision detection problem in the virtual battlefield is analyzed and part of the collision detection algorithms is implemented in the simulation program. The achievements of this thesis have important practical and realistic significance to enhance the simulation-fidelity of locomotive weaponry platform entities in the virtual battlefield.
引文
[1]汪成为,高文,王行仁,《灵境(虚拟现实)技术的理论、实现及应用》,清华大学出版社,广西科学技术出版社,1996
    [2]汪成为,灵境技术与人机和谐仿真环境,计算机研究与发展,1997,34(1):1-13
    [3]赵沁平,《DVENET分布式虚拟环境》,北京:科学出版社,2002
    [4]王志强,洪嘉振,杨辉,碰撞检测问题研究综述,程序学报,1999年5月,第十卷第五期
    [5]J.W. Barrus and R.C. Waters, QOTA: A Fast, Multi-Purpose Algorithm For Terrain Following in Virtual Environments, technical report 96-17, MERL Cambridge MA, July 1996
    [6]王林旭,李思昆.快速的连续LOD地形表面绘制算法.程序学报(审稿中)
    [7]郭齐胜,马亚龙,李光辉等,车辆驾驶仿真中地形跟踪匹配的数学模型,装甲兵工程学院学报,1999,13(1):56-69
    [8]吴耀武,薛青,王精业,潘伍朝,JM3B坦克驾驶模拟器视景仿真系统,系统仿真学报,1995.5
    [9]朱竞夫,王钦钊,朱斌,DTM在坦克视景仿真中的应用,装甲兵工程学院学报,1998年第十二卷第二期
    [10]Ming C. Lin & Stefan Gottschalk, Collision Detection between Geometric Models: A Survey, university of North Carolina
    [11]曾芬芳,《虚拟现实技术》,上海交通大学出版社,1997.6
    [12]宋汉辰,魏迎梅,吴玲达,虚拟环境中三维模型与地形的匹配,企业信息化高级论坛暨全国第十二届CAD/CG学术会议论文集,中国,贵州,2002.8
    [13]陈利平,李思昆,虚拟坦克装甲车运动仿真中的碰撞检测算法研究,计算机工程,2002.1
    [14]王兆其,赵沁平,汪成为,虚拟环境实体物理特性的表示与处理,计算机研究与发展,1998.2
    [15]潘晓辉,王林旭,李思昆,《虚拟环境中地面运载实体地形匹配的一种新方法》,计算机工程与应用,2002年第16期
    [16]李丽荣,沈春林,陆宇平,王超,在SGI图形工作站上实现低空突防三维视景及跨平台实时仿真,南京航空航天大学学报,2002年4月
    [17]Martin Held & James T. Klosowski & Joseph S.B. Mitchell, Evaluation of Collision Detection Methods for Virtual Reality Fly-Throughts, Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794-3600
    [18]Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, Madhav K. Ponamgi, Interactive and Exact Collision Detection for Large-scaled Environment, Computer Science Department, University of North Carolina
    
    
    [19] Greenspan, M. A. and Burtnyk, N., Real Time Collision Detection, United States Patent No. 5,347,459, Sept. 13, 1994
    [20] L.D. Floriani, E. Puppo, Hierarchical triangulation for multiresolution surface description. ACM Transactions on Graphics, 1995,14(4):362~410
    [21] Duchaineau M, Wolinsky M, Sigeti D E et al. ROAMing terrain: real-time optimally adapting meshes. Proceedings of IEEE Visualization'97, 1997,81-88
    [22] Zhao Youbing, Zhou Ji, Shi Jiaoying and Pan Zhigeng, A fast algorithm for large-scale terrain walkthrough, In Peng Qunsheng ed. Proceedings of CAD/Graphics'2001, Kunming: International Academic Publishers, 2001,567-572
    [23] Lindstrom P, Koller D, Ribarsky W et al, Real-time, continuous level of detail rendering of height fields, Proceedings of SIGGRAPH'96, 1996.109-118
    [24] Rottger S, Heidrich W, Slusallek P et al., Real-time generation of continuous levels of detail for height fields, In: Sixth International Conference in Central Europe on Computer Graphics and Visualization'98, 1998,315-322
    [25] Blow J., Terrain rendering research for games, Slides for SIGGRAPH'2000 course, 2000
    [26] Blow J., Terrain rendering at high levels of detail, Game Developers' Conference 2000,2000
    [27] Lindstrom P, Pascucci V., Visualization of large terrains made easy, Proceedings of IEEE Visualization'2001,2001
    [28] Hoppe H. Smooth, view-dependent level-of-detail control and its application to terrain rendering, Proceedings of IEEE Visualization'98, 1998,135-142
    [29] Ogren A., Continuous level of detail in real-time terrain rendering, Master's thesis, 2000,http://www.cs.umu.se/~tdv94aog/ROAM.pdf
    [30] 众 勰编著,《潜艇基础知识》,国防工业出版社,1985年2月第一版
    [31] 王林旭,李思昆,潘晓辉,动态地形的实时可视化,计算机学报,审稿中
    [32] Tetsuya U, Toshiaki O, Mario T. Collision detection in motion simulation, Computer & Graphics, 1983,7(2):285~293
    [33] Chin F, Wang C A. Optimal algorithms for the intersection and the minimum distance problems between planar polygons, IEEE Transactions on Computers, 1983,C-32(12): 1203~1207
    [34] 覃中平,张焕国,确定凸多边形平移时最初碰撞部位的最优算法,计算机学报,1992,15(3):171~177
    [35] Erdmann M, Lozano-Perez T. On multiple moving objects. In: Wesley M A ed. Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, N J: IEEE Computer Society Press, 1986. 1419~1424
    [36] Whitesides S H. Computational geometry and motion planning. In: Toussaint G T ed. Computational Geometry. North-Holland, Amsterdam: Elsevier Science Publish Company, 1985. 377~427
    [37] 居乃鵕,《装甲车辆动力学分析与仿真》,国防工业出版社,2002.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700