干旱胁迫条件下花生叶片蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在其生长过程中经常会遭受到不同程度的生物和非生物逆境胁迫,这些胁迫严重影响植物的生长发育,并对农业生产造成极大的负面影响。花生是重要的油料作物和经济作物。我国是世界上种植花生的主要国家之一,花生产区主要分布于干旱和半干旱地区。干旱严重影响花生的产量和品质,是花生生产的首要限制因子。我国有70%的花生面积受到不同程度的干旱危害,平均减产20%以上,造成巨大的经济损失。因此,解决干旱对花生生产的影响是当务之急。
     蛋白质组学可以研究许多基因组水平上无法体现的层面,如:基因表达的翻译水平、翻译后的各种蛋白质修饰以及蛋白质的相互作用等。近年来,植物蛋白质组学的研究日益增多,主要集中在拟南芥、水稻等模式植物上,研究范围包括在非生物因子的环境胁迫条件下的生理变化,如干旱、高盐、缺氧、ABA处理和机械损伤等,生物因子如菌根真菌以及与植物共生关系的根瘤菌对植物生长的影响。还有植物组织器官如根、茎、叶、花、果实、种子发育过程中的蛋白质变化。此外植物蛋白质组学研究已经深入到亚细胞水平,即研究在一个细胞器内表达的蛋白质组,这些细胞器包括叶绿体、线粒体、内膜系统等,而且还涉及植物群体遗传方面,包括基因多样性和表型多样性之间的关系,基因突变引起的蛋白质表达变化,植物激素的信号传导和作用机理等方面。
     花生是重要的油料作物,具有很高的营养价值,为异源四倍体植物,基因组庞大(约2.8×109 bp),其蛋白质组学的研究尚处于起步阶段。
     本研究以花生品种鲁花14为实验材料,PEG6000模拟干旱环境,提取叶片可溶性蛋白进行双向电泳分析。在三氯乙酸/丙酮沉淀法的基础上,对样品抽提、样品溶解、胶条pH范围选择、蛋白上样量、SDS-聚丙烯酰胺凝胶电泳等关键步骤进行改进,获得了蛋白点较多、重复性好的双向电泳图谱。花生叶片蛋白质双向电泳选用pH 4-7的IPG胶条,采用考马斯亮蓝染色法,在上样量为280μg时,得到效果较佳的电泳图谱。2-DE图谱上蛋白点数量约480个,图像清晰,蛋白点无明显拖尾现象,这为开展花生叶片蛋白质组研究奠定了基础。经过比对分析,发现了40个差异蛋白点,其中有17个上调表达,23个下调表达。然后利用质谱技术(MALTI-TOF MS)进行鉴定,并通过数据检索,得到了5个与干旱胁迫相关的差异蛋白质。
Plant is often exposed to biotic and abiotic stresses of varying degrees in growth process which affected plant growth and development badly and cause huge negative effect to agriculture. Peanut is an important oil and cash crop. China is one of the most vital peanut-cultivated countries in the world. Peanut distributes mainly in arid and semi-arid regions. Drought significantly affects the yield and quality of peanut. It is reported that 70% of peanut area in China are in various degree of drought and the average decrease in yield was more than 20%. Therefore, it is essential to resolve the negative effect of drought stress to peanut production.
     The proteomics can be implied in many fields such as the protein expression level,the sequence of amino acids, the post-translational modification, the protein location and the protein-protein interaction, which cannot be solved by genomics. The proteome of many plants, such as Arabidopsis, rice and corn, has been studied. The physiological changes under various stresses, such as drought, high salt content, hypoxia, ABA treatment, and mechanical damage, have been investigated. Influence on plant growing by biologic factors such as mycorrhizal fungi and plant accompanied rhizobium, changes of protein in the growing process of plant's tissue such as root, stem, leafe, fruitage, and seed. Proteomics has also extended its studying field to sub-cell level, meaning to study proteome inside organelles including chloroplast, mitochondria, Internal membrane system etc. Some other fields are also studied in Proteomics, such as the relationship between genotypic diversity and phenotypic diversity, protein diversification caused by gene mutation, mechanism of phytohormone and so on.The results show that both quantitative and qualitative changes of many proteins are induced under these stresses. Moreover, the study of plant proteomics can be conducted at the subcellular level.
     Peanut is an important oil crop and possess high nutritional value, it's a kind of allotetraploid plant. The study of peanut at the genomic level, however, is limited due to its huge genome. The peanut proteomics is also at an initial stage.In the present study, leaf soluble proteins were extracted from a kind of peanut (Luhua 14) and were analyzed by dielectrophoresis. Well reproduced dielectrophoresis spectra with a large number of protein spots were obtained on the base of precipitation method using trichloroacetic acid and acetone as solvents. Sample extraction, protein dissolution, range of pH, protein amount, SDS-polyacrylamide gel electrophoresis and other key steps were improved. Better dielectrophoresis spectra were obtained when 280μg of protein was used and the pH of IPG adhesive tape was 4-7. About 480 protein spots were observed clearly from the 2-DE spectrum while no obvious tailing phenomena was observed. 40 protein diversity were found according to analysis and comparation, 17 of them are up-regulation of experssion and 23 of them are down-regulation of experssion.Five differential proteins corresponding to drought stress were confirmed through MALTI-TOF MS measurements and data retrieval. Although the results caused by in-gel digestion are unsatisfactory, the presented in this study contributes to the peanut leaf proteomics.
引文
[1] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.Nature,2000,408:796~815.
    [2] Wilkins M R, Sanchez J C, Williams K L, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology andgenetic Engineering Reviews,1995,13:19-45
    [3]戴景瑞.发展玉米育种科学迎接21世纪的挑战.作物杂志,1998,6:1~4
    [4] Anderson NI , Anderson NG. Proteome and Proteomics : new technologies , new concepts , and new words[J ] . Electrophoresis,1998,19 :1 853 - 1 861
    [5] Blackstock WP , Weri WP. Proteomics : quantitative and physical mapping of cellular proteins. Trends Biotechnol,1999,17(3) :121– 127
    [6] Pandey, A. & Lewitter, F. Nucleotide sequence databases: a gold mine for biologists. Trends Biochem.Sci, 1999,24, 276–280
    [7] Brenner, E.Errors in gene annotation. Trends in Genetics,1999,15: 132-133.
    [8] Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol,1999,19, 1720-1730
    [9] Wasinger VC, Cordwell SJ , Cerpa-Poljak A , et al. Progress with gene-product mapping of the Mollicutes : Mycoplasma genitalium .Electrophoresis,1995,16(7) :1 090 - 1 094.
    [10] P. G. Righetti.Immobilized pH Gradients: Theory and Methodology Elsevier Publishing Company, 1990,February 1.
    [11] Gygi S P, Corthals G L, Zhang Y et al. Evaluation of two-dimentional gel electrophoresis-based proteome analysis techonology. PNAS, 2000, 97: 9390-9395
    [12] O’Farrell P H. High resolution two dimensional electrophoresis of protein. J Biol Chem,1975, 250: 4007-4021.
    [13] Bjellqvist B, Righetti P G et al. Isoelectric focusing in immobilized pH gradient: principle,methodology and some applications. J Biochem Biophys Methods, 1982, 6: 317-339
    [14] Patton W,Lim M.,Shepro D.Protein detection using reversible metal chelate stains. In: Link A., ed.Methods in Molecular Biology, Vol. 112, 2-D Proteome Analysis Protocols. Totowa NJ, Humana Press, 1999,331-339
    [15] Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, DavisonM.Validation and development of fluorescent two-dimensional gel electrophoresis proteomics technology. Proteomics,2001,1: 377–396
    [16] Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I.A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics,2003,3: 36–44
    [17] Urquhart B L, Atsalos T E, Rcach D, et al. Proteomic contigs'of Mycobacterium tuberculosis and Mycobacterium bovis(BCG) using novel immobilized pH gradients. Electrophoresis, 1997, 18 (8): 1384- 1392
    [18]俞利荣.曾嵘.夏其昌.蛋白质组研究技术及其进展.生命的化学,1998,18(6):4-9.
    [19] Fields S. Proteomics in Genomeland. Science,2001,291(2) :1 221 - 1 224.
    [20] Opiteck G.J,K.C. Lewis., Jorgenson J.W. Comprehensive on-line LC/LC/MS of proteins. Analvtical Chemistrv,1997,69:1518-1524
    [21] Link A.J., Eng J., Schieltz D.M., et al. Direct analysis of protein complexes using massspectrometry. Nature Biotechnol,1999,17:676-682
    [22]孙志宾.盐芥Th TRXh功能分析和盐芥不同生态型的比较蛋白质组学初步研究[D].山东师范大学博士学位论文,2006:10-13
    [23] Henzel W J,Billed T M, Watanae C,et al.Identigying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence database. Prooc Natl Acad Sci USA, 1993,90: 5011-5015
    [24]靳文海.多维液相色谱-质谱联用技术在蛋白质组学中的应用[D].中国科学院研究生院(大连化学物理研究所)博士学位论文,2005:6-9
    [25]袁新雨.应用液相色谱串联质谱技术对WHV/C-myc转基因肝癌小鼠模型的蛋白质组学研究[D].中国科学院研究生院(上海生命科学研究院)硕士学位论文,2007:5-8
    [26] Lund,A.A.and P.H. Blum, Heat-stress response of maize mitochondria, 1998.116:p. 1097-1110.
    [27] Nover,L,and K.D.Scharf,Synhesis,modification and structural binding of heat shock.
    [28] Kim,K.P.and M.K.Joe,Tobacco small heat-shock protein.NtHSP18.2,has broadsubstrate range as a molecular chaperone.Plant Scienc,2004.167:p. 1017-1025.
    [29] Cui,S.X.,et al., A proteomic analysis of cold stress responses in rice seedlings.Proteomics,2005.5: p. 3162-3172.
    [30]Meza-Basso,L,et al., Changes in protein synthesis in rapeseed (Brassica napus )seedling during a low temperature treatment.Plant Physiology,1986.62:p. 733-738.
    [31] Bae,M.s.,et al.,Analysis of the Arabi-dopsis nuclear proteome and its response to cold stress.Plant J.,2003. 36:p. 652-663.
    [32] Danyluk,J.and E.Rassart , Gene expression during cold and heat shock in wheat.Biochem.Cell Biol., 1991.69:p.383-391.
    [33] Salekdeh,G.H.,J.Siopongco,L.J.Wade,B.Ghareyazie& .Bennett.Proteomic analysis of rice leaves during drought stress and recovery .Proteomics, 2002,2:1131~1145.
    [34] Agrawal, G.K., R.Rakwal, M.Yonekura, A.Kubo& H.Saji. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (OryzasativaL.) seedlings.Proteomics, 2002,2:947~959.
    [35] Chang.W.and L.Huang,Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to low-oxygen environment and identification of proteins by mass spectrometry. Plant Physiology. 2000.122:p.295-316
    [36] Shen,S.andY.Jng, Proteomics approach to identify wound-response related proteins from rice leaf sheath, Proteomics,2003.3:p.527-535
    [37] Shen, S., Y.Jing&T.Kuang.Proteomics approach to indentify wound_response related proteins from rice leaf sheath. Proteomics, 2003,3:527~535.
    [38] Moons, A., J.Gielen, J.Vandekerckhove, D.van der Straeten G.Gheysen & M.vanMontagu. An abscisic_acid and salt_stress_responsive rice cDNA from a novel plant gene family Planta, 1997,202:443~454.
    [39] Riccaretal.,1998 Riccardi,F.,P.Gazeau,D.deVienne&M.Zivy. Protein changes in response to progressive water deficit in maize,Quantitative variation and polypeptide identification.Plant Physology, 1998,117:1253~126
    [40]Moons,A.,J.Gielen,J.Vandekerckhove,D.vanderStraeten,G.Gheysen&M.vanMontagu. Anabscisic_acid and salt_stress_responsive ricec DNA from a novel plant gene family. Planta, 1997,202:443~454
    [41]Costa,P.,N.Bahrman,J.M.Frigerio,A.Kremer&C.Plomion.Water_deficit_responsive proteins in maritime pine.PlantMolecularBiology, 1998,38:587~596
    [42] Rey,P.,G.Pruvot,N.Becuwe,F.Eymery,D.Rumeau&GPeltier. A novel thioredoxin_like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L The Plant Journal, 1998,13:97~107.
    [43] Pruvot,G.,S.Cuine,G.Peltier&P.Rey.Characterization of a novel drought_induced 34_kDa protein located in the thylakoids of Solanum tuberosum L.plants.Planta, 1996,198:471~479.
    [44] Saalbach,G.,P.Erik,and S.Wienkoop,Proteomics,2002,2:p,325-337.
    [45] Smolka,M.B.and D.Martins,Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution.Proteomics,2003.3:p.1111-1118.
    [46] Mathesius,U, et al,pProteomics. 2001. 1:p. 1424-1440.
    [47] Winzer,Tet sl,Mol,Plant Microbe Interact. 1999. 12: P. 218-226.
    [48] Saalbach, G., P.Erik S. Wienkoop.Characterisation by proteomics of peribacteroid space and peribacteroid membrane Preparations from pea (Pisum sativum) symbiosomes. Proteomics, 2002,2:325~337.
    [49] Wienkoop, S.&G.Saalbach. Proteome analysis. Nove proteins identified at the peribacteroid membrane from Lotus Japonicus root nodules. Plant Physiology, 2003,131:1080~1090.
    [50] Porubleva, L ,et al, The proteome of maize leaves: Use of gene sequences, and expressed sequence lag data for identification of proteins with peptide mass fingerprints. Electrophoresis, 2001,22: p. 1724-1738.
    [51] Wilson, K, a, et al,The proteomics of senescence in leaves of white clover, Trifolium re-pens (L). protenmics, 2002. 2: p. 1114-1122.
    [52] Chang, W, and L,Huang,Paterns of protein synthesis and tolerance of anoxia in root tips of maize seedings acclimated to a low-oxygen environment and identification of proteins by mass spectrotry. Plant Physiology, 2000. 122: p. 295-316.
    [53] Komatsu. S. and N. Tanaka, Rice proteome analysis: A step toward functional analysis of the rice genome. Proteomics. 2005.5:p.938-949
    [54] Gallardo, K, andC, Job, Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology,2001, 126: p.835-848.
    [55] Soria, C, et al,Plant Physiol, 2006. 140: p.349-363.
    [56] Santoni, V.C. Bellini,and M.Caboche, Use of two-dimensional protein pattern analysis for the characterization of Arabidopsis thaliana mutants. Plant,994.192:p.557-566
    [57] Komatsu,S.,H.Kajiwara&H.Hirano. A rice protein library a data_file of rice proteins separated by two_dimensional electrophoresis.Theoretical and Applied Genetics, 1993,86: 953~942.
    [58] Komatsu,S., A.Muhammad& R.Rakwal. Seperation and characterization of proteins from green and etiolated shoots rice (OryzasativaL.): towards a rice proteome.Electrophorsis, 1999,20:630~636.
    [59] Komatsu,S.,R.Rakwal&Z.Li. Separation and characterization of proteins in rice (Oryzasativa) suspension culture cells. Plant Cell Tissue and Organ Culture, 1999,55:183~192.
    [60] Zhong,B.,H.Karibe,S.Komatsu,H.Ichimura,Y.Nagamura,T.Sasaki&H.Hirano. Screening of rice genes from a cDNA catalog based on the sequence data_file of proteins separated by two_dimensional electrophoresis. Breeding Science, 1997, 47: 245~251.
    [61] Shen,S.,Y.Jing&T.Kuang. Proteomics approach to identify wound_response related proteins from rice leafsheath.Proteomics, 2003,3:527~535.
    [62] Prime, T.A., D.J.Sherrier, P.Mahon, L.C.Packman& PDupree. A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis, 2000, 21:3488~3499.
    [63] Mayfield,J.A.,A.Fiebig,S.E.Johnstone&D.Preuss.Gene families from the Arabidopsis thaliana pollen coat proteome.Science, 2001,292:2482~2485.
    [64] Dafny-Yelin,M.,et al., Planta, 2005.222:p.37-46
    [65] Holmes-Davis,R.,et al.,Proteomics,2005.5:p.4864-4884.
    [67]彭振英.小麦渐渗系耐盐抗旱的蛋白质组学比较研究[D].山东大学博士学位论文,2008:26-9
    [68] Vincent, D, et al, Plant Physiol, 2005, 137: p.949-960.
    [69] Sheoran, I.S. et al, proteomics. 2005. 5: p.3752-3764.
    [70] Gallardo, K., et al., proteomics of medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiology, 2003. 133: p.664-682.
    [71] Hajduch,M.,et al., A systematic proteomic study of seed filling in soybean: Eestablishment of high-resolution toe-dimensional reference maps, expression profiles, and an interactive proteome database。Plant Physiology,2005.137:p.1397-1419
    [72] Canovas,F.M., et al., Plant proteome analysis. Proteomics,2004.4:p.285-298
    [73] Schwacke,R.,U.I.Flugge, and R. Kunze, Plant Physiol. Biochem., 2004.4:p.285-298.
    [74] Friso,G.,et al..,Plant Cell.,2004,16:p.478-499.
    [75] Kleffmann,T.,et al.,Plant Cell Physiology,2006.47:p.432-436.
    [76] Heazlewood,J.L. andA.H.Millar,Nucleic Acids res.,2005,33:p.605-610.
    [77] Rollland,N.,et al..,Photosynth.Res.,2003:p.205-230.
    [78] Kleffmann, T., et al., Curr. Biol., 2004. 14: p.205-230.
    [79] Peltier,J.B., et al., J. Biol. Chem., 2004. 14: p.49367-49383.
    [80] Schubert, M., et al., proteome map of the chloroplast humen of Arabi-dopsis thaliana, J Biol Chem., 2002.277: p.8354-8365.
    [81] peltier, J.B., et al., Central functions of the luminal and peripheral thylakoid proteome of Arabidopsis determined by experimenta-tion and genome-wide prediction., Plant Cell., 2002. 14: p.211-236.
    [82] Baginsky S, Gruissem W.Chloroplast proteomics: potentials and challenges. J Exp Bot,2004,55: 1213–1220
    [83] Wienkoop S, Glinski M, Tanaka N, Tolstikov V, Fiehn O, Weckwerth W.Linking protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins. Rapid Commun Mass Spectrom,2004,18: 643–650
    [84] Milla, r.A.H., et al., analysis of the Arabidopsis mitochondrial proteome., Plant Physiology, 2001. 127: p.1711-1721.
    [85] Kristensen, B.K., et al., Phytochemistry., 2004. 65: p.1839-1851.
    [86] Taylor, N.L., Mol.Cell. proteomics., 2004.3:p.675-691
    [87] Alexandresson,E.,et al.,Arabidopsis plasma membrance proteomics identifies components of Transport,signal transduction and membrance trafficking.Plant Cell Physiology,2004.45:p.1543-1556
    [88] Marmagne,A.,et al.,Mol.Cell.Proteomics.,2004.3:p.675-691.
    [89] Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I,Shimazaki KI, Maeshima M, Yokota A, Tomizawa KI, Mimura T.Isolation of intact vacuoles and proteomic analysis of tonoplast fromsuspension-cultured cell of Arabidopsis thaliana. Plant Cell Physiol,2004,45:672–683
    [90] Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibrat R.Large-scale characterization of integral proteins from Arabidopsisvacuolar membrane by two-dimensional liquid chromatography. Proteomics,2004,4: 397–406
    [91] Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV.The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell,2004,16: 3285–3303
    [92] Carter,C.,et al.,Plant Cell,2004.16:p.3285-3303.
    [93]Konishi, H.,M. Meashima, and S. Koumatsu,J. Proteome Res., 2005. 4: p.1775-1780.
    [94] Dunkley TPJ, Watson R, Griffin JL, Dupree P, Lilley KS.Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics,2004,3: 1128–1134
    [95] T. Barreneche, N. Bahrman& A. Kremer.two dimensional gel electrophoresis confirms the low level of genetic differentiation between quercus roburl. and quercus petraea (matt.) liebl. Forest Genetics, 1996,3 (2):89-92, 1996
    [96] Zivy, M., et al., Study on nuclear and cytoplasmic genome expression in wheat by two-dimensional gel electrophoresis l, First results on 18 alloplasmic lines. Theor Appl Genet, 1983.66:p.1-7.
    [97] David, J.L., M.Zivy, M.L.Cardin&P.Brababt. Protein evolution in dynamically managed populations of wheat: adaptive responses to macro_environmental conditions.Theoretica and Applied Genetics, 1997,95:932~941.
    [98] Herbik,A., A.Giritch., C.Horstmann, R.Becker, H.JBalzer, H.Baulmein& U.W.Stephan..Iron and copper_nutrition dependent changes in protein expression in a tomato wild type and the nicotianamine_free mutant chloronerva.Plant Physiology, 1996,111:533~540.
    [99] von Wiren, N., J. B. Peltier, D. Rouquie, M. Rossignol & J. F. Briat. Four root plasmalemma polypeptides under-represented in the maize mutant ys1 accumulate in a Fe-efficient genotype in response to iron-deficiency. Plant Physiology and Biochemistry, 1997,35: 945~950.
    [100] Komatsu, S., Muhammad, A., and Rakwal, R. Separation and characterization of proteins from green and etiolated shoots of rice: towards a rice proteome. Electrophoresis,1999,20, 630–636
    [101] Damerval C, Le Guilloux M. Characterization of novel proteins affected by the o2 mutation and expressed during maize endosperm development. Mol Gen Genet,1998,257(3):354-61
    [102] Shen,S.&S.Komatsu.Characterization of proteins responsive to gibberellin in the leaf sheath of rice (Oryza sativa L )seedling using proteome analysis.Biological and Pharmaceutic Bulletin, 2003, 26: 129~136.
    [103] Moons, A., J.Gielen, J.Vandekerckhove, D.van der Straeten G.Gheysen & M.vanMontagu. An abscisic_acid and salt_stress_responsive rice cDNA from a novel plant gene family Planta, 1997,202:443~454.
    [104] Rakwal, R.&S.Komatsu.Role of jasmonate in the rice (Oryza sativa L.)self-defense mechanism using proteome analysis.Electrophoresis, 2000,21:2492~2500.
    [105] Aebersold R, Goodlett DR.Mass spectrometry in proteomics. Chem Rev,2001,101: 269–295
    [106] Kersten, B., G..K. Agrawal, and H, Iwahashi, Plant phosphoproteomics a long road aheadProteomics. 2006. 6:p. 5517-5528.
    [107] Felix, G and D.G. Grosskopf, Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc. Natl. Acad. Sci. U. S. A., 1991. 88: p.8831-8834.
    [108] Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P.Prediction of glycosyl phosphatidyl inositol-anchored proteins in Arabidopsis: a genomic analysis. Plant Physiol, 2002,129: 486–499
    [109] Elortza. F., et al., Proteome Res., 2006. 5: p.935-943.
    [110] Denison C, Kirkpatrick DS, Gygi SP.Proteomic insights into ubiquitin and ubiquitin-like proteins. Curr Opin Chem Biol,2005,9: 69–75
    [111] Lund,A.A.and P.H. Blum, Heat-stress response of maize mitochondria, 1998.116:p. 1097-1110.
    [112] Nover,L,and K.D.Scharf,Synhesis,modification and structural binding of heat shock.
    [113] Hasegawa, P.M., et al., Plant cellular and molecular responses to high salinity. Annual review of Plant Physiology and Plant Molecular Biology, 2000. 51: p.463-499.
    [114] Rey, P., et al., A novel thioredoxin-like protein located in the chloroplast in in-duced by water deficit in Solanum tuberosum L. plant J., 1998. 13: p.97-101.
    [115] Riccardi, F. and P. Gazeau, Protein changes in response to progressive water deficit in maize, quantitative variation and polypeptide identification. Plant Physiology, 1998.117: p.1253-1263.
    [116]张君诚.蔡宁波.张新文.庄伟建.钙影响花生胚胎发育/败育特异蛋白质的筛选与鉴定,作物学报,2007,33(5):7-11.
    [117] Hisao T C. Physiologicai effects of plant inresponse to water stress[ J]. Ann Rev Plant Physiol,1973,24:519—570.
    [118] Gorg A,Obermaier C,Boguth G,et a1.Recent developments in two-dimensional electro horesis with immobi—lized pH gradients:Wide pH gradients up to pH 12,longer separation distances and simplified procedures.Electrophoresis,1999,20(4/5):712~717
    [119] Wu FS,Wang MY.Extraction of proteins for sodium dodecyl sul-fate-polyacrylamide gel electrophoresis from protease-rich plant tis-sues.Anal Biochem.,1984,139(1):100-103.
    [120] Nandaknmar MP,Shen J,Raman B,Marten MR.Solubilization of trichloroacetic acid(TCA)precipitated microbial proteins via NaOH for two-dimensional electrophoresis.J proteome Res.,2003,2:89-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700