不同控流装置对单流板坯连铸中间包钢液流动状态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中间包是连铸过程中去除钢液夹杂的最重要的装置,为了提高铸坯质量,国内外冶金工作者开展了一系列研究工作以使中间包的冶金功能发挥得更好。其主要措施是设计合适的控流装置以延长钢水在中间包内的停留时间和减少死区体积,促进钢水夹杂物的上浮,从而提高钢水质量。
     本文以某厂单流中间包为研究对象,首先采用数值模拟进行前期分析,然后进行物理模拟,利用RTD曲线、冲刷速度、开始卷渣液位和流场显示等评价指标,研究不同中间包内腔结构以及不同控流装置的组合下中间包内钢液的流动状况,最终优化出合适的内腔结构和最佳控流方式组合及参数。
     研究结果表明:中间包底部形状为凹底结构时更加有利于减少残钢量,并且凹底尺寸越大,开始卷渣液位越低,有利于降低残钢量和提高钢水收得率;另一方面,少量增加中间包侧壁与长水口距离对于减少包壁冲刷和改善中间包流场没有明显效果。
     在不同流量下,各控流装置均能够在一定程度改善钢液的流动状况,但各控流装置对中间包内钢液的流动影响效果均不同,只有合理的组合才能获得最佳的效果。挡墙明显地减少了钢包注流对浇注区的扰动作用,对夹杂物的上浮具有重要作用;坝的应用能有效地改变钢水的流动路径,消除短路流,促进表面流的发展,对夹杂物的上浮去除亦有重要的作用;气幕挡墙的作用与坝类似,但由于底部气泡的上浮作用,对钢液流动影响更为明显,且气泡的存在能够更好地促进夹杂物的上浮;湍流控制器的应用很好地减缓了钢包注流对中间包壁面的冲击,且冲击区的钢液混合得更加均匀,这对促进夹杂物的上浮和减少冲击区的死区体积具有重要的意义。在没有湍流控制器的条件下,坝对中间包内钢液流动的影响比气幕挡墙效果更好;但湍流控制器在中间包内的应用,会在一定程度上减弱坝对中间包内钢液的流动的影响效果,能很好地增加气幕挡墙在中间包内的应用效果,增加夹杂物上浮的能力,因此最佳的控流装置组合为湍流控制器和挡墙与气幕挡墙的组合。
     工业实验证明,该中间包内30μm以上的大颗粒夹杂物基本去除,5~30μm的小颗粒夹杂物弥散分布在中间包内,中间包的冶金效果达到要求。
Tundish is the most important device to remove inclusions in continuous casting process. In order to improve slab quality, a series of studies have been carried out to make the tundish metallurgy functioning better. The main measure is to set suitable flow control devices in tundish to extend the mean residence time, reduce dead volume, and promote inclusion removing, as a result to improve steel quality.
     Mathematical modeling and water modeling were used to study the structure optimization of one strand tundish. The structure and the flow control device were discussing by measuring the RTD curves, erosion velocity and the height of slag entrapment. Chose the best inner structure and flow control device.
     The results showed that concave base tundish was more favorable than the flat bottom tundish in delaying the begginning time of rotation, reducing the residual liquid steel, and improving the the yield of molten steel, and the results showed that the size of the concave base was the larger the better; Increasing the distance between the near wall and the long nozzle can not improve the flow pattern and reduce the erosion.
     The flow control devices could improve the liquid steel flow pattern, but the affects were different, only reasonable combinations could obtain the best results. The weir reduced the disturbance in injection zone, improved inclusions floating ratio; Dam can effectively change the application of molten steel flow path, eliminate the short circuit, promote the development of surface flow, and remove the inclusions the float; Gas curtain played the similar role to dam, but bubble floating promoting the inclusion floating; Turbulence inhibitor well slowed down the ladle wall injection flow, the liquid steel in the impact area mixture more uniform, which promoting inclusion and reducing the impact of floating dead zone. Without turbulence inhibitor in tundish, dam is better than the gas curtain; but the application of turbulence inhibitor will reduce the dam impact and increase the gas curtain effect, increasing the ability to float inclusions, so the best flow control device was weir and turbulence inhibitor and gas curtain combination.
     Industrial experiments shown that the inclusions larger than 30μm were removed, and 5~30μm small particles inclusions dispersed in tundish, tundish metallurgical results meet the requirements.
引文
[1]张兴中.我国连续铸钢技术的发展状况和趋势[J].钢铁研究学报, 2004, 16(6): 6.
    [2]关杰, et al.,精细化是连铸技术装备的发展方向,中国(西安)炼钢-连铸设备技术交流会论文集. 2010.
    [3]佐祥均.重钢5流方坯连铸中间包内钢液流动和夹杂物运动的研究[D].重庆大学, 2006.
    [4]王晓鸣.钢水中间包冶金技术[J].江苏冶金, 1995, (06): 9-12+15.
    [5]林晓虎,时光辉, and杨庆生.单流板坯连铸中间包结构优化[C].北京力学会第17届学术年会, 2011.
    [6]张永海,武文斐,黄军.加设控流装置的T型五流非对称中间包流动特性数值模拟研究[J].铸造技术, 2010, (07): 922-925.
    [7]景琳琳.中间包冶金技术[J].金属材料与冶金工程, 2011, (04): 56-59.
    [8]蔡开科,孙彦辉,秦哲.中间包钢水流动控制的冶金效果[J].连铸, 2008, (3): 4.
    [9] A. Espino-Zarate, et al. Fluid Flow and Mechanisms of Momentum Transfer in a Six-Strand Tundish[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2010, 41(5): 962-975.
    [10] S.K. Choudhary. Influence of Modified Casting Practice on Steel Cleanliness[J]. Isij International, 2011, 51(4): 557-565.
    [11] K. Chattopadhyay, M. Isac, and R.I.L. Guthrie. Physical and Mathematical Modelling of Steelmaking Tundish Operations: A Review of the Last Decade (1999–2009)[J]. ISIJ international, 2010, 50(3): 331-348.
    [12]潘秀兰,梁慧智,王艳红,冯士超.国内外连铸中间包冶金技术[J].世界钢铁, 2009, 9(6): 8.
    [13]孙海轶.近年来中间包技术的发展[J].材料与冶金学报, 2002, 1(1): 5.
    [14]赵文广.连铸中间包连续测温系统研究[J].包头钢铁学院学报, 2001, 20(2).
    [15]白建忠.中间包钢水红外连续测温系统研究[J].安徽冶金科技职业学院学报, 2005, 15(1): 38-43.
    [16]次英,谢植,张华.中间包钢水连续测温的新方法[J].东北大学学报:自然科学版, 2004, 25(5): 460-462.
    [17]肖兴国.冶金反应工程学[M].冶金工业出版社, 1989.
    [18]许刚.中间包内钢水控流技术[J].鞍钢技术, 2009, (4): 6.
    [19] Y. Sahai and T. Emi. Melt flow characterization in continuous casting tundishes[J]. ISIJ international, 1996, 36(6): 667-672.
    [20] G. Solorio-Diaz, et al. Modeling the effects of a swirling flow on temperature stratification of liquid steel and flotation of inclusions in a tundish[J]. Isij International, 2005, 45(8): 1129-1137.
    [21] Q.Y. Zhang, L.T. Wang, and Z.R. Xu. A new method of removing inclusions in molten steel by injecting gas from the shroud[J]. Isij International, 2006, 46(8): 1177-1182.
    [22] H. Arai, et al. Model Experiment on Inclusion Removal by Bubble Flotation Accompanied by Particle Coagulation in Turbulent Flow[J]. Isij International, 2009, 49(7): 965-974.
    [23] Q.F. Hou, et al. Modelling of inclusion motion and flow patterns in swirling flow tundishes with symmetrical and asymmetrical structures[J]. Isij International, 2008, 48(6): 787-792.
    [24] T. Debroy and J.A. Sychterz. numerical calculation of fluid flow in a continuous casting tundish[J]. Metallurgical Transactions B-Process Metallurgy, 1985, 16(3): 497-504.
    [25] Y. He and Y. Sahai. The effect of tundish wall inclination on the fluid flow and mixing - a modeling study [J]. Metallurgical Transactions B-Process Metallurgy, 1987, 18(1): 81-92.
    [26]张美杰, et al.连铸中间包内钢液流场数值模拟的研究进展[J].武汉科技大学学报(自然科学版), 2004, 27(3): 5.
    [27]万曦.湍流大涡数值模拟的现状与展望[J].航空科学技术, 2011, (02): 55-56.
    [28]朱苗勇.连铸中间包内钢液流动与传热耦合过程的计算机模拟[J].金属学报, 1997, 33(009): 933-938.
    [29]程乃良,朱苗勇,肖泽强.非等温双流连铸中间包内钢液的流动与传热特征[J].钢铁, 2001, (10): 23-25.
    [30]朱苗勇,樊俊飞.计算机模拟仿真在过程冶金中的地位和应用[J].宝钢技术, 1997, (04): 26-29.
    [31] R. Morales, et al. Mathematical simulation of the influence of buoyancy forces on the molten steel flow in a continuous casting tundish[J]. Modelling and Simulation in Materials Science and Engineering, 2000, 8: 781.
    [32] L. Garcia-Demedices, et al. Mathematical modelling of the geometry influence of a multiple-strand tundish on the momentum, heat and mass transfer of steel flow[J]. Steel research, 2001, 72(9): 346-353.
    [33]樊俊飞,朱苗勇.多流连铸中间包流动与传热耦合过程的数值模拟[J].包头钢铁学院学报, 1999, 18(003): 264-269.
    [34]曲英,王利亚.连铸中间包内钢液流动的数学模型[J].第三届冶金过程动力学和反应工程学学术会议, 1985, 4: 145-148.
    [35] M. Warzecha. Numerical and physical modelling of steel flow in a one-strand continuous casting tundish[J]. Metalurgija, 2011, 50(3): 147-150.
    [36]陈登福.连铸中间包多孔挡墙设置优化的数学物理模拟[J].过程工程学报, 2008.
    [37]陈登福.重钢5流方坯连铸中间包控流装置的数理研究[J].中国科技信息, 2008, (001): 16-16.
    [38]靳星.方坯连铸中间包内腔结构优化研究[C], 2008.
    [39]梁子福.优化中间包结构去除钢液氧化物夹杂[J].重型机械, 2010, (2).
    [40]张彩军.大容量中间包结构优化及冶金效果研究, in第一届冶金工程科学论坛论文集. 2002.
    [41]张立峰,蔡开科.中间包结构对钢水清洁度的影响[J].炼钢, 1997, 13(006): 45-48.
    [42]王建军,包燕平, and曲英.中间包冶金学[M].冶金工业出版社, 2001.
    [43] Y. Tozaki, et al. Highly Productive Technology for Producing High Quality Slabs at Kashima No. 3 Caster[C], 1993.
    [44]张立峰,蔡开科.中间包冶金技术的发展[J].炼钢, 1997, 13(004): 42-45.
    [45] S.López-Ramírez, et al. Effects of tundish size, tundish design and casting flow rate on fluid flow phenomena of liquid steel[J]. Steel research, 1998, 69(10-11): 423-428.
    [46]吴永生,喻承欢.扩容中间包冶金效果的研究[J].炼钢, 2001, 17(001): 38-42.
    [47] D.Bolger and K.Saylor. Development of a turbulence inhibiting pouring pad/flow control device for the tundish[C], 1994.
    [48]高锦国.连铸中间包结构优化及夹杂物去除的水模拟研究[J].特殊钢, 2009, 30(1): 13-15.
    [49] Y. Sahai and R. Ahuja. Fluid flow and mixing of melt in steelmaking tundishes [J]. Ironmaking & Steelmaking, 1986, 13(5): 241-247.
    [50] S. Singh and S.C. Koria. Physical modeling of steel flow in continuous casting tundish [J]. Ironmaking & Steelmaking, 1993, 20(3): 221-230.
    [51] B. Kaufmann, et al. Separation of nonmetallic particles in tundishes[J]. Steel research, 1993, 64(4): 203-209.
    [52] S.C. Koria and S. Singh. Physical modeling of the effects of the flow modifier on the dynamics of molten steel flowing in a tundish [J]. ISIJ international, 1994, 34(10): 784-793.
    [53]蔡开科,程士富.连续铸钢原理与工艺[M].冶金工业出版社, 1994.
    [54]顾武安,杨素波,礼重超.攀钢连铸中间包水力模型实验[J].钢铁钒钛, 1995, (03).
    [55]陈登福.重钢5流方坯连铸中间包控流装置的数理研究[J].特殊钢, 2007, (01): 1-3.
    [56]张邦文.连铸中间包中夹杂物聚合与去除的数学模型[J].金属学报, 2004, (06): 623-628.
    [57]彭可雕.攀成钢四流圆坯中间包控流装置数理模拟研究及应用[D].重庆大学, 2008.
    [58]侯安贵,胡会军,王洪兵.宝钢股份连铸技术应用与发展[C].第四届发展中国家连铸国际会议, 2008.
    [59]黄奥.连铸中间包挡墙设置优化的数学模拟研究[J].炼钢, 2005, 21(6): 27-29.
    [60] H. Yamanaka. Effect of argon bubbling of in tundish on removal of non-metal inclusion inslab[J]. Tetsu-to-Hagnane, 1983, 69(4): 213-216.
    [61] L. Wang, H.G. Lee, and P. Hayes. Prediction of the optimum bubble size for inclusion removal from molten steel by flotation[J]. ISIJ International(Japan), 1996, 36(1): 7-16.
    [62] A. Ramos-Banderas, et al. Mathematical simulation and modeling of steel flow with gas bubbling in trough type tundishes[J]. ISIJ international, 2003, 43(5): 653-662.
    [63] L. Zhong, et al. Fluid flow behaviour in slab continuous casting tundish with different configurations of gas bubbling curtain[J]. Ironmaking & Steelmaking, 2008, 35(6): 436-440.
    [64]金友林.板坯连铸单流中间包控流装置优化模拟研究[J].炼钢, 2009, 25(2): 5.
    [65]崔衡,唐德池,包燕平.中间包底吹氩水模型试验及冶金效果[J].钢铁钒钛, 2010, 31(001): 36-39.
    [66]王海奇,包燕平,唐德池.中间包内吹气与卷渣行为的水模拟研究[J].钢铁钒钛, 2010, 31(2).
    [67]詹树华,欧俭平,萧泽强.连铸中间包底吹气过程水模型实验研究[J].中南大学学报(自然科学版), 2004, (06): 960-964.
    [68]程乃良.梅钢40 t板坯中间包的工业试验与仿真分析[J].中南工业大学学报(自然科学版), 2001, (01): 36-40.
    [69]冯丽萍.薄板坯连铸中间包控流装置优化与吹氩物理模拟[D].东北大学, 2008.
    [70]李东辉,李宝宽.中间包底部吹气过程去除夹杂物效果的模拟研究[J].金属学报, 2000, 36(4): 411-416.
    [71]孙会菊.中间包湍流控制器[J].城市建设理论研究(电子版), 2011, (20).
    [72]李丽颖.中间包控流装置的发展与应用[J].本溪冶金高等专科学校学报, 2002, 4(4): 4.
    [73] J.Palafox-Ramos, et al. Melt flow optimisation using turbulence inhibitors in large volume tundishes[J]. Ironmaking and Steelmaking, 2001, 28(2): 101-109.
    [74] Anil Kumar, Dipak Mazumdar, and Satish C.Koria. Modeling of fluid flow and residence time distribution in a four-strand tundish for enhancing inclusion removal[J]. ISIJ international, 2008, 48(1): 38-47.
    [75] S.Lopez-Ramirez, et al. Modeling study of the influence of turbulence inhibitors on the molten steel flow, tracer dispersion, and inclusion trajectories in tundishes[J]. Metallurgical and Materials Transactions B, 2001, 32(4): 615-627.
    [76]耿建林.南钢宽厚板坯连铸中间包流场优化研究[J]. Continuous Casting, 2006.
    [77]钟良才.湍流控制装置的结构对中间包流体流动特性的影响[J].钢铁研究学报, 2002, (04): 6-9.
    [78]钟良才.单流板坯连铸中间包流体流动控制与效果[J].炼钢, 2007, 23(4): 33-35.
    [79]钟良才.单流厚板坯连铸中间包结构优化[J].炼钢, 2006, (03): 10-12+16.
    [80]汪磊.湍流控制器对T形中间包钢液流场影响的数理模拟研究[D].重庆大学, 2010.
    [81] R.D. Morales, et al. Molt flow control in a multistrand tundish using a turbulence inhibitor[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2000, 31(6): 1505-1515.
    [82]陈国军.湍流控制器对异型中间包夹杂物去除的影响[J].炼钢, 2010, 2010(3): 51-54.
    [83] R.I.L. Guthrie, K. Chattopadhyay, and M. Isac. Physical and Mathematical Modelling of Inert Gas Shrouding in a Tundish[J]. Isij International, 2011, 51(4): 573-580.
    [84]张景利,颜正国,于景坤.中间包控流装置的物理模拟研究[J].材料与冶金学报, 2010, (01): 18-21.
    [85]杨小容.连铸中间包内钢中夹杂物运动行为模拟研究[D].武汉科技大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700