Chemerin与脑梗死和动脉粥样硬化的关系及其对HUVEC功能影响的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     脑卒中是严重危害我国国民生命与健康的主要疾病,已成为我国国民的首位死因。脑梗死占全部脑卒中的50-70%,以动脉粥样硬化病变为病理基础的脑梗死是最常见的类型。因此,深入研究动脉粥样硬化的发病机制是脑梗死防治的一项重大课题。
     脂肪组织不仅是储存能量的器官,同时还以旁、自分泌和远距离分泌方式分泌生物活性因子—脂肪细胞因子。多种脂肪细胞因子如瘦素、脂联素和肿瘤坏死因子等能通过影响机体的脂质代谢,胰岛素抵抗,炎症反应等参与代谢综合征、动脉粥样硬化及相关疾病的发生与发展,脂肪细胞因子的研究已成为动脉粥样硬化性疾病的研究热点。
     Chemerin是一种新发现的脂肪细胞因子,其功能受体为G蛋白受体家族成员Chemerin样受体(CMKLR1/ChemR23), Chemerin通过作用于表达ChemR23的细胞参与机体的免疫反应及能量代谢等活动。目前研究表明,在肥胖、糖尿病及冠心病患者体内Chemerin水平有显著升高;冠状动脉的斑块上其表达丰富,提示Chemerin可能和动脉粥样硬化病变发展有关。我们推测Chemerin与颈动脉粥样硬化病变及脑梗死的发生与发展相关,关于Chemerin与脑梗死和脑梗死患者的动脉粥样硬化病变关系的研究目前国内外均无相关报道。
     内皮细胞损伤及随后的持续性炎症反应被认为是动脉粥样硬化的始动因素,多种脂肪细胞因子被证实可直接影响或协同促进血管内皮的功能紊乱诱发动脉粥样硬化进程。Chemerin是机体重要的免疫因子,在多种自身免疫疾病及炎性疾病的早期阶段介导固有免疫及适应免疫,招募未成熟免疫细胞,促进免疫细胞成熟等方面广泛参与机体的免疫反应。目前研究提示Chemerin可能在动脉粥样硬化病变中具有重要作用,但Chemerin对血管内皮细胞功能是否具有影响这一关键环节尚无研究。
     本研究是国内外首次对Chemerin与脑梗死和脑梗死患者的动脉粥样硬化病变关系探讨,以期为脑梗死及动脉粥样硬化的研究提供新的靶点,并且在国内外首次于细胞水平上探讨Chemerin对基础情况下及炎性损伤情况下的血管内皮细胞的影响,从而开拓方向,为下一步的研究提供依据。
     第一部分血浆Chemerin水平与脑梗死及颈动脉粥样硬化关系的研究
     目的:
     检测脑梗死患者血浆Chemerin水平,探讨其与脑梗死及颈动脉粥样硬化的关系,分析Chemerin与代谢指标及炎性指标的相关性,为阐明Chemerin对脑梗死和动脉粥样硬化的影响提供依据。
     方法:
     选择148例脑梗死急性期患者为病例组和57例健康对照组,采取酶联免疫吸附试验(ELISA)检测血浆Chemerin水平,分析与脑梗死的关系,通过相关性分析,研究Chemerin与代谢及炎性指标之间的关系。脑梗死组采用多普勒超声检测颈动脉,计算双侧颈总动脉平均内-中膜厚度(IMT)并依据颈动脉是否存在斑块及其性质分亚组(无斑块组46例,稳定斑块组39例和不稳定斑块组63例),通过Logistic回归分析Chemerin水平与脑梗死及斑块性质之间的关系。
     结果:
     (1)与正常对照组比较,脑梗死患者血浆Chemerin水平明显增高(P<0.01), Logistic回归分析在考虑了高血压史、糖尿病史、冠心病史、高脂血症、吸烟史、血浆超敏C反应蛋白(hsCRP)水平后,Chemerin水平增高并不能使脑梗死的发病风险增加。(OR:1.183;95%CI:0.743-1.885; P=0.479)
     (2)血浆Chemerin水平与低密度脂蛋白胆固醇(LDL-C),收缩压及炎性因子hsCRP和肿瘤坏死因子-α (TNF-α)水平正相关(P<0.05),与体重指数,空腹血糖,总甘油三酯,胆固醇,高密度脂蛋白胆固醇,舒张压水平无关;
     (3)脑梗死患者的血浆Chemerin水平与颈总动脉平均IMT呈正相关(r=0.187;P=0.023);
     (4)脑梗死患者中不稳定斑块组的Chemerin水平高于稳定斑块组及无斑块组患者,而稳定斑块组与无斑块组之间无明显差别,经Logistic回归分析在考虑了hsCRP、低密度脂蛋白胆固醇水平后,Chemerin水平并不能使不稳定斑块的风险增加(OR:1.018;95%CI:0.920-1.127:P=0.729)。
     结论:
     (1)脑梗死患者和颈动脉具有不稳定斑块的脑梗死患者拥有较高的血浆Chemerin水平;
     (2)脑梗死患者的血浆Chemerin水平与代谢指标和炎性指标相关;
     (3)脑梗死患者的血浆Chemerin水平可能可以预测动脉粥样硬化的严重程度。
     第二部分Chemerin对HUVEC功能影响的初步探讨
     目的:
     通过测定与分析多种内皮细胞分泌因子的水平,包括:细胞间粘附分子-1(intercellular adhesion molecule-1,ICAM-1)和血管细胞粘附分子-1(vascular cell adhesion molecule-1,VCAM-1),一氧化氮(nitric oxide,NO),炎性因子白介素-6(Interleukin-6, IL-6)探索不同浓度Chemerin干预对基础水平的人脐静脉内皮细胞功能的影响及生理浓度的Chemerin对肿瘤坏死因子-α (tumor necrosis factor-alpha, TNF-α)诱导的血管内皮细胞损伤模型的影响。通过检测并分析细胞内生存关键通路磷脂酰肌醇3激酶途径(Phosphatidylinositol3-kinase/Akt,P13K/Akt)中AKT,磷酸化AKT (p-AKT),内皮型一氧化氮合酶(Endothelial nitric oxide synthase,eNOS)及磷酸化内皮型一氧化氮合酶(p-eNOS)表达水平,探讨Chemerin的可能作用机制。
     方法:
     (1)培养人脐静脉内皮细胞-12细胞株(Human Umbilical Vein Endothelial Cells-12, HUVEC-12),依据不同浓度的重组Chemerin分别干预24小时或48小时,共12组,Chemerin浓度(0,5,25,50,100,200ng/ml)分别为24小时①-⑥组,48小时⑦-12组,应用Griess法测定细胞培养液上清液中NO水平;ELISA试剂盒检测细胞内IL-6、 ICAM-1、VCAM-1水平。通过单因素方差分析及多重比较,得出Chemerin对基础水平的血管内皮细胞的影响,并结合既往资料与实验结果推算最适干预浓度与时间(浓度:Chemerin100ng/ml,干预时间:24小时);
     (2) Chemerin对TNF-a诱导的HUVEC-12细胞损伤模型的影响:
     设A为未加药物的空白对照组;B为Chemerin组:给予终浓度为(100ng/ml) Chemerin干预;C为TNF-a组给予终浓度为(50ng/ml)TNF-a干预;D为Chemerin+TNF-a组给予终浓度分别为100ng/mlChemerin+50ng/mlTNF-a干预;E为LY294002组,LY294002为P13K特异性抑制剂,给予终浓度分别为100ng/mlChemerin+50ng/ml TNF-a+20μmol/LLY294002干预。于24小时应用上述方法检测细胞培养上清液中NO水平;HUVEC的IL-6、ICAM-1、VCAM-1水平,应用Real-time PCR检测各组HUVEC-12的AKTmRNA表达水平,Western Blot法测定AKT,p-AKT,eNOS,p-eNOS蛋白水平。通过统计学软件计算分析结果,以P<0.05为有统计学意义。
     结果:
     (1) Chemerin能上调HUVCE-12细胞培养上清液中的NO水平,并且在5ng/ml24小时即明显增高,其诱导作用在(0-100ng/ml)范围内呈浓度依赖(P<0.05),在25-200ng/ml浓度范围48小时组较24小时组增高无统计学意义(P<0.05),而5ng/ml组48小时组较24小时组NO的水平增高(P<0.05),各组IL-6、ICAM-1、VCAM-1之间相比无差异(P>0.05);
     (2) Chemerin组较空白对照组,NO的水平明显上升(P<0.01),p-AKT、eNOS及p-eNOS的水平增加(P<0.01),对AKT蛋白及AKT mRNA的表达无影响(P>0.05);
     (3) Chemerin+TNF-a组较TNF-a组IL-6、ICAM-1、VCAM-1、NO的水平均明显下降(P<0.01),p-AKT、eNOS及p-eNOS的水平增加(P<0.01),对AKT蛋白水平及AKTmRNA表达无影响(P>0.05)
     (4)LY294002组较Chemerin+TNF-a组ICAM-1, VCAM-1, NO增高(P<0.05),IL-6未见明显改变(P>0.05),下调p-AKT (P=0.000), p-eNOS及eNOS蛋白表达(P<0.05),但对AKT蛋白水平及AKTmRNA表达无影响(P>0.05)
     结论:
     (1) Chemerin能抑制炎性损伤的血管内皮细胞分泌粘附分子和炎性分子,可能对损伤的内皮细胞具有保护作用;
     (2) Chemerin可以上调NO的释放,以上作用与eNOS及p-eNOS活化有关,P13K/AKT-eNOS途径参与了上述作用;
     (3) Chemerin对炎性损伤下的内皮细胞具有保护潜能,可成为动脉粥样硬化研究的靶点。
Background
     Stroke is the most fatal disease with an annual estimate of more than2million new cases and at least1.5million deaths in China from the the latest report at2008. In particular, about50%-70%of patients with stro-ke are ischemic. Atherosclerosis is the pivotal process in the development of ischemic stroke.
     Adipose tissue is not only a store for energy but also appears to be an active endocrine organ that produces many cytokines, which are kno-wn as adipokines. These adipokines appear to have systemic effects on the lymphoid organs, liver, muscles, gonads, brain, and vasculature. Adipokines have been implicated in the pathogenesis of atherosclerosis. It's known that adipose tissue can cause vascular complications either directly by causing atherosclerosis and inducing inflammatory responses, or indirectly by promoting the development of insulin resistance. These atherosclerosis-inducing pathways are mediated by kinds of adipokines, including adiponectin, leptin, tumor necrosis-alpha and resistin.
     Chemerin is recently discovered as an adipokine. It regulates the immune system and participates in inflammation by promoting the recur-itment of tissue macrophages and plasmacytoid dendritic cells as well, it is also associated with adipogenesis. As studies have shown that the lev- els of Chemerin are higher in the obesity and the patients with coronary disease. Therefore, we hypothesized that an increase in Chemerin might reflect carotid atherosclerosis and Chemerin levels might be related to the incidence of cerebral infarction. Endothelial cells dysfunction is the key point of the development of atherosclerosis. It has been reported that kinds of adipokines have important roles as vasoactive hormones which may impair endothelial function directly by altering vasoactive factor production and inciting endothelial cell activation. Whether Chemerin which was originally identified as a chemoattractant impact endothelial fuction directly?
     PART01Relationship between Chemerin Levels and Cerebral Infarction and Atherosclerosis
     Objectives
     1、To examined the levels of Chemerin in patients with cerebral infarction.
     2、To investigated the correlation with specific cardiometabolic parameters and also examed the relationship between the levels of Chemerin and cartiod atherosclerosis.
     Methods
     In the present study,148patients, all of whom had acute cerebral infarction within3days participated in this study and enrolled57healthy controls with no cerebrovascular disease. Their serum Chemerin levels and clinical parameters were measured. The serum chemerin levels of two groups of individals were determined by ELISA. All the patients under-gone ultrasound in order to calculate the carotid intima-media thickness (IMT) and detect the characters and quantity of cartiod atherosclerotic plaques. To divide into three group as the standard whether with the ex-istence of vulnerable plaque, stable plaque and normal. The serum che-merin levels were assessed by logistic regression in order to elucidate the relationship between Chemerin and cerebral infartion as well as vu-lnera-ble plaques.
     Results
     Serum Chemerin levels correlated positively with the carotid IMT and systolic blood pressure, Low density lipoprotein cholesterol, high sensitive C-reactive protein and Tumor necrosis factor-α levels. The case group has higher chemerin levels than the control and the levels are hig-her in the vulnerable plaques group. Multiple regression showed Che-merin was not an independent risk factor of cerebral infartion (OR:1.183;95%CI:0.743-1.885; P=0.479) nor an independent risk factor of vulnerable plaques (OR:1.018;95%CI:0.920-1.127; P=0.729)
     Conclusions:
     Serum Chemerin levels have a significant correlation with several pro-inflammation markers and metabolic risk factors as well as the caro-tid IMT in patients with acute cerebral infarction. However, multiple binary logistic regression showed Chemerin was not an independent risk factor of cerebral infarction nor vulnerable plaques. Additional investiga-tions are necessary to fully elucidate the role of Chemerin in cerebrovas-cular disease.
     PART02The Effects of Chemerin on Human Umbilical Vein Endothelial Cells
     Objectives
     1、To investigate the effect of Chemerin on Human Umbilical Vein Endothelial cells, we measure the level of nitric oxide(NO), inter-leukin-6(IL-6), intercellular adhesion molecule-1(ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) after the stimulation of chemerin at different concentration at24hours and48hours respectively in vitro. And then to decide the optimal action time course and concentration.
     2. To explore the effects of Chemerin on TNF-alpha-treated HU-VECs-12which is the model of the research on impaired endothelial function. To investigate the effects of P13K/AKT-eNOS signal trans-duction pathway on vascular endothelial cells pretreated by chemerin.
     Methods
     1、HUVEC cells were cultured in serum-free medium before treatments for24h or48h with control groups and five different concen-trations groups(5,25,50,100,200ng/ml) of Chemerin. The total NO con-tent in cell medium by methods of Griess reagent and the protein levels of intercellular adhesion molecule-1(ICAM-1)/vascular cell molecule-1(VCAM-1) and Interleukin-6(IL-6) of HUVECs were detected by ELISA.
     2、HUVECs stimulated by TNF-a(50ng/ml) in vitro.The total NO content in cell medium and the protein levels of ICAM-1/VCAM-1/IL-6of HUVECs were detected in the presence and absence of cheme-rin(100ng/ml), phosphatidylinositol3'-kinase(P13K) inhibitor LY-294002(20μmol/l) by the methods which had been mentioned above Intracellular signal molecules of P13k/AKT-eNOS signal such as Akt, phosphorylated-Akt,eNOS and phosphorylated-eNOS protein expres-sions were detected by western blot. The mRNA expression of Akt were measured by methods of realtime quantitative chain reaction polymerase.
     Results:
     1、Chemerin of (0-200ng/ml) significantly upregulated the levels of NO content.The increased expression of NO protein in chemerin-induced HUVECs was in a dose-dependent manner (P<0.05), These effects could partially diminished by cotreatment with LY294002.The protein levels of IL-6,intercellular adhesion molecule-1(ICAM-1) and vascular cell molecule(VCAM-1) of HUVECs hasn't been impacted.
     2、Chemerin(100ng/ml) significantly inhibited Tumor necrosis-alpha induced The expression of ICAM-1.VCAM-1and IL-6production (P<0.01). Chemerin also activated Akt and enhance the expression of phosphorylated-Akt,eNOS and phosphorylated eNOS protein (P<0.01) The expression of Akt protein and mRNA expression of Akt remain the same (P>0.05). These effects on the activate of P13k/Akt pathway signal could be partially diminished by cotreatment with LY294002,But the down-regulation of IL-6was not influenced.
     Conclusions:
     Chemerin may enhances the eNOS ability and attenuate the endothelin system and the overexpression of adhesion molecules in dysfunctional endothelial cells. Chemerin has the potential on improving endothelial function. P13K/Akt-eNOS signal transduction pathway may participate in the activity.A detailed molecular and functional analysisi of the role of chemerin in endothelial function should provide futher understanding of the relationship between Chemerin and endothelial function.
引文
[1]电子版中国统计年鉴,二十一章.城市农村前十位疾病死亡专率及死因构成43-44,2009.
    [2]Teiger, E. and A. Castaigne, Description and mechanisms of ischemia in athe-rosclerosis. Rev Prat,1999.49(19):p.2110-6.
    [3]Scherer, P.E., Adipose tissue:from lipid storage compartment to endocrine organ. Diabetes,2006.55(6):p.1537-45.
    [4]Ahima, R.S. and J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol Metab,2000.11(8):p.327-32.
    [5]Trayhurn, P. and I.S. Wood, Adipokines:inflammation and the pleiotropic role of white adipose tissue. Br J Nutr,2004.92(3):p.347-55.
    [6]Lau, D.C., B. Dhillon, H. Yan, et al Adipokines:mole- cular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol,2005.288(5):p. H2031-41.
    [7]Gelsinger, C., A. Tschoner, S. Kaser, et al Adipokine update-new molecules, new functions. Wien Med Wochenschr,2010.160(15-16):p.377-90.
    [8]Bozaoglu, K., K. Bolton, J. McMillan, et al, Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology,2007.148(10): p.4687-94
    [9]Kadowaki, T., T. Yamauchi, H. Waki, et al, Adiponectin, Adiponectin Receptors, and Epigenetic Regulation of Adipogenesis. Cold Spring Harb Symp Quant Biol,2012.
    [10]Lee, S.E. and H.S. Kim, Human resistin in cardiovascular disease. J Smooth Muscle Res,2012.48(1):p.27-35.
    [11]Yamawaki, H., M. Takahashi, M. Mukohda, et al, A novel adipocytokine, nesfatin-1 modulates peripheral arterial contractility and blood pressure in rats. Biochem Biophys Res Commun,2012.418(4):p.676-81.
    [12]Ou, H.C., W.J. Lee, C.M. Wu, et al, Aspirin prevents resistin-induced endothelial dysfunction by modulating AMPK, ROS, and Akt/eNOS signaling. J Vasc Surg,2012.55(4):p.1104-15.
    [13]Phalitakul, S., M. Okada, Y. Hara, et al, Vaspin prevents TNF- alpha-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-kappaB and PKCtheta activation in cultured rat vascular smooth muscle cells. Pharmacol Res,2011.64(5):p.493-500.
    [14]Libby, P., Inflammation in atherosclerosis. Nature,2002.420(6917):p.868-74.
    [15]Nagpal, S., S. Patel, H. Jacobe, et al. Chandraratna, Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol,1997. 109(1):p.91-5.
    [16]Du XY, B.A. Zabel, T. Myles, et al, Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J Biol Chem,2009.284(2):p.751-8.
    [17]Luangsay, S., V. Wittamer, B. Bondue, et al, Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J Immunol,2009.183(10):p. 6489-99.
    [18]Vermi, W., E. Riboldi, V. Wittamer, F. et al, Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J Exp Med,2005.201(4):p.509-15.
    [19]Muruganandan, S., A.A. Roman and C.J. Sinal, Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J Bone Miner Res,2010.25(2):p.222-34.
    [20]Samson, M., A.L. Edinger, P. Stordeur, et al, ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol,1998.28(5):p.1689-700.
    [21]Kaur, J., R. Adya, B.K. Tan, et al, Identification of che-merin receptor (ChemR23) in human endothelial cells:chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun,2010.391(4):p.1762-8.
    [22]Allen, S.J., B.A. Zabel, J. Kirkpatrick, et al NMR assignment of human chemerin, a novel chemoattractant. Biomol NMR Assign,2007.1(2):p.171-3.
    [23]Zabel, B.A., L. Zuniga, T. Ohyama, et al, Chemoattractants, extracellular proteases, and the integrated host defense response. Exp Hematol,2006.34(8): p.1021-32.
    [24]Luangsay, S., V. Wittamer, B. Bondue, et al, Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J Immunol,2009.183(10):p. 6489-99.
    [25]Lehrke, M., A. Becker, M. Greif. et al, Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol,2009.161(2):p.339-44.
    [26]Hah, Y.J., N.K. Kim, M.K. Kim, et al, Relationship between Chemerin Levels and Cardiometabolic Parameters and Degree of Coronary Stenosis in Korean Patients with Coronary Artery Disease. Diabetes Metab J,2011.35(3):p. 248-54.
    [27]Spiroglou, S.G., C.G. Kostopoulos, J.N. Varakis, et al, Adipokines in periaortic and epicardial adipose tissue:differential expression and relation to atherosclerosis. J Atheroscler Thromb,2010.17(2):p.115-30..
    [28]Bisoendial, R.J., J.J. Kastelein and E.S. Stroes, C-reactive protein and atherogenesis:from fatty streak to clinical event. Atherosclerosis,2007.195(2): p. e10-8.
    [29]Popa, C., M.G. Netea, P.L. van Riel, et al, The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res,2007.48(4):p.751-62.
    [30]Sommer, G., S. Kralisch, V. Stangl, et al, Secretory products from human adipocytes stimulate proinflammatory cytokine secretion from human endothelial cells. J Cell Biochem,2009.106(4):p.729-37.
    [31]Krakoff, J., T. Funahashi, C.D. Stehouwer, et al, Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care,2003. 26(6):p.1745-51.
    [32]Polak, J.F., Q. Wong, W.C. Johnson, et al, Associations of cardiovascular risk factors, carotid intima-media thickness and left ventricular mass with inter-adventitial diameters of the common carotid artery:the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis,2011.218(2):p.344-9.
    [33]Tessitore, E., T. Rundek, Z. Jin, et al, Association between carotid intima-media thickness and aortic arch plaques. J Am Soc Echocardiogr,2010.23(7):p. 772-7.
    [34]Turkenburg, J.L., J.A. van Oostayen and W.L. Bollen, Role of carotid sonography as a first examination in the evaluation of patients with transient ischemic attacks and strokes:benefit in relation to age. J Clin Ultrasound,1999. 27(2):p.65-9.
    [35]Nagai, Y., K. Kitagawa, M. Sakaguchi, et al, Significance of earlier carotid atherosclerosis for stroke subtypes. Stroke,2001.32(8):p.1780-5.
    [36]Wendelhag, I., T. Gustavsson, M. Suurkula, et al Ultrasound measurement of wall thickness in the carotid artery:fundamental principles and description of a computerized analysing system. Clin Physiol,1991.11(6):p.565-77.
    [37]Polak, J.F., M.J. Pencina, D.H. O'Leary, et al, Common carotid artery intima-media thickness progression as a predictor of stroke in multi-ethnic study of atherosclerosis. Stroke,2011.42(11):p.3017-21.
    [38]Chambless, L.E., A.R. Folsom, V. Davis, et al, Risk factors for progression of common carotid atherosclerosis:the Atherosclerosis Risk in Communities Study,1987-1998. Am J Epidemiol,2002.155(1):p.38-47.
    [39]Polak, J.F., M.J. Pencina, D. Herrington, et al, Associations of edge-detected and manual-traced common carotid intima-media thickness measurements with Framingham risk factors:the multi-ethnic study of atheros-clerosis. Stroke, 2011.42(7):p.1912-6.
    [40]Stoitsis, J., S. Golemati, N. Tsiaparas, et al, Texture characterization of carotid atherosclerotic plaque from B-mode ultrasound using gabor filters. Conf Proc IEEE Eng Med Biol Soc,2009.2009:p.455-8.
    [41]Lal, B.K., R.N. Hobson, M. Hameed, et al, Noninvasive identification of the unstable carotid plaque. Ann Vasc Surg,2006.20(2):p.167-74.
    [42]Christodoulou, C.I., C.S. Pattichis, M. Pantziaris, et al, Texture-based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging,2003. 22(7):p.902-12.
    [43]Parnetti, L., M. Mercuri, A. Susta, et al, Extracranial carotid atherosclerosis evaluation and stroke occurrence:role of the echotomographic analysis. Angiology,1988.39(8):p.705-13.
    [44]Nicolaides, A.N., S.K. Kakkos, M. Griffin, et al, Effect of image normalization on carotid plaque classification and the risk of ipsilateral hemispheric ischemic events:results from the asymptomatic carotid stenosis and risk of stroke study. Vascular,2005.13(4):p.211-21.
    [45]Eliasziw, M., J.Y. Streifler, A.J. Fox, et al, Significance of plaque ulceration in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterec-tomy Trial. Stroke,1994.25(2):p.304-8.
    [46]Husain, T., C.R. Abbott, D.J. Scott, et al, Macrophage accumulation within the cap of carotid atherosclerotic plaques is associated with the onset of cerebral ischemic events. J Vasc Surg,1999.30(2):p.269-76.
    [47]Hennerici, M.G., The unstable plaque. Cerebrovasc Dis,2004.17 Suppl 3:p. 17-22.
    [48]Scheffler, P., G. Leipnitz, C. Bender, et al, Coincidence of risk factors and early carotid lesions, detected with modern ultrasound techniques. Vasa,1990.19(4): p.286-95.
    [49]Manduteanu, I. and M. Simionescu, Inflammation in atherosclerosis:a cause or a result of vascular disorders? J Cell Mol Med,2012.
    [50]Yamauchi, T., [Roles of adipocytokines in the development of atherosclerosis]. Nihon Rinsho,2007.65 Suppl 7:p.63-70.
    [51]MacDougald, O.A. and C.F. Burant, The rapidly expanding family of adipo-kines. Cell Metab,2007.6(3):p.159-61.
    [52]Min, J.L., G. Nicholson, I. Halgrimsdottir, K. Almstrup, et al, Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes. PLoS Genet,2012. 8(2):p.e1002505.
    [53]Toprak, A., R. Kandavar, D. Toprak, et al, C-reactive protein is an independent predictor for carotid artery intima-media thickness progression in asymptomatic younger adults (from the Bogalusa Heart Study). BMC Cardiovasc Disord,2011. 11:p.78.
    [54]Kablak-Ziembicka, A., T. Przewlocki, A. Sokolowski, et al, Carotid intima-media thickness, hs-CRP and TNF-alpha are independently associated with cardiovascular event risk in patients with atherosclerotic occlusive disease. Atherosclerosis,2011.214(1):p.185-90.
    [55]Parhami, F., Y. Tintut, A. Ballard, et al, Leptin enhances the calcification of vascular cells:artery wall as a target of leptin. Circ Res,2001.88(9):p.954-60.
    [56]Tunyogi-Csapo, M., T. Koreny, C. Vermes, et al, Role of fibroblasts and fibroblast-derived growth factors in periprosthetic angiogenesis. J Orthop Res, 2007.25(10):p.1378-88.
    [57]van Lammeren, G.W., G. Pasterkamp, J.P. de Vries, et al Platelets enter atherosclerotic plaque via intraplaque microvascular leakage and intraplaque hemorrhage:A histopat- hological study in carotid plaques. Atherosclerosis, 2012.
    [58]Wilson, S.R., M.S. Sabatine, S.D. Wiviott, et al. Cannon, and D.A. Morrow, Assessment of adiponectin and the risk of recurrent cardiovascular events in patients presenting with an acute coronary syndrome:observations from the Pravastatin Or atorVastatin Evalua-tion and Infection Trial-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22). Am Heart J,2011.161(6):p. 1147-55.el.
    [59]Chen, C.Y., M. Asakura, H. Asanuma, et al, Plasma adiponectin levels predict cardiovascular events in the observational Arita Cohort Study in Japan:the importance of the plasma adiponectin levels. Hypertens Res,2012.
    [60]Arregui, M., E. Fisher, S. Knuppel, et al, Significant associations of the rs2943634 (2q36.3) genetic polymorphism with adiponectin, high density lipoprotein cholesterol and ischemic stroke. Gene,2012.494(2):p.190-5.
    [61]Beatty, A.L., M.H. Zhang, LA. Ku, et al, Adiponectin is associated with increased mortality and heart failure in patients with stable ischemic heart disease:data from the Heart and Soul Study. Atherosclerosis,2012.220(2):p. 587-92.
    [62]Wittamer, V., B. Bondue, A. Guillabert, et al, Neutrophil-mediated maturation of chemerin:a link between innate and adaptive immunity. J Immunol,2005. 175(1):p.487-93.
    [63]Rhee, E.J., Chemerin:A Novel Link between Inflammation and Atherosclerosis? Diabetes Metab J,2011.35(3):p.216-8.
    [64]金二荣,王璐,张洁等,2型糖尿病合并非酒精性脂肪性肝病血浆chemerin与炎症指标的相关性.天津医药,2011(08).
    [65]Weigert, J., F. Obermeier, M. Neumeier, et al, Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn's disease. Inflamm Bowel Dis,2010.16(4):p.630-7.
    [66]Eisinger, K., S. Bauer, A. Schaffler, R. et al, Chemerin induces CCL2 and TLR4 in synovial fibroblasts of patients with rheumatoid arthritis and osteoarthritis. Exp Mol Pathol,2012.92(1):p.90-6.
    [67]Kaneko, K., Y. Miyabe, A. Takayasu, et al, Chemerin activates fibroblast-like synoviocytes in patients with rheumatoid arthritis. Arthritis Res Ther,2011. 13(5):p. R158.
    [68]Ferraccioli, G. and E. Gremese, Adiposity, joint and systemic inflammation:the additional risk of having a metabolic syndrome in rheumatoid arthritis. Swiss Med Wkly,2011.141:p. wl3211.
    [69]Vermi, W., S. Lonardi, M. Morassi, et al, Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage. Immunobiology,2009.214(9-10):p.877-86.
    [70]Vermi, W., E. Riboldi, V. Wittamer, et al, Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J Exp Med,2005.201(4):p.509-15.
    [71]Nakajima, H., K. Nakajima, Y. Nagano, M. et al, Circulating level of chemerin is upre- gulated in psoriasis. J Dermatol Sci,2010.60(1):p.45-7.
    [72]Albanesi, C., C. Scarponi, D. Bosisio, et al, Immune functions and recruitment of plasmacytoid dendritic cells in psoriasis. Autoimmunity,2010.43(3):p. 215-9.
    [73]Skrzeczynska-Moncznik, J., A. Stefanska, B.A. Zabel, et al, Chemerin and the recruitment of NK cells to diseased skin. Acta Biochim Pol,2009.56(2):p. 355-60.
    [74]Skrzeczynska-Moncznik, J., K. Wawro, A. Stefanska, et al, Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem Biophys Res Commun,2009.380(2):p.323-7.
    [75]Lande, R., V. Gafa, B. Serafini, et al, Plasmacytoid dendritic cells in multiple sclerosis:intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol,2008.67(5):p.388-401.
    [76]Hart, R. and D.R. Greaves, Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J Immunol,2010.185(6):p.3728-39.
    [77]Shimizu, K., K. Shimomura, Y. Tokuyama, et al, Association between Inflammatory Biomarkers and Progression of Intracranial Large Artery Stenosis after Ischemic Stroke. J Stroke Cerebrovasc Dis,2011.
    [78]Bozaoglu, K., D. Segal, K.A. Shields, et al, Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocrinol Metab,2009.94(8):p.3085-8.
    [79]Stejskal, D., M. Karpisek, Z. Hanulova, et al, Chemerin is an independent marker of the metabolic syndrome in a Caucasian population--a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2008.152(2):p. 217-21.
    [80]Eliasziw, M., J.Y. Streifler, A.J. Fox, et al, Significance of plaque ulceration in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial. Stroke,1994.25(2):p.304-8.
    [81]Parlee, S.D., M.C. Ernst, S. Muruganandan, et al, Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology,2010.151(6):p.2590-602.
    [82]Vernochet, C., K.E. Davis, P.E. Scherer, et al, Mechanisms regulating repression of haptoglobin production by peroxisome proliferator- activated receptor-gamma ligands in adipocytes. Endocrinology,2010.151(2):p.586-94.
    [83]Jin, X., F. Zeng, N. Zhang, et al, Association of sterol regulatory elementbinding transcription factor gene polymorphisms with ischaemic stroke. J Int Med Res,2012.40(1):p.157-66.
    [84]Sell, H., J. Laurencikiene, A. Taube, et al, Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes,2009.58(12):p.2731-40.
    [85]Ress, C., A. Tschoner, J. Engl, et al, Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest,2010.40(3):p.277-80.
    [86]Sell, H., A. Divoux, C. Poitou, et al, Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab,2010.95(6):p.2892-6.
    [87]Ross, R., Atherosclerosis--an inflammatory disease. N Engl J Med,1999.340 (2):p.115-26.
    [88]Vita, J.A., Endothelial function. Circulation,2011.124(25):p. e906-12.
    [89]Chatterjee, A., S.M. Black and J.D. Catravas, Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol,2008.49(4-6):p.134-40.
    [90]Navab, M., A.M. Fogelman, J.A. Berliner, et al, Pathogenesis of atherosclerosis. Am J Cardiol,1995.76(9):p.18C-23C.
    [91]Zhang, W. and D. Stanimirovic, Current and future therapeutic strategies to target inflammation in stroke. Curr Drug Targets Inflamm Allergy,2002.1(2):p. 151-66.
    [92]Sprague, A.H. and R.A. Khalil, Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol,2009.78(6):p.539-52.
    [93]Busse, R. and I. Fleming, Endothelial dysfunction in atherosclerosis. J Vasc Res, 1996.33(3):p.181-94.
    [94]Antuna-Puente, B., B. Feve, S. Fellahi, et al, Adipokines:the missing link between insulin resistance and obesity. Diabetes Metab,2008.34(1):p.2-11.
    [95]Yamawaki, H., Vascular effects of novel adipocytokines:focus on vascular contractility and inflammatory responses. Biol Pharm Bull,2011.34(3):p. 307-10.
    [96]Yamawaki, H., Mechanisms of action of novel adipocytokines on the vascular system. Nihon Yakurigaku Zasshi,2011.137(3):p.131-5.
    [97]Chen, C., J. Jiang, J.M. Lu, et al, Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol,2010.299(1):p. H193-201.
    [98]Gonon, A.T., U. Widegren, A. Bulhak, et al, Adiponectin protects against myocardial ischaemia-reperfusion injury via AMP-activated protein kinase, Akt, and nitric oxide. Cardiovasc Res,2008.78(1):p.116-22.
    [99]Eid, H.M., T. Lyberg, H. Arnesen, et al, Insulin and adiponectin inhibit the TNFalpha-induced ADMA accumulation in human endothelial cells:the role of DDAH. Atherosclerosis,2007.194(2):p. e1-8.
    [100]Zabel, B.A., S.J. Allen, P. Kulig, et al, Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem,2005. 280(41):p.34661-6.
    [101]Sanchez-Margalet, V., I.D. Goldfine, C.J. Vlahos, et al, Role of phosphatidylinositol-3-kinase in insulin receptor signaling:studies with inhibitor, LY294002. Biochem Biophys Res Commun,1994.204(2):p.446-52.
    [102]Dhanasekaran, S., T.M. Doherty and J. Kenneth, Comparison of different standards for real-time PCR-based absolute quantification. J Immunol Methods, 2010.354(1-2):p.34-9.
    [103]Kaur, J., R. Adya, B.K. Tan, et al, Identification of chemerin receptor (ChemR23) in human endothelial cells:chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun,2010.391(4):p.1762-8.
    [104]Zabel, B.A., T. Ohyama, L. Zuniga, et al, Chemokine-like receptor 1 expression by macrophages in vivo:regulation by TGF-beta and TLR ligands. Exp Hematol,2006.34(8):p.1106-14.
    [105]Campbell, E.L., N.A. Louis, S.E. Tomassetti, et al, Resolvin El promotes mucosal surface clearance of neutrophils:a new paradigm for inflammatory resolution. FASEB J,2007.21(12):p.3162-70.
    [106]Lu, W., Y.M. Xue, B. Zhu, et al, The relationship between oxidative injury induced by low glucose and mitochondrial membrane potential in HUVEC-12 cells. Zhonghua Nei Ke Za Zhi,2011.50(10):p.873-6.
    [107]Long, Y.T. and F.Y. Xing, Effect of Cobaltous chloride on the transcription activity of modified human eNOS promoter. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2010.26(8):p.754-7.
    [108]Chapman, C.M., J.P. Beilby, B.M. McQuillan, et al, Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis. Stroke,2004.35(7):p.1619-24.
    [109]Patterson, C.C., A.E. Smith, J.W. Yarnell, et al, The associations of interleukin-6 (IL-6) and downstream inflammatory markers with risk of cardiovascular disease:the Caerphilly Study. Atherosclerosis,2010.209(2):p. 551-7.
    [110]Tschoepe, D., Adhesion molecules influencing atherosclerosis. Diabetes Res Clin Pract,1996.30 Suppl:p.19-24.
    [111]Rosenfeld, M.E., Cellular mechanisms in the development of atherosclerosis. Diabetes Res Clin Pract,1996.30 Suppl:p.1-11.
    [112]Libby, P. and S.K. Clinton, Cytokines as mediators of vascular pathology. Nouv Rev Fr Hematol,1992.34 Suppl:p. S47-53.
    [113]Hashioka, S., A. Klegeris, H. Qing, et al, STAT3 inhibitors attenuate interferon-gamma-induced neurotoxicity and inflammatory molecule production by human astrocytes. Neurobiol Dis,2011.41(2):p.299-307.
    [114]Paleolog, E.M., S.A. Delasalle, W.A. Buurman, et al, Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells. Blood,1994.84(8):p.2578-90.
    [115]Minson, C.T., L.A. Holowatz, B.J. Wong, et al, Decreased nitric oxide-and axon reflex-mediated cutaneous vasodilation with age during local heating. J Appl Physiol,2002.93(5):p.1644-9.
    [116]Mang, C.F., S. Truempler, D. Erbelding, et al, Modulation by NO of acetylcholine release in the ileum of wild-type and NOS gene knockout mice. Am J Physiol Gastrointest Liver Physiol,2002.283(5):p. G1132-8.
    [117]Breslin, J.W., P.J. Pappas, J.J. Cerveira, et al VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am J Physiol Heart Circ Physiol,2003.284(1):p. H92-H100.
    [118]Zhao, R.J. and H. Wang, Chemerin/ChemR23 signaling axis is involved in the endothelial protection by K(ATP) channel opener iptakalim. Acta Pharmacol Sin,2011.32(5):p.573-80.
    [119]Stirone, C., A. Boroujerdi, S.P. Duckles, et al, Estrogen receptor activation of phosphoinositide-3 kinase, akt, and nitric oxide signaling in cerebral blood vessels:rapid and long-term effects. Mol Pharmacol,2005.67(1):p.105-13.
    [120]Osuka, K., Y. Watanabe, N. Usuda, et al, Modification of endothelial nitric oxide synthase through AMPK after experi-mental subarachnoid hemorrhage. J Neurotrauma,2009.26(7):p.1157-65.
    [121]El-Mas, M.M., M. Fan and A.A. Abdel-Rahman, Facilitation of myocardial PI3K/Akt/nNOS signaling contributes to ethanol-evoked hypotension in female rats. Alcohol Clin Exp Res,2009.33(7):p.1158-68.
    [122]Grau, G.E., P.F. Piguet, P. Vassalli, a et al, Involvement of tumour necrosis factor and other cytokines in immune-mediated vascular pathology. Int Arch Allergy Appl Immunol,1989.88(1-2):p.34-9.
    [1]Yamauchi, T., [Roles of adipocytokines in the development of atherosclerosis]. Nihon Rinsho,2007.65 Suppl 7:p.63-70.
    [2]Trayhurn, P. and I.S. Wood, Adipokines:inflammation and the pleiotropic role of white adipose tissue. Br J Nutr,2004.92(3):p.347-55.
    [3]Libby, P., Inflammation in atherosclerosis. Nature,2002.420(6917):p.868-74.
    [4]Rhee, E.J., Chemerin:A Novel Link between Inflammation and Atherosclerosis? Diabetes Metab J,2011.35(3):p.216-8.
    [5]Scherer, P.E., Adipose tissue:from lipid storage compartment to endocrine organ. Diabetes,2006.55(6):p.1537-45.
    [6]Sommer, G., S. Kralisch, V. Stangl, et al, Secretory products from human adipocytes stimulate proinflammatory cytokine secretion from human endothelial cells. J Cell Biochem,2009.106(4):p.729-37.
    [7]Gelsinger, C., A. Tschoner, S. Kaser, et al, Adipokine update-new molecules, new functions. Wien Med Wochenschr,2010.160(15-16):p.377-90.
    [8]Procaccini, C., M. Galgani, V. De Rosa, et al, Leptin:the prototypic adipocytokine and its role in NAFLD. Curr Pharm Des,2010.16(17):p. 1902-12.
    [9]Steffens, S. and F. Mach, Adiponectin and adaptive immunity:linking the bridge from obesity to atherogenesis. Circ Res,2008.102(2):p.140-2.
    [10]Popa, C., M.G. Netea, P.L. van Riel, et al, The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res,2007.48(4):p.751-62.
    [11]Brown, J.E., D.J. Onyango, M. Ramanjaneya, et al, Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells. J Mol Endocrinol,2010.44(3):p.171-8.
    [12]Gong, L., B. Bai and J. Chen, Omentin:a new adipokine. Sheng Li Ke Xue Jin Zhan,2011.42(5):p.390-3.
    [13]Rabe, K., M. Lehrke, K.G. Parhofer, et al Adipokines and insulin resistance. Mol Med,2008.14(11-12):p.741-51.
    [14]Winkler, G. and K. Cseh, [Molecular mechanisms and correlations of insulin resistance, obesity, and type 2 diabetes mellitus]. Orv Hetil,2009.150(17):p. 771-80.
    [15]Wittamer, V., B. Bondue, A. Guillabert, et al, Neutrophil-mediated maturation of chemerin:a link between innate and adaptive immunity. J Immunol,2005. 175(1):p.487-93.
    [16]Muruganandan, S., A.A. Roman and C.J. Sinal, Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J Bone Miner Res,2010.25(2):p.222-34.
    [17]Muruganandan, S., S.D. Parlee, J.L. Rourke, et al, Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem,2011.286(27): p.23982-95.
    [18]Nagpal, S., S. Patel, H. Jacobe, et al, Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol,1997.109(1):p.91-5.
    [19]Wittamer, V., J.D. Franssen, M. Vulcano, et al, Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflam-matory fluids. J Exp Med,2003.198(7):p.977-85.
    [20]Bozaoglu, K., K. Bolton, J. McMillan, et al, Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology,2007.148(10): p.4687-94.
    [21]Du XY, B.A. Zabel, T. Myles, et al, Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J Biol Chem,2009.284(2):p.751-8.
    [22]Allen, S.J., B.A. Zabel, J. Kirkpatrick, et al, NMR assignment of human chemerin, a novel chemoattractant. Biomol NMR Assign,2007.1(2):p.171-3.
    [23]Zabel, B.A., L. Zuniga, T. Ohyama, et al, Chemoattractants, extracellular proteases, and the integrated host defense response. Exp Hematol,2006.34(8): p.1021-32.
    [24]Luangsay, S., V. Wittamer, B. Bondue, et al, Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J Immunol,2009.183(10):p. 6489-99.
    [25]Vermi, W., E. Riboldi, V. Wittamer, et al, Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J Exp Med,2005.201(4):p.509-15.
    [26]Hu, W., Q. Yu, J. Zhang, et al, Rosiglitazone Ameliorates Diabetic Nephropathy by Reducing the Expression of Chemerin and ChemR23 in the Kidney of Streptozotocin-Induced Diabetic Rats. Inflammation,2012.
    [27]Gantz, I., Y. Konda, Y.K. Yang, et al, Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors. Cytogenet Cell Genet,1996.74(4):p.286-90.
    [28]Yoshimura, T. and J.J. Oppenheim, Chemokine-like receptor 1 (CMKLR1) and chemokine (C-C motif) receptor-like 2 (CCRL2); two multifunctional receptors with unusual properties. Exp Cell Res,2011.317(5):p.674-84.
    [29]Huang, J., J. Zhang, T. Lei, et al, Cloning of porcine chemerin, ChemR23 and GPR1 and their involvement in regulation of lipogenesis. BMB Rep,2010. 43(7):p.491-8.
    [30]Samson, M., A.L. Edinger, P. Stordeur, et al, ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol,1998.28(5):p.1689-700.
    [31]Kaur, J., R. Adya, B.K. Tan, et al, Identification of che- merin receptor (ChemR23) in human endothelial cells:chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun,2010.391(4):p.1762-8.
    [32]Hart, R. and D.R. Greaves, Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J Immunol,2010.185(6):p.3728-39.
    [33]Skrzeczynska-Moncznik, J., A. Stefanska, B.A. Zabel, et al, Chemerin and the recruitment of NK cells to diseased skin. Acta Biochim Pol,2009.56(2):p. 355-60.
    [34]Skrzeczynska-Moncznik, J., K. Wawro, A. Stefanska, et al, Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem Biophys Res Commun,2009.380(2):p.323-7.
    [35]Albanesi, C., C. Scarponi, S. Pallotta, et al, Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J Exp Med,2009.206(1):p.249-58.
    [36]Vermi, W., S. Lonardi, M. Morassi, et al, Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage. Immunobiology,2009.214(9-10):p.877-86.
    [37]De Palma, G., G. Castellano, P.A. Del, et al, The possible role of ChemR23/Chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int,2011.79(11):p.1228-35.
    [38]Lande, R., V. Gafa, B. Serafini, et al, Plasmacytoid dendritic cells in multiple sclerosis:intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol,2008.67(5):p.388-401.
    [39]Demoor, T., K.R. Bracke, L.L. Dupont, et al, The role of ChemR23 in the induction and resolution of cigarette smoke-induced inflammation. J Immunol, 2011.186(9):p.5457-67.
    [40]Weigert, J., F. Obermeier, M. Neumeier, et al, Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn's disease. Inflamm Bowel Dis,2010.16(4):p.630-7.
    [41]Campbell, E.L., N.A. Louis, S.E. Tomassetti, et al, Resolvin E1 promotes mucosal surface clearance of neutrophils:a new paradigm for inflammatory resolution. FASEB J,2007.21(12):p.3162-70.
    [42]Bondue, B., O. Vosters, P. de Nadai, et al, ChemR23 dampens lung inflammation and enhances anti-viral immunity in a mouse model of acute viral pneumonia. PLoS Pathog,2011.7(11):p. e1002358.
    [43]Parlee, S.D., M.C. Ernst, S. Muruganandan, et al, Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology,2010.151(6):p.2590-602.
    [44]Kukla, M., W. Mazur, R.J. Buldak, et al, Potential Role of Leptin, Adiponectin and Three Novel Adipokines-Visfatin, Chemerin and Vaspin-in Chronic Hepatitis. Mol Med,2011.17(11-12):p.1397-410.
    [45]Sell, H., J. Laurencikiene, A. Taube, et al, Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes,2009.58(12):p.2731-40.
    [46]Kralisch, S., S. Weise, G. Sommer, et al, Interleukin-1beta induces the novel adipokine chemerin in adipocytes in vitro. Regul Pept,2009.154(1-3):p.102-6.
    [47]Bauer, S., J. Wanninger, S. Schmidhofer, et al, Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocr-inology,2011.152(1):p. 26-35.
    [48]Jin, X., F. Zeng, N. Zhang, et al, Association of sterol regulatory elementbinding transcription factor gene polymorphisms with ischaemic stroke. J Int Med Res,2012.40(1):p.157-66.
    [49]Ress, C., A. Tschoner, J. Engl, A. Klaus, H. Tilg, C.F. Ebenbichler, J.R. Patsch, and S. Kaser, Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest,2010.40(3):p.277-80.
    [50]Sell, H., A. Divoux, C. Poitou, et al, Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab,2010.95(6):p.2892-6.
    [51]Ouwens, D.M., M. Bekaert, B. Lapauw, et al, Chemerin as biomarker for insulin sensitivity in males without typical characteristics of metabolic syndrome. Arch Physiol Biochem,2012.
    [52]Sell, H. and J. Eckel, Chemotactic cytokines, obesity and type 2 diabetes:in vivo and in vitro evidence for a possible causal correlation? Proc Nutr Soc,2009. 68(4):p.378-84.
    [53]Hillenbrand, A., M. Weiss, U. Knippschild, et al, Sepsis-Induced Adipokine Change with regard to Insulin Resistance. Int J Inflam,2012.2012:p.972368.
    [54]Yoo, H.J., H.Y. Choi, S.J. Yang, et al, Circulating chemerin level is independently correlated with arterial stiffness. J Atheroscler Thromb,2012. 19(1):p.59-66; discussion 67-8.
    [55]Hah, Y.J., N.K. Kim, M.K. Kim, et al, Relationship between Chemerin Levels and Cardiometabolic Parameters and Degree of Coronary Stenosis in Korean Patients with Coronary Artery Disease. Diabetes Metab J,2011.35(3):p. 248-54.
    [56]Lehrke, M., A. Becker, M. Greif, et al, Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol,2009.161(2):p.339-44.
    [57]van Lammeren, G.W., G. Pasterkamp, J.P. de Vries, et al, Platelets enter atherosclerotic plaque via intraplaque microvascular leakage and intraplaque hemorrhage:A histopathological study in carotid plaques. Atherosclerosis, 2012.
    [58]Phalitakul, S., M. Okada, Y. Hara, et al Vaspin prevents TNF-alpha-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-kappaB and PKCtheta activation in cultured rat vascular smooth muscle cells. Pharmacol Res,2011.64(5):p.493-500.
    [59]Kablak-Ziembicka, A., T. Przewlocki, A. Sokolowski, et al, Carotid intima-media thickness, hs-CRP and TNF-alpha are independently associated with cardiovascular event risk in patients with atherosclerotic occlusive disease. Atherosclerosis,2011.214(1):p.185-90.
    [60]Zhao, R.J. and H. Wang, Chemerin/ChemR23 signaling axis is involved in the endothelial protection by K(ATP) channel opener iptakalim. Acta Pharmacol Sin,2011.32(5):p.573-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700