影响桥梁及建筑结构风洞试验结果若干因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重大土木工程结构,如大跨度桥梁、高耸建筑以及大跨空间建筑结构都处于近地风边界层中,风洞试验是目前解决重大工程风工程问题公认的最有效的方法。近地风引起的重大工程风效应研究目前以及将来很长一段时间还会依赖于物理风洞试验。如何提高风洞试验结果的可靠性与稳定性是从事风工程研究人员关心的重要问题。因此,为提高工程结构风致效应研究的水平,对重大工程进行精细化研究,需要深入、系统研究风洞试验技术的基本问题及各参数对结构风洞试验结果的影响规律及误差修正方法。
     本文首先总结了影响桥梁及建筑结构风洞试验结果的若干因素。针对众多影响因素选择了以下几种进行专门研究。对16种不同的格栅进行局部紊流风场模拟,总结格栅条宽度、格栅条间距对风洞不同断面紊流强度、紊流积分尺度及脉动风功率谱的影响规律。依据风场试验结果,选择合适风特性参数研究紊流强度、紊流积分尺度等参数对不同缩尺比桥梁主梁断面及方形建筑结构表面压力分布影响规律。针对方形建筑结构的Jensen数效应进行风洞试验,总结其对方形建筑结构不同风向角平均风荷载、脉动风荷载及其频域特性的影响规律。制作带有附属结构(如栏杆、检修车轨道)的桥梁断面,研究附属结构对桥梁主梁雷诺数效应的影响。通过节段模型风洞试验,研究二元端板、长宽比等因素对不同类型桥梁断面试验结果的影响。通过以上试验,总结局部紊流风场模拟规律及不同参数对桥梁及建筑结构风洞试验结果的影响规律。研究结果表明:
     (1)当固定格栅中心方孔尺寸后,紊流强度随格栅宽度的增大而增大,格栅越窄,紊流强度越低,数据的稳定性越好。紊流积分尺度的变化规律不如紊流强度变化规律明显,但基本符合随格栅宽度增大而增大的规律。当格栅中心孔尺寸为30cm—40cm时,格栅宽度与中心孔的尺寸比为0.5左右时会出现较大的紊流积分尺度,最大紊流积分尺度基本和中心方孔的尺寸相当。并给出了通过格栅宽度与格栅中心孔尺寸估算紊流强度与紊流积分尺度的经验公式;
     (2)方形建筑结构及桥梁结构表面负压区平均风压均会随来流紊流强度增大而减小,脉动风压会随来流紊流强度增大而增大,外形规则的方形建筑结构表面平均风压与脉动风压随来流紊流强度变化而变化的幅值比较规律,可以通过公式进行估算。来流紊流强度增大10%,会使迎风面平均风压变化10%—16%,侧风面平均风压变化16%—20%,背风面变化20%左右。外形较复杂的桥梁等其它结构表面平均风压与脉动风压随紊流强度的变化幅值会受风向角、风攻角、特征紊流等多重因素影响,不便对其进行定量估算。平均风压的绝对值会随紊流积分尺度增大而增大,但变化幅值没有明显规律。脉动风压受紊流积分尺度的影响很小。
     (3)Jensen数变化对方形建筑脉动风荷载的影响不可忽略。Jensen数由6000减小到1200,方形建筑顺风向脉动风荷载、横风向脉动风荷载及基底脉动风扭矩明显增大,增大幅度约2倍—2.5倍,Jensen数变化对顺风向、横风向及基底扭矩平均风荷载的影响均很小,最大变化幅度不超过30%。
     (4)结构表面平均风压如为正压,会随雷诺数增大而增大;如为负压,会随雷诺数增大而减小。脉动风压会随雷诺数增大而减小。来流紊流积分尺度越大,结构侧风面及背风面平均风压与脉动风压的雷诺数效应越明显。三分力系数—雷诺数曲线对检修车轨道和栏杆表现出不同敏感特性。进行测压风洞试验时,应尽可能避开雷诺数的临界区,在超临界区平均风压系数与脉动风压系数的雷诺数效应趋于减弱。
     (5)节段模型静三分力试验合适的长宽比应该大于2:1,长宽比越大,得到的静三分力数据越稳定,可靠性越好。但节段模型长宽比大于2:1后,不同断面间的展向相关性会逐渐减低,为了保证主梁具有较好的展向相关性,建议节段模型最佳的长宽比应大于2:1、小于4:1。静三分力系数对长宽比的敏感程度明显大于对二元端板的敏感程度。长宽比越大,受二元端板的影响程度越小。
Important civil engineering structures such as long-span bridges, high-rise building andlong-span space structures are located at the atmospheric boundary layer. Wind tunnel test isrecognizes that the most effective method to solve the wind engineering problem of importantengineering project at present. The study of wind effects of important engineering projectinduced by the atmospheric boundary layer still dependent on the wind tunnel test at presentand a long period in future. How to improve reliability and stability of the wind tunnel testresults is an important issue concerned by the researcher of wind engineering. Therefore, inorder to improve the research level of wind effects of structure and refine research theimportant engineering project, the basic issue of wind tunnel test techniques and the rules ofdifferent parameters influence on the wind tunnel test results and the error correction methodshould be studied systematically and deeply.
     This paper first research on the effect of several factors on the wind tunnel test results ofbridge and building structure. Among these, the following factors have been selected tospecially research。Sixteen different grids have been used to simulate the local turbulent flowfield, and summarize the rules of width and space of grids influence on the turbulenceintensity, turbulence integral scale and fluctuating wind power spectra at different wind-tunnelcross section. According to the results of wind field test, choosing proper wind characteristicparameters study the rules of turbulence intensity and turbulence integral scale influence onthe wind pressure distribution on different scale of bridge section and rectangular buildingstructure. Wind tunnel test is carried out to study the Jensen number effects on the rectangularbuilding structure, and summarize the rules of Jensen number effects influence on the meanwind load, fluctating wind load and its frequency characteristics of rectangular buildingstructure. Bridge sections with attachment structure (railing and track of inspection vehicle)have been made to study the attachment structure influence on the Reynolds number effects ofbridge section. The factors of two dimensional end plate and length-width ratio influence onthe wind tunnel test results of different kinds of bridge have been studied through wind tunneltest of section model. According to the above tests, simulation rules of the local turbulent flowfield and the rules of different parameters influence on the results of wind tunnel test of bridgeand building structure are summarized. The results show that:
     (1) When the size of the square hole in the center formed by grids fixed, turbulenceintensity increase with the increase of the grid’s width. Narrower the width of grids, lower theturbulence intensity, and better the data stability. The variation of the turbulence integral scale is not obvious compare with the turbulence intensity, but basically accord with the law ofincrease with the increase of the grid’s width. Larger turbulence integral scale would appearwhen the size of the square hole in the center formed by grids is30cm to40cm and the ratioof grid’s width to the size of square hole is0.5. The largest turbulence integral scale is close tothe size of square hole. An empirical formula is for evaluating the turbulence intensity andturbulence integral scale through the grid’s width and the size of the square hole in the centerformed by grids has been obtained.
     (2) The mean wind pressure on the negative pressure region of square building structureand bridge decrease with the increase of turbulence intensity, and the fluctuating windpressure increase with the increase of turbulence intensity. The mean wind pressure andfluctuating wind pressure of square building structure change with the turbulence intensityshow regular variation, and can be estimated by empirical formula. Turbulence intensityincrease10%, the mean wind pressure on windward side change10%—16%, broadsidechange16%—20%and leeward side change about20%. The mean wind pressure andfluctuating wind pressure of bridge and other complex shape structure change with theturbulence intensity can be influenced by many factors, such as wind directions, wind attackangles and signature turbulence, so it is difficult to estimate. The absolute value of mean windpressure increase with the increase of turbulence integral scale, but the amplitude changesrandomly. The fluctuating wind pressure has little influence by turbulence integral scale.
     (3) The impacts of Jensen number change on the fluctuating wind load of square buildingstructure can’t be ignored. Jensen number reduced from6000to1200, along fluctuating windload, across fluctuating wind load and torsional fluctuating wind load of square buildingstructure increase significantly, increase about2times to2.5times. There is little impact ofJensen number change on along mean wind load, across mean wind load and torsional meanwind load of square building structure, the max amplitude less than30%.
     (4) If the mean pressure of structure surface is positive, it is increase with the increase ofReynolds number. If the mean pressure is negative, it is decrease with the increase ofReynolds number. The fluctuating wind pressure will decrease with the increase of Reynoldsnumber. Larger size of turbulence integral scale leads to the Reynolds number effects of themean wind pressure and the fluctuating wind pressure on broadside and leeward side will bemore obvious. The influence of Reynolds number on the different position is different.Sensitivity of different degree appeared in the law of tri-component force varying withReynolds number to railing and track of inspection vehicle. Pressure measurement test in thewind tunnel should avoid the critical zone of Reynolds number as far as possible. The Reynolds number effects of mean and fluctuating wind pressure coefficient decreased in thesupercritical zone.
     (5) The appropriate length-width ratio of force measurement wind tunnel test of sectionmodel should be greater than2:1. The larger of the length-width ratio, the more stable theresults and the better reliability. But the spanwise correlation of different sections coulddecrease when the length-width ratio is greater than2:1. In order to ensure the better spanwisecorrelation, the best length-width ratio of section model should be greater than2:1and lessthan4:1. The three-component coefficients’sensitivity to length-width ratio has significantlygreater than the two dimensional end plate. The larger of the length-width ratio, the smallerimpaction of the two dimensional end plate.
引文
[1]项海帆.21世纪世界桥梁工程的展望[J].土木工程学报,2000,33(3):1-6
    [2]项海帆.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005:1-105
    [3] W. Podolny, Jr and J. B scalzi, Construction&Design of cable-stayed bridges. John Wiley&Sons,1976
    [4] WYATT T A. Bridge aerodynamics50years after Tacoma Narrows, part Ⅰ: The Tacoma Narrowsfailure and after[J]. Journal of Wind Engineering and Aerodynamics,1992,40:317–326
    [5] WALSHE D E, WYATT T A, Bridge aerodynamics50years after Tacoma Narrows, part Ⅱ: A newdiscipline world-wide[J]. Journal of Wind Engineering and Aerodynamics,1992,40:327–336
    [6] Simiu E, Scanlan RH. Wind Effects on Structure. New York: Wiley,1996
    [7]贺德馨.我国风工程研究现状与展望[J].力学与实践,2002,24(4):10-19
    [8]项海帆.结构风工程研究的现状和展望[J].振动工程学报,1997,10(3):258-263
    [9]李会知,李思堂,吴义章.风洞在桥梁抗风研究中的应用[J].郑州工业大学学报,2001,22(4):53-55
    [10]项海帆,葛耀君.现代桥梁抗风理论及其应用[J].力学与实践,2007,29(1):1-13
    [11] Davenport, A.G.: Gust Loading Factors, Jour. of the Structural Division, Proc. of the ASCE, June,1967:11-35
    [12] M.Jensen, The model-law for phenomena in natural wind. Ingenioren (Int. Ed.),2(1958):121-128
    [13] Cermak, J. E., Sadeh, W.Z.: Pressure Fluctuations on Buildings, Proc. of Wind Effects on Buildingsand Structure, Tokyo,1971:189-198
    [14]孙瑛,武岳,曹正罡.建筑风洞实验指南[M].北京:中国建筑工业出版社,2011:3-65
    [15]张新军.桥梁风工程研究的现状及展望[J].公路,2005,9:27-32
    [16]恽起麟.风洞实验数据的误差与修正[M].北京:国防工业出版社,1996:1-150
    [17]恽起麟.提供风洞实验数据精度的方法[J].气动实验与测量控制,1994,8(3):74-82
    [18]恽起麟.对风洞实验数据精准度的要去[J].气动实验与测量控制,1994,8(1):66-72
    [19] Bucher C. G, Lin Y. K. Effects of wind turbulence on motion stability of long-span bridge. Journal ofWind Engineering and Industrial Aerodynamics,1990,36,1355-1364
    [20]王利娟,林志兴.紊流对桥梁颤振特性影响的试验研究[J].同济大学学报,2001,29(4):390-395
    [21]庞加斌,葛耀君,陆烨.大气边界层紊流积分尺度的分析方法[J].同济大学学报,2002,30(5):622-626
    [22]项海帆,林志兴,鲍卫刚等.公路桥梁抗风设计指南.北京:人们交通出版社,1996
    [23]程厚梅.风洞实验干扰与修正[M].北京:国防工业出版社,2003:5-79
    [24]刘政崇等.高低速风洞气动与结构设计[M].北京:国防工业出版社,2003:15-29
    [25]伍荣林,王振羽.风洞设计原理[M].北京:北京航空学院出版社,1985:9-22
    [26]金挺,林志兴.扁平箱形桥梁断面斯特罗哈数的雷诺数效应研究[J].工程力学,2006.10
    [27] A. Larsen, G. Schewe Reynolds number effects in the flow around a bluff bridge cross sectionJournal of Wind Engineering and Industrial Aerodynamic, vol.74-76,1998
    [28] R.H. Scanlan Hon. M. ASCE Observations on low-speed Aero-elasticity. Journal of engineeringmechanics December2002
    [29] E.Simiu, R.H.Scanlan, Wind effects on Structures, John Wiley&Sons,INC,1996
    [30] G.Schewe,On the force fluctuations acting on a circular cylinder in cross flow from subcritical up totranscritical Reynolds numbers, Journal of fluid Mechanic,vol.133,1983
    [31] G. Schewe,Non-linear flow-induced resonances of a H-shaped section, J. Fluid Structures,31989
    [32] G.Schewe,Reynolds number effects in flow around more-or-less bluff bodies,Journal of WindEngineering and Industrial Aerodynamic vol.892001
    [33] C.Barre, G.Barnaud, High Reynolds number simulation techniques and their application to shapedstrucutures model test, wind Engineering Thomas Telford,London,1993
    [34] A. Larsen,G. Schewe Reynolds number effects in the flow around a bluff bridge cross sectionJournal of Wind Engineering and Industrial Aerodynamic,vol.74-76,1998
    [35] Michael C.H.Hui, A.Larsen, Aerodynamic investigation for the deck of stonecutters bridgeemphasizing Reynolds number effects, The2ndinternational symposium on advance in wind andstructures
    [36] Y.Kubo etc, Reynolds number effects on bridge sections and fundamental sections for structures第13回風工学シソボジゥム1994
    [37] Y.Kubo, C.Nogami et al. Study on Reynolds number effects of a cable-stayed bridge girder, Wind Eng.Into the21stcentury,Balkema, Rotterdam1999
    [38] Y.Kubo, Y.Niihara, K.Kato,et al. Wind on tunnel test and field test on Reynolds number effects ofstructural section, Proceedings of the4thUK conference on wind Eng.,1998
    [39] G.L.Larose,A.D’Auteuil, On the Reynolds number sensitivity of the aerodynamics of bluff bodies withsharp edges,Journal of wind engineering and industrial aerodynamics,2006
    [40]徐有恒,带有局部圆弧面建筑模型风洞实验的雷诺数模拟问题,同济大学土木工程防灾国家重点实验室开放课题基金项目报告,1998.7
    [41]刘可器,陈为炎,顾志福,孙天风,亚临界雷诺数来流紊流度对圆柱表面压力分布的影响,第二届全国风工程及空气动力学学术会议论文,1986
    [42]孙天风,顾志福,李晔等,高雷诺数时二维双圆柱动态压力荷载实验研究,第十届全国风工程及工业空气动力学学术会议论文集,1990
    [43]李加武,林志兴,雷诺数效应研究的回顾与展望,第十届全国结构风工程学术会议论文集,2001.11桂林
    [44]李加武,桥梁断面雷诺数效应及其控制研究[D],同济大学博士学位论文,2003.7
    [45]李加武,林志兴,项海帆雷诺数对桥梁断面表面压力分布影响,桥梁建设,2005,161(1):12-14
    [46]张伟,葛耀军,魏志刚,杨咏盺,分离双箱高低雷诺数涡振的试验研究,空气动力学学报,2008.09
    [47]周志勇,桥梁断面雷诺数效应数值模拟研究,空气动力学学报,2009.12
    [48] H.W. Tieleman. wind tunnel simulation of the turbulence in the surface layer, the proceedings of the6thU.S. National Conference on Wind Eng. Vol.2March8-101989Univ.of Houston.
    [49] W.H.Melbourne. Turbulence effects on maximum surface pressures A mechanism and possibility ofreduction, Proceedings of the fifth international conference on wind engineering, Fort Collins Colorado,U.S. July1979.
    [50] A Hunt. Scale effects on wind Tunnel measurements of surface pressure on model buildings,Proceedings of colloquium designing with the wind, Nantes, France, June1981
    [51] P.J.Vickery. A wind tunnel study on a model of the full scale experimental house at Aylesbury, England,B.E.Sc.Thesis, Faculty of Engineering Science, The Univ. of Western Ontario, London, Canada,1981.
    [52] America National Standard Institute (ANSI), proposed revision of wind load provisions of ANSIA58.1-72revised May1980
    [53] A.E.Hold, E.L.Houghton and F.S. Bhinder. some effects due to variations in turbulence integral lengthscale on the pressure distribution on wind-tunnel models of low-rise buildings[J]. Journal of WindEngineering&Industrial Aerodynamics,1982,10:103-115
    [54] T. Stathopoulos. scale effects in wind tunnel testing of low buildings[J], Journal of Wind Engineering&Industrial Aerodynamics,1983,13:314-326
    [55] B.E Lee. some effect of turbulence scale on the mean forces on a bluff body[J], Journal of WindEngineering&Industrial Aerodynamics,1975/1976,V(1):361-370
    [56] ESDU, fluid forces pressure and movements on rectangular blocks,71061,1971
    [57] A. Hunt. Wind tunnel measurements of surface pressures on cubic building models at several scales[J].Journal of Wind Engineering&Industrial Aerodynamics,1982, V(10):137-163
    [58] R.J.Roy, J.D. Holmes. the effects of scale distortion on total wind loads on a low rise buildingmodel[J], Journal of Wind Engineering&Industrial Aerodynamics,1988,V(29):273-282
    [59] P.W. Bearman, T. Morel. Effect of free stream turbulence on the flow around bluff bodies[J], Progressin aerospace sciences,1983,V(20):97-123
    [60] D.J. Holmes. comparison of model and full scale tests of the Aylesbury house[J], Wind tunnelmodeling for civil engineering application, April1982:605-618
    [61] Bucher C G, Lin Y K. Effects of wind turbulence on motion stability of long-span bridges[J]. J WindEng&Ind Aerodynamics,1990(36):1355-1364
    [62] Scanlan R H, Lin W H. Effects of turbulence on bridge flutter derivatives[J]. J Eng MechASCE,1978,104(4):715–733
    [63]张志田,陈政清,葛耀君,等.紊流中大跨度桥梁的扭转发散特性[J].工程力学,2010,27(2):108-116
    [64]张亮亮,刘会,杨转运,等.重庆大宁河特大桥成桥状态抖振响应分析[J].实验流体力学,2010,24(5):42-46
    [65]潘韬,赵林,曹曙阳,等.多风扇主动控制风洞类平板断面抖振力识别研究[J].振动与冲击,2010,29(6):178-183
    [66]周玉芬,赵林,葛耀君.紊流积分尺度对桥梁抖振响应作用效应分析[J].振动与冲击,2010,29(8):87-93
    [67]华旭刚,陈政清,杨靖波,等.大缩尺比气弹模型风洞试验紊流积分尺度修正[J].建筑结构学报,2010,31(10):55-61
    [68]赵雅丽,全涌,黄鹏,等.典型双坡屋面风压分布特性风洞试验研究[J].同济大学学报(自然科学版),2010,38(11):1586-1592
    [69]卢占斌,魏庆鼎.网格紊流CAARC模型风洞实验[J].空气动力学学报.2001,19(3):16-23
    [70] E. Simiu. Modern developments in wind engineering: part1, Engineering structures,1982,V(3)
    [71] ESDU. Characteristics of atmospheric turbulence near ground. Part II: single point for strong winds(neutral atmosphere),85020,1985
    [72] ASCE, wind tunnel studies of buildings and structures, ASCE[S],1999
    [73] ASCE,minimum design loads for building and other structures,ASCE[S],2002
    [74] National buildings codes of Canada, user’s guide-NBC2005structural commentaries (part4),NBCC[S],2006
    [75] Eurocode, basis of design and action on structures–part2-4action on structures wind actions ENV[S]1991-2-4,1995
    [76] BSI,loads for buildings, British standard bs6399[S], part2.1997
    [77]香港屋宇署,codes of practice on wind effects in Hong Kong[S],2004
    [78]建筑结构设计荷载规范(GB50009-2001)[S],中国建筑出版社,2001
    [79]《公路桥梁抗风设计规范》(JTG/T D60-01-2004)[S].人民交通出版社,2006
    [80]徐泉.大跨度桥梁涡激振动及其气动减振措施研究[D],西南交通大学硕士学位论文,2007
    [81]刘健新.桥梁对风反应中的涡激振动及制振[J],中国公路学报,1995,8(2):74-79
    [82] LARSEN A,ESDAHL S,ANDERSON J E,et al. Storeblt Suspension Bridge-Vortex SheddingExcit-ation and Mitigation by Guide Vanes[J].Journal of Wind Engineering and IndustrialAerodynamics,2000,88(2/3):283-296.
    [83]许福友、林志兴、李永宁、楼文娟.气动措施抑制桥梁涡振机理研究[J],振动与冲击,2010,29(1):73-76
    [84] F.Nagao.H.Utsunomiya.E.Yoshioka.A.Ikeuchi.H.Kobayashi.Effects of handrails on separated shearflow and vortex-induced oscillation.Journal of Structural engineering.1997.819-827
    [85]曹丰产、葛耀军、吴腾.钢箱梁斜拉桥涡激共振及气动控制措施研究,第十三届全国风工程学术会议论文集,2007大连
    [86] Melborne,W.h journal of Wind Engineering and Industrial Aerodynamics,1993,V49,45-64
    [87] Gartshore,1.S,The effects of freestream turbulence on the drag of rectangular two dimensionalprism,Univ.of Western Ontario,Canda,1984,BLWT-4-73
    [88] Sang-Joon Lee,Hyoung-Bum Kim,The effect of surface protrusions on the near wake of a circularcylinder, Journal of Wind Engineering and Industrial Aerodynamics,1997,351-361
    [89] Kenji Sadashima, Improvement of aeroelastic instability of shallow II section Yoshinobu Kubo,Journalof Wind Engineering and Industrial Aerody namics,2001,V89,1445-1457
    [90] Goethert,B.H. Transonic Wind Tunnel Testing[M].1961
    [91] Hackett,J.E. Determination of Wind Tunnel Constraint Effects by a Unified Pressure Signature Method.NASA CR-166186,1980.
    [92]范召林等.壁压法应用于高速风洞大迎角实验洞壁干扰的修正[J].空气动力学学报,1992,10(4):22-26
    [93] Thompon S A.Wind Tunnel Blockage Effects on Slender Wings Undergoing Large AmptitudeMotions.AIAA.92-3926,1992
    [94]江桂清.低速壁压信息洞壁干扰修正方法两个重要的新改进[J].空气动力学学报,1992,10(4):65-71
    [95]江桂清.低速实壁风洞壁压信息洞壁干扰修正方法[J].空气动力学学报,1988,6(2):13-19
    [96]田学诗.支架干扰的气功模拟问题.第一届风洞实验会议论文集.1973
    [97]舒宗国.减小低速风洞试验中支架干扰的途径.第四届风洞实验会议论文集.1981
    [98] Willaume J.Interaction of a three Strut Support on the Aerodynamic Characterstics of a Civil AviationModle. AGARD Metting on Wall Interference, Support Interference an Flow Field Measurements,1993
    [99]崔乃明.高速风洞洞壁干扰和支架干扰的工程修正方法.航空学报,1990,11(12):56-61
    [100] Rist M J. Computational Investigation of Wind Tunnel Support Interference. AIAA-94-2602
    [101] Authony F W. Effects of External Influences on Subsonic Delta Wing Vortices. AIAA-92-4033
    [102]恽起麟等.从中法标模合作实验看如何提高风洞实验精度[J].气动实验与测量控制,1988,2(4)
    [103] Yound A D. Aircraft Excrescence Drag. ADA106030,1981
    [104]伍开元.歼击机静气动弹性计算及其修正[J].风洞与飞行相关性论文集,1989.
    [105]施洪昌等.风洞数据采集技术[M].北京:国防工业出版社,2004:64-147
    [106]施洪昌等.高低速风洞测控系统设计[M].北京:国防工业出版社,2001:22-60
    [107]建筑物荷载指南[S].日本建筑学会,1993
    [108] Isyumov,N.: Wind Tunnel Modeling for Civil Engineering Application, Cambridge UniversityPress,1982:373-407
    [109]欧阳万.应变天平静校系统技术指标的讨论[J].航空学报,1990,11(8)
    [110] Ewald B. Automatic Calibration Machine for Cyrogenic and Conventional Internal Gage Banlance.1990, AIAA,90-1396
    [111]赵元元,韩珠凤.低速风洞数据采集与处理系统[J].南京航空航天大学学报.1995,27(4):525-532
    [112]恽起麟.提高风洞实验数据精度的方法[J].气动实验与测量控制,1994,8(3):74-82
    [113]恽起麟.风洞实验数据的误差及其计算方法[J].气动实验与测量控制,1993,7(4):67-77
    [114]招惠玲.误差分析与数据处理方法[J].机电工程技术,2003,32(2):54-56
    [115]恽起麟.风洞实验数据误差分析[J].气动实验与测量控制,1994,8(2):62-70
    [116]王利娟,林志兴.紊流对桥梁颤振特性影响的实验研究[J].同济大学学报,2001,29(4):390-395
    [117]靳欣华,项海帆,陈艾荣.平板气动导纳识别理论及测量[J].同济大学学报,2003,31(10):1168-1172
    [118]诸葛萍.桥梁气动导纳试验研究及斜拉桥抖振响应分析[D].西南交通大学硕士学位论文,2008.6
    [119]李鹏飞.脉动风特性及其对桥梁主梁断面的抖振作用研究[D].同济大学硕士学位论文,2007.3
    [120]任娜.桁架桥梁颤振导数的影响因素研究[D].长安大学硕士学位论文,2010.6
    [121]施文杰.大跨度斜拉桥主梁断面气动导纳试验研究[D].重庆大学硕士学位论文,2009.5
    [122]黄本才.结构抗风分析原理及应用[M].上海,同济大学出版社,2001,14-53
    [123]陈政清.桥梁风工程[M].北京,人民交通出版社,2005,5-53
    [124] Simiu E, Scanlan R H.风对结构的作用—风工程导论[M].北京,人民交通出版社,1996:5-63
    [125]日本建议. AIJ Recommendations for loads on Building,1996
    [126]澳大利亚规范. AS1170.2—1989
    [127]欧洲钢结构协会标准.房屋与结构的风效应计算建议.外国建筑结构荷载规范汇编,中国建筑科学院,1991
    [128]美国规范. Minimum Design Loads for Building and other Structure(ANSI/ASCE7-95).1996
    [129]庞加斌,宋丽莉,林志兴,等.风的紊流特性两种分析方法的比较及其应用[J].同济大学学报(自然科学版),2006,34(1):27-32
    [130]幺枕生.气候统计学基础[M].北京,科学出版社,1984
    [131]庞加斌,林志兴,葛耀君.浦东地区近地强风特性观测研究[J].流体力学实验和测量,2002,16(3):32
    [132]赵林.风场模式数值模拟与大跨度桥梁抖振概率评价[D].同济大学博士学位论文.上海:同济大学,2003
    [133]黄本才.随高度变化的脉动风速谱及风振计算[M].力学与应用论文集,上海:同济大学出版社,1988
    [134] Davenport A G. The Relatonship of Wind Structure to Wind Loading, in proc. Of the Symposium onWind Effect on Building and Structures. Vol.1, London, P54-102,1965
    [135]张相庭.高层建筑抗风抗震设计计算[M].上海:同济大学出版社,1997
    [136]胡峰强.山区风特性参数及钢桁架悬索桥颤振稳定性研究[D].同济大学博士学位论文.上海:同济大学,2006
    [137] A.G.Davenport. Buffeting of a Suspension Bridge by Storm Winds[J].Journal of Structural Division,ASCE,1962,88(ST3):233-268
    [138] A.G.Danvenport. perspectives of the full scale measurement of wind effects[J], Journal of WindEngineering&Industrial Aerodynamics,1975,1:23-54
    [139]刘郁馨.高层结构水平纵向风谱的研究[J].重庆建筑工程学院学报,1986,4:69-79
    [140]李会知,关罡,郑冰.风洞模拟大气边界层的数据处理[J].郑州大学学报(工学版),2002,23(4):64-67
    [141]石碧青,洪海波,谢壮宁,等.大气边界层风洞流场特性的模拟[J].空气动力学学报,2007,25(3):376-380
    [142]李永乐,卢伟,李明水,等.风洞短试验段中基于被动技术的大气边界层模拟[J].实验流体力学,2007,21(3):82-85
    [143] Bucher C G,Lin Y K.Effect of wind turbulence onmotion stability of long span bridges[J]. JournalWind Engineering and Industrial Aerodynamics,1990,36(3):1355-1364
    [144] HANN JR, FRED L, KAREEM AHSAN, SZEWCZYK ALBIN A. The effects of turbulence on thepressure distribution around a rectangular prism [J]. Wind Eng. Ind. Aerodyn,1998,77&78:381-392
    [145] NAKAMURA Y, OZONO S. The effects of turbulence on a separating and reattaching flow [J]. FluidMech,1987,178:477-490
    [146] TIELEMAN H W, AKINS R E. Effects of incident turbulence on pressure distributions onrectangular prisms [J]. Wind Eng. Ind. Aerodyn,1990,36:579-588
    [147]郝朝东.非高斯风压时程峰值因子[D].北京交通大学硕士学位论文.北京:北京交通大学,2011
    [148]楼文娟,李进晓,沈国辉,等.超高层建筑脉动风压的非高斯特性[J].浙江大学学报(工学版).2011,45(4):671-677
    [149]叶丰,顾明.超高层建筑风压的频率特性[J].同济大学学报(自然科学版).2006,34(3):285-290
    [150]陈伏彬,李秋胜,傅继阳,等.大跨屋盖风荷载的频率特性试验研究[J].振动与冲击,2012,31(5):111-117
    [151]李波,杨庆山,田玉基,等.锥形超高层建筑脉动风荷载特性[J].建筑结构学报.2010,31(10):8-15
    [152]魏奇科,李正良,黄汉杰,等.超高层建筑表面脉动风压空间相关特性试验研究[J].2010,24(5):63-69
    [153] N.J.Cook, Jensen Number; a proposal. J. Wind Eng. Ind. Aerodyn,22(1986):95-96
    [154] Roy,R.J and Holmes, J.D, The effects of scale distortion on total wind loads on a low-rise buildingmodel[J]. Journal of wind engineering and industrial aerodynamics,1988(29):273-282
    [155] J.D.Holmes, P.Carpenter. The effect of Jensen Number variations on the wind loads on a low-risebuilding[J]. Proceddings of the sixth U.S. national conference on wind engineering. Vol.Ⅱ,1989,march8-10. University of Houston.
    [156] Stathopoulos.T,and Surry. D, Scale effects in wind tunnel testing of low buildings[J]. Journal of windengineering and industrial aerodynamics,1983(13):313-326
    [157] P.J.Richards, R.P.Hoxey, L.J.Short, wind pressures on a6m cube[J]. Journal of wind engineering andindustrial aerodynamics,2001(89):1553-1564
    [158]金挺.扁平箱梁桥梁断面气动特性的雷诺数效应研究[D].同济大学硕士学位论文,上海:同济大学,2004
    [159]林志兴,金挺,李加武.桥梁断面气动特性的雷诺数效应试验研究,2004年全国结构风工程实验技术研讨会,2004.10,长沙
    [160]楼小峰.桥梁断面气动特性的数值模拟[D].同济大学硕士论文,上海:同济大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700