生物催化/光催化联合降解毒死蜱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中农药的残留及污染是全世界普遍关注的问题,我国是农药生产和使用大国,农药污染问题显得尤为严重。因此,寻找经济、高效的毒死蜱降解方法已成为是环保方面的重要课题。采用传统的或单一的生物、化学方法处理各有缺陷,本文旨在探索生物法、光催化法联合降解对水中毒死蜱降解的可行性及规律,以期找到一种降解毒死蜱污水的新方法。
     本文利用胶束电动毛细管色谱(MEKC)建立了测定水中毒死蜱含量的方法,研究了检测波长、运行缓冲液的种类浓度以及pH、有机添加剂、脱氧胆酸钠(NaDCh)的浓度和分离电压等实验条件对毒死蜱测定的影响。实验结果表明:以25 mmol·L-1硼砂(pH9.0,含20%(V/V)乙腈和50 mmol·L-1NaDCh)作为缓冲溶液,毒死蜱能在15 min内实现很好的基线分离,线性范围为15.625-500 mg·L-1,线性相关系数为0.9998,检出限(以信噪比(S/N)为3计)为0.135 mg·L-1,加标回收率为98.91%-100.9%。精密度和稳定性试验中,峰面积和迁移时间的相对标准偏差均小于3%,表明重复性良好。该方法简便、快速、灵敏,可用于水中毒死蜱含量的测定。
     本文采用富集培养的方法,从农药厂废水处理池污泥中分离到一株对毒死蜱有较强降解能力的菌株TW-1,TW-1能以毒死蜱为唯一碳源生长。研究了初始pH、外加碳源浓度、毒死蜱初始浓度、培养温度、接种量对降解菌降解能力的影响。采用Box-Behnken优化哈夫尼菌降解毒死蜱的条件,并建立了降解模型,优化结果表明:哈夫尼菌降解毒死蜱的最优条件为:蔗糖浓度0.31%,毒死蜱初浓度51.33 mg·L-1,培养温度30.7℃,在该条件下理论预测毒死蜱降解率可达74.7%。通过假设和验证,得出哈夫尼菌降解毒死蜱为一级动力学模型,哈夫尼菌能水解毒死蜱P-O键,属一级酶促反应。
     利用Ti02粉末作为催化剂,研究不同催化时间、温度、pH值、光源和光强等单因素对水中毒死蜱光催化效果的影响。结果表明:当pH>7时,降解率较高;光照距离5 cm,毒死蜱降解率达70.6%,去除效果随光强减弱显著下降;毒死蜱的降解率随Ti02催化时间的增加而增大,但从30 min开始,降解率提升幅度逐渐减小;当反应温度在20-30℃范围时,毒死蜱降解率没有明显变化,当温度高于45℃时,降解率明显增加,当温度达到65℃时,降解率达到77.9%。
     在生物法和光催化法降解毒死蜱的研究基础上,研究了生物法/光催化法联合降解毒死蜱的可行性,并对试验装置和反应模式进行了初步探索。发现用生物法/光催化法联合降解毒死蜱可以有效缩短反应时间,同时提高毒死蜱的降解浓度。初步研究结果表明:在使用生物法处理81h后,由光催化降解毒死蜱6h,通过两个系统联合作用一共耗时87h,与单独使用生物法降解毒死蜱相比,时间节省了12.1%,与单独使用光催化法降解毒死蜱相比,降解能力提高了5倍。
The residule and pollutant are attended by the whole world,the pesticides are yielded and used much in China. So, it is an important issue of environment protection to approach for an economic,high efficient treatment of chlorpyrifos wastewater degradation.The efficiency is low with single biological or chemical treatment.In the hope of providing foundations to establish a kind of new degradation technology,the subject intended to explore the feasibility and regulations of the synergetic treatment for chlorpyrifos wastewater degradation which combined biodegradation and photocatalysis.
     A method for chlorpyrifos determ ination in water based on micellar electrokinetic capillary chromatography has been developed.The assay conditions including inspection wavelength,pH and the concentration of running buffer,organic additive,the concentration of sodium deoxycholate (NaDCh),and the separation voltage were optimized.Under the optimized conditions (25 mmol·L-1 borate buffer (pH9,containing 20%(V/V) acetonitrile,50 mmo·L-1 NaDCh),the chlorpyrifos can be separated within 15 min,with the linearworking range of 15.625~500 mg·L-1(r2=0.999 8) and a lim it of detection (S/N=3) of 0.135 mg·L-1.It had good recoveries (98.91%~100.9%) and the relative standard deviations lower than 3%.The method is simple,rapid,sensitive,highly reproducible and can be successfully applied in the determination of chlorpyrifos in water.
     A bacterial strain designated as TW-1 capable of degrading chlorpyrifos was isolated from sludges by enrichment culture,Strain TW-1 can grow with chlorpyrifos as its sole carbon source.The effects of initial pH,culture temperature,initial chlorpyrifos concentration,carbon source concentration,inoculation amount and chlorpyrifos-degradation of strains were studied. Response surface methodology (RSM) was used to determine the optimal conditions for degradation of chlorpyrifos,and to establish a model of the degradation kinetics.Response surface methodology based on the Box-behnken design of experiment was used to determine the optimum conditions.On the basis of the response surface and contour plots,the optimum conditions for chlorpyrifos degradation were;0.31%(w/v) glucose,initial chlorpyrifos concentration 51.33mg/L,and culture temperature 30.67℃.The predicted extent of chlorpyrifos degradation under these optimum conditions was 74.7%.According to the hypothetical kinetic model for chlorpyrifos degradation,the kinetics for chlorpyrifos degradation could be described by a first-order rate equation.
     The feasibility and performances of photocatalysis technology were explored to degrade chlorpyrifos.Based on TiO2 photocatalytic process, experiments were carried out to evaluate influence of time,pH, temperature,light intensity and light source on removal of chlorpyrifos residue in water.It arrived at a higher level when pH was over 7.The removal rate decreased with decreased light intensity and was 70.6% when the treating distance was 5cm. It was discovered that removal rates increased with treating times, but no significant alteration between 30min and 60min after treatment. Under all tested temperatures, the removal rate of more than 60.0% was achieved,not significantly different between 20~30℃and increased significantly when the temperature was over 45℃,the removal rate achieved 77.9% when the temperature was 65℃.
     Based on the study of photocatalysis and biology treatment,the photocatalysis and bioreactor was integrated for chlorpyrifos degradation. The feasibility and integrated mode was primary explored.Results showed that the reaction time was efficiently shortened, and the degradation concentration was raised,simultaneously,in the combined chlorpyrifos/biological system.The least reaction time for this system was determined to be 81h at biological treatment reaction time of 87h with bi-energy fields reaction time of 6h.Time was saving of 12.1% compared to using biological treatment exclusively,chlorpyrifos degradability was enhancing of 5 times compared to using photocatalysis exclusively.
引文
[1]钱博.毒死蜱高效降解细菌的筛选及降解特性研究[D].山东农业大学,2007
    [2]Lalah J,O,Ondieki D,Wandiga S,O.Dissipation distribution and uptake ofC-Chlorpyrifos in a model tropical seawater sediment fish ecosystem[J].Bull Environ ContainToxicol,2003.70:883-890
    [3]李瑞雪.毒死蜱降解菌株Sphingopyxis terrae R17的分离鉴定及其luxAB基因标记研究[D].安徽农业大学,2010
    [4]Matthews G,Wiles T,Baleguel P.A.Cameroon Crop Protection[J].Survey of pesticide application in,2003,22:707-714
    [5]张悦周,吴耀国,胡思海,等.微生物降解有机磷农药的研究进展[J]化工环保,2007,27(6):514-519
    [6]陈振德,陈雪峰,冯明祥,等.毒死蜱在菠菜残留中的动态研究[J].农业环境科学学报,2005,24(4):728-731
    [7]李红梅,魏艳丽,任艳,等.一株毒死蜱降解菌的分离鉴定及降解特性[J].江苏农业学报,2010,26(2):443-445
    [8]Liu B,Mcconnell L.L,Torrents A.Hydrolysis of chlorpyrifos in natureal waters of the Chesapeake Bay[J].Chemosphere,2001,44(6):1315-1323
    [9]石利利,林玉锁,徐亦钢等.毒死蜱农药环境行为研究[J].土壤与环境,2000,9(1):73-74
    [10]Racke K.D,Steele K.P,Yoder R.N,et al.Factors affecting the hydrolytic degradation of chlorpyrifos in soil[J].Agric Food Chem,1996,44,1582-1592
    [11]Laabs M,Amelung W,Pinto,et al.Pesticides in Surface Water,sediment,and Rain fall of the Northeasern Pantanal Basin[J],Brazil.Environ Qual,2002,31(5):1636-1648
    [12]Byme S L,Pinkerton S L.The effect of cooking on chlorpyrifos and 3,5,62t richloro222pyridinol levels in chlorpyrifos2fortified produce for use in refining dietary exposure.J.Agric.Food Chem.,2004,52(25):7567-7573
    [13]Pinyakong O,Habe H,Omori T,et al.Isolation and Characterization of Acenaphthene and Acenaphthylene Degrading Sphingomonas sp.Strain A4.FEMS Microbiology Letters,2004,238:297-305
    [14]Slotkin T.A,Cousins M.M,Tate C.A,Seidler F.J.Persistence cholinergic presynaptic deficits after neonatal chlorpyrifos exposure[J].Brain Res,2001,902:229-243
    [15]Vidair C.A.Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat extrapolation to the human[J]. Toxicology and Applied Pharmacology,2004,196:287-302
    [16]Lee W.J,Blair A,Hoppin J.A,et al.Cancer Incidence among Pesticide Applicators Exposed to Chlorpyrifos in the Agricultural Health Study[J] Journal of the National Cancer Institute,2004,96(23):1781-1789
    [17]Kacham R,Karanth S,Baireddy P,et al.Interactive toxicity of chtorpyrifos and parathion in neonatal rats:Role of esterases in exposure sequence-dependent toxicity[J].Toxicol and Appl Pharmacol,2006,210:142-149
    [18]Abu-QareAW,Abou-DoniaM B.JChromatogrB Biomed SciAppl[J],2001,757:295
    [19]SHIHai-Ping(施海萍),YE Jian-Ren(叶建人),XU You-Gen(徐友根)Agroenviron and Dev(农业环境与发展)[J],2005,22(3):47
    [20]Gamo M,Ka T,Nakanishi J.Ranking the risks of 12 major environmental pollutants that occur in Japan [J]. Environmental Sciences and Pollution,2003,53(4):277-284
    [21]崔供力,李强,刘美良.农药残留及监控对策[J].农业与技术,2002,22(5):74-76
    [22]中国出入境检疫协会动植物工作委员会.检验检疫与中国水果出口[J].果农之友,2005(8):4-5
    [23]田芹,周志强,任丽萍等.农药在水体中光化学降解研究进展,农药2005,44(6):247-250
    [24]田芹,周志强,江树人等.毒死蜱在环境水体中降解的研究[J].农业环境科学学报,2005,24(2):289-293
    [25]吴慧明,魏方林,楼建晴,等.毒死蜱的水解研究[J].宁波高等专科学校学报.2001,13(赠刊)3:101-104
    [26]Sundaram B,Koolana R S,Rawendra N,et al.Degradation of bifenthrin chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates[J].Pesticide Science,1999,55(12):1222-1228
    [27]Kishimba M A,Henry L,Mwevura H,et al.The status of pesticide pollution in Tanzania.Talanta,2004,64:4853
    [28]Liu B,Mcconnell L.L,Torrents A.Hydrolysis of chlorpyrifos in natureal waters of the Chesapeake Bay[J].Chemosphere,2001,44(6):1315-1323
    [29]顾晓军,田素芬,曾强.两种毒死蜱乳油制剂有效成分在水中的降解[J].北京农学院学报,2008,23(3):32.35
    [30]司友斌,岳永德,周东美,等.土壤表面农药光化学降解研究进展[J].农村生态环境,2002,18(4):56-59
    [31]RACKE K D.Factors affecting the hydrolytic degradation of chlor-pyrifos in soi[[J].Journal of Agricultural Food Chemistry,1996,44:1582-1592
    [32]PH.SChnitt.,王春霞,彭安,等.不同来源腐殖酸的光解及过氧化氢对其光解的影响.环境科学学报,1996,Vol.16,No.3:270-275
    [33]汪东,王敬国,慕康国.Ti02对毒死蜱在土壤表面光降解的催化作用[IT].生态环境学报2009,18(3):934-938
    [34]吴祥为,花日茂,唐俊.表面活性剂对毒死蜱在水溶液中的光解影响[J].农业环境科学学报2009,28(8):1705-1711
    [35]王琰,胡林,慕康国,等.悬浮态Ti02静止光催化降解有机磷农药[J].中国农业大学学报,2008,13(2):73-77
    [36]徐淑霞,王学东,周红斌,等.咪唑烟酸在土壤表面光解动力学及深度的研究[J].农业环境科学学报,2004,23(5):944-948
    [37]WANG J,LI R H,ZHANG Z H,et al.Photocatalytic degradation odyestuff wastewater under visible light irradiation using micron-sized mixed crystal TiO2 powders[J].Journal of Chemical Technology and Biotechnology,2007(82):588-597
    [38]XIE Y B.Rare earth ion modified TiO2 sols for photocatalysis application under visible light excitation[J].Rare Metals,2004,23(1):20
    [39]刘玉焕,钟英长.真菌降解有机磷农药乐果的研究[J].环境科学学报,2000,20(1):95-99
    [40]Sethunathan N,Yoshida T.A Flaobacterium that degrades diazinon and para thion[J].Can J Microbiol.,1973,19:873-875
    [41]段海明,王开运,乔康,张文成,王东.两株毒死蜱降解细菌的分离鉴定及其降解特性[J].环境科学学报,2009(4):723-731
    [42]杨丽,赵宇华,张炳欣,张听.一株毒死蜱降解细菌的分离鉴定及其在土壤降解中 的应用[J].微生物学报,2005,45(6):905-909
    [43]袁玉伟,王静,叶志华.菠菜对土壤中毒死蜱残留的吸收研究.生态环境,2007,16(4):1098-1102
    [44]李晓慧,贾开志,何健,李顺鹏.一株毒死蜱降解菌株Sphin-gomonassp.Dsp-2的分离鉴定及降解特性[J].土壤学报,2007 44(4):734-739
    [45]秦坤,唐心强,张丽青.乐斯本降解真菌的筛选及降解特性研究.泰山医学院学报,2007,28(6):437-440
    [46]吴祥为,花日茂,操海群,等.2006.毒死蜱降解菌的分离鉴定与降解效能测定[J].环境科学学报,26(9):1433-1439
    [47]王金花,朱鲁生,王军,秦坤.3株真菌对毒死蜱的降解特性[J]应用与环境生物学报,2005,11(2):211-214
    [48]李界秋,黎晓峰,沈方科,张超兰.毒死蜱在土壤中的环境行为研究[J].农业资源与环境科学,2007,23(1):168.171
    [49]张利,刘红玉,曾光明,等.一株毒死蜱降解菌的分离鉴定及降解性能研究[J].环境工程学报,2008,2(10):1421-1424
    [50]王利,余贤美,贺春萍,郑服丛.毒死蜱降解细菌WJ1-063的鉴定及酶促降解特性[J].热带作物学报,2009,30(3):357-361
    [51]张春永,袁春伟,付德刚,顾忠泽.双级微电解法处理毒死蜱生产废水的研究[J].水处理技术,2009,35(4):99-103
    [52]陈振德,吉玉玲,张清智,等.硝酸稀土对菠菜中毒死蜱残留的降解作用研究[J].农业环境科学学报2009,28(6):1307-1312
    [53]边全乐.使用毒死蜱的安全性[J].中国农学通报,1997,13(6):71
    [54]Galloway.T,Handy.R.Immunotoxicity of organopHospHorous pesticides [J]. Ecotoxicology,2003,12:345-363
    [55]Won J L,Aaron B,Jane A H,et al.Cancer incidence among pesticide applicators exposed to chlorpyrifos in the agricultural health study [J].Journal of the National Cancer Institute,2004,96(23):1781-1789
    [56]Yucel U,YlimM,Gozek K,et al.Chlorpyrifos degradation inTurkish soil[J].J.Environ.Sci.and Health,1999,34(1):75-95
    [57]凌云,王菡,雍炜,等.气相色谱-质谱/质谱法检测蔬菜中的毒死蜱及其代谢物[J]. 色谱,2009.27(1):78-81
    [58]董丽华,董玉莲.固相萃取-气相色谱法测定水中毒死蜱[J].分析测试技术与仪器,2008,14(1):30-32
    [59]张超,杨红.水、土壤和蔬菜中毒死蜱、甲基毒死蜱残留检测前处理方法[J].农药,2010.49(5):367-370
    [60]Abu-Qare A W, Abou-Donia M B. J Chrom atogr B,2001,757:295
    [61]韩畅,朱鲁生,王军,等.HPLC测定水体中毒死蜱及其有毒降解产物TCP[J].农业环境科学学报,2009,28(7):1552-1556
    [62]管宏云,黄晓璐.高效液相色谱法测定废水中的辛硫磷、毒死蜱[J].污染防治技术,2009,22(4):87-88
    [63]张良,许杨,李燕萍.胶束电动毛细管色谱法检测红曲米中的莫纳可林K[J].色谱,2010,28(4):393-396
    [64]靳淑萍,李萍,董树清,等.毛细管电泳-电化学检测法测定黄芪及其制剂中的活性成分[J].色谱,2009,27(2):229-232
    [65]李月秋,陈冠华,田益玲.等.利用胶束电动毛细管色谱法测定甲基对硫磷[J].河北农业大学学报2004,27(2):85-87
    [66]陶玉贵,汪耀明,叶连斌,等.水中甲胺磷的毛细管胶束电动色谱测定法[J].环境与健康杂志,2008,25(3):250-252
    [67]M.Agmlar,A.Farran,C.Serra,et al.Use of different surfactants (sodium dodecyl sulfate, bile salts and ionic polymers) in micellar electrokinetic capillary chromatograpHy Application to the separation of organopHospHorus pesticides Journal of ChromatograpHy A,778 (1997) 201-205
    [68]SongSL,Ma XD,Li CJ.Multi-residue determination method of pesticides in leek by gel permeation chromatograpHy and solid pHase extraction followed by gas chromatograpHy with mass spectrometric detector[J].Food Control,2007,18:448-453
    [69]Munnecke D M,Hsieh D P H. Microbial decontamination of parathion andρ_nitropHenol in aqueous media.Appl Environ Microbiol,1974,28:212-217
    [70]Samina Anwar,Fauzia Liaquat,Qaiser M.Khan,Zafar M.Khalid,Samina Iqbal. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1[J].Journal of Hazardous Materials,2009,168:400-405
    [70]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    [71]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002
    [72]季宏飞,许杨,李燕萍.采用响应面法优化红曲霉固态发酵产红曲色素培养条件的研究[J].食品科技.,2008,27(8):9-13
    [73]Meng Chun, S. Chngchun, Guo Yanghao,et al.Study on characteristics of biocometabolic removal of omethoate by the Aspergillus spp[J].Water Research,2004,38,1139-1146
    [74]Huiping Li,Guoqun Zhao,Chuanzhen Huang,et al.Technological parameters evaluation of gas quenching based on the finite element method [J]. Computational Materials Science,2007,38(4):561-570
    [75]王能强,彭芳刚,梁芳,等.聚乙烯醇降解酶酶解聚乙烯醇最优条件研究[J].环境科学学报,2010,30(7):1390-1394
    [76]刘娅,刘宏娟,张建安,等.响应面法优化Clostridium beijerinckii木糖发酵产丁醇培养基的研究[J].食品工业科技,2010,31(7):194-196
    [77]Racke,K D.Environmental fate of chlorpyrifos[J].Rev Environ Contam Toxicol,1993,131:1-150
    [78]Hoffman MR,Martin ST,ChoiW,et a.l Environmental Applications of Semiconductor Photocatalysis[J]. ChemRev,1995,95:69-96
    [79]汪东,王敬国,慕康国.TiO2对几种农药在土壤中光降解的催化作用[J].环境污染与防治,2010,8(32):10-13
    [80]梁喜珍,黄国林,等.Ti02光催化降解农药废水的研究[J].化工时刊,2005,19(10):20-23
    [81]M. Subramanian, A. Kannan.Photocatalytic degradation of phenol in a rotating annular reactor [J]. Chemical Engineering Science,2010,6:2727-2740
    [82]Yamashita H,Harada M.Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2[J].Catalysis Today,2003,84(3/4):191
    [83]V. Sarria,M. Deront, P. Peringer,etc. Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron(III) photoassisted-biological treatment[J].Applied Catalysis B:Environmental,2003 (40):231-246
    [84]Walid K. Lafi.Z. Al-Qodah. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions [J]. Hazardous Materials,2006 (B137):489-497
    [85]Milena Lapertot, Sirous Ebrahimi, Stefano Dazio. etc. Photo-Fenton and biological integrated process for degradation of a mixture of pesticides[J]. Photochemistry and Photobiology A:Chemistry,2007 (186):34-40
    [86]M.M. Ballesteros Mart'in, J.A. Sanchez Perez, J.L. Garcia Sanchez, etc. Degradation of alachlor and pyrimethanil by combined photo-Fenton and biolo-gical oxidation[J]. Hazardous Materials,2008(155):342-349
    [87]M.M. Ballesteros Mart'in. J.A. Sanchez Perez, J.L. Garcia Sanchez, etc. Combined photo-Fenton and biological oxidation for pesticide degradation:Effe-ct of photo-treated intermediates on biodegradation kinetics[J].Chemosphere,2008 (70): 1476-1483
    [88]Claudia Mendoza-Marin,Paula Osorio,Norberto Benitez. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments [J]. Hazardous Materials,2010(177):851-855
    [89]M. Klare,G Waldner, R.Bauer,etc.Degradation of Nitrogen Containing Organ-ic Compounds by Combined Photocatalysis and Ozonation[J].Chemosphere,1999,38 (9):2013-2027
    [90]E. Oliveros, O. Legrini, M. Hohl, T. Muller,etc.Large scale development of a light-enhanced fenton reaction by optimal experimental design [J]. Water Science and Technology, Volume 35, Issue 4,1997, Pages 223-230
    [91]Sabat6 J.,Grifool M.,M.VifiasA.M.Solanas.Isolation and charaeterization of a 2-methyPhenantherne utilizing baeterium:identifieation of ring cleavage metabolites. Appl Microbil Bioteehnol[J].1999,52:704-712

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700