用户名: 密码: 验证码:
同种异体骨髓间充质干细胞移植治疗血管性痴呆大鼠模型的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】探讨大鼠骨髓间充质干细胞(Bone Marrow Mesenchymal Stem Cells, BMSCs)体外分离、培养、纯化、传代、鉴定和标记的方法,为进行BMSCs移植治疗血管性痴呆(Vascular dementia, VD)大鼠模型提供功能稳定的种子细胞。
     【方法】采用全骨髓细胞培养贴壁筛选法在体外分离培养大鼠BMSCs,相差显微镜观察BMSCs细胞形态,透射电镜观察BMSCs超微结构并绘制生长曲线,使用地塞米松等物质诱导其向成骨细胞和脂肪细胞两个方向分化。用BrdU对BMSCs进行体外标记,通过免疫组化染色观察并计算BrdU阳性细胞标记率。①选取3-4W龄SD大鼠,从其股骨中取材,在无菌条件下操作,用剪刀剪去股骨的两端,暴露骨髓腔,用含15%胎牛血清(FBS)的DMEM-LG完全培养基从骨髓腔中冲出骨髓于平皿中,并用同样含15%FBS的DMEM-LG完全培养基培养,用消化控制和全骨髓细胞贴壁分离法分离纯化BMSCs,观察其生长状态,相差显微镜观察BMSCs的细胞形态,透射电镜观察BMSCs超微结构并绘制生长曲线。②取生长旺盛的第3代细胞,用流式细胞仪检测BMSCs表面抗原CD34(PE标记)、CD90 (FITC标记)、CD44 (FITC标记)及同型对照小鼠抗大鼠IgG1型单克隆抗体(分别为PE和FITC标记)。并分别以诱导其向骨细胞分化及向脂肪细胞分化的方法对分离扩增的BMSCs进行鉴定。③用5-溴-2’-脱氧尿嘧啶核苷(BrdU)免疫组化染色方法对第3代细胞BMSCs进行体外标记,通过免疫组化染色观察并计算BrdU阳性细胞标记率。
     【结果】①原代培养的SD大鼠BMSCs为大小不等圆形细胞。纯化、扩增后BMSCs呈均匀一致的长梭型,传代后的BMSCs形态趋于均一,排列有序,呈鱼群样或漩涡状排列。BMSCs超微结构见SD大鼠BMSCs细胞体积较小,核质比例较大,细胞核呈椭圆形,也可见不规则形,核仁1-2个大而明显,核染色质较疏松,细胞表面可见有较多微绒毛,胞质中可见较丰富的细胞器,如线粒体、粗面内质网和高尔基体。传代周期为8-9d,细胞接种后1~2 d为滞留期,3d后达对数生长期,第6天进入平台期。②流式细胞仪检测第3代细胞示,CD44阳性率为89.4%、CD90为99.2%,CD34为1.82%。经诱导BMSCs向骨细胞分化后,茜素红S染色可见钙结节阳性。经诱导BMSCs向脂肪细胞分化后,油红O染色,苏木素复染,细胞内可见圆形脂滴空泡,被油红O染成特异性橘红色。③10μmol/LBrdU体外孵育48h后BrdU阳性细胞呈棕黄或黄褐色,阳性反应物位于细胞核,标记率为89%~92%。
     【结论】体外BMSCs易于分离、培养和扩增。体外培养的BMSCs有独特的超微结构特点。BMSCs可通过诱导向成骨细胞和脂肪细胞分化。用BrdU标记BMSCs的浓度为10μmol/L,时间为48h。
     【目的】研究立体定位海马移植同种异体BMSCs,对VD大鼠模型的学习记忆功能障碍改善的疗效、脑组织病理学改变、脑组织中移植BMSCs的存活迁移情况等的影响。
     【方法】①用2-VO法制作血管性痴呆大鼠模型,将11~13月龄的SD大鼠随机分成3组:假手术组10只,暴露双侧颈总动脉但不结扎;培养组基对照15只,结扎双侧颈总动脉(2-VO),30d后脑立体定位将10μl PBS注入大鼠海马内;BMSCs移植组15只,2-VO 30d后脑立体定位将1×106BMSCs移植入大鼠海马内。②饲养实验大鼠4w后以Morris水迷宫作定位航行试验和空间探索实验检测各组大鼠空间学习记忆能力。③HE染色后光镜下观察各组大鼠海马区和额叶皮质的病理变化。④免疫组织化学染色观察BrdU标记的BMSCs在VD大鼠脑组织中的存活及迁移情况进行研究。
     【结果】①造模前各组大鼠Morris水迷宫检测成绩差别无统计学意义,海马定位移植4w后,模型对照组与假手术组比较,平均逃避潜伏期长(P<0.01),且60s内在平台象限滞留时间短(P<0.01)。BMSCs移植组逃避潜伏期比模型对照组明显缩短(P<0.01), BMSCs移植组在平台象限滞留时间较模型对照组长(P<0.05)。但都达不到假手术组的水平(P<0.01)。②光镜下可见模型对照组大鼠海马及额叶皮质的细胞排列不齐,细胞核固缩,胞质密度增高,细胞脱失。而BMSCs移植组上述病理改变较轻。③BMSCs移植组经海马定位移植BMSCs 4w后,可在实验大鼠海马观察到呈棕黄或黄褐色的BrdU标记BMSCs,有局灶聚集现象。额叶也见少量分散的BrdU阳性细胞。
     【结论】①BMSCs海马定位移植治疗使VD模型大鼠空间学习记忆能力得到改善,但未达到假手术组水平。②BrdU免疫组化染色证实海马定位移植的BMSCs能在海马存活,并且能够在移植大鼠脑内迁移。
     【目的】研究甘露醇预处理对同种异体BMSCs静脉移植治疗VD模型大鼠学习记忆功能障碍改善疗效的影响,通过观察实验大鼠脑组织脑源性神经营养因子(BDNF)含量、血管内皮生长因子(VEGF)及海马胆碱能系统活性,探讨甘露醇预处理后BMSCs静脉移植治疗VD模型大鼠疗效的机制。
     【方法】①造模成功后将VD模型大鼠随机分成模型对照组8只(注射1ml无血清培养基)、BMSCs移植组11只(注射1×106个BMSCslml)及甘露醇预处理BMSCs移植组9只(注射1.5g/kg甘露醇后,在10-30分钟之内注射1×106个BMSCslml)。还设假手术组7只,暴露双侧颈总动脉,但不结扎即缝合,不进行任何干预。②移植后笼养实验大鼠4w后,Morris水迷宫作定位航行试验和空间探索实验检测各组大鼠空间学习记忆能力。③HE染色观察大脑病理结构的变化。④ELISA法检测各组实验大鼠脑组织BDNF含量变化。⑤ELISA法检测各组实验大鼠脑组织VEGF的含量变化。⑥检测实验大鼠海马胆碱乙酰转移酶(ChAT)和乙酰胆碱酯酶(AChE)的活性。
     【结果】①BMSCs静脉移植4w后,大鼠空间学习记忆能力测试结果显示,甘露醇预处理后BMSCs移植组和BMSCs移植组的逃避潜伏期均较培养基对照组明显缩短(分别p<0.01,p<0.05),平台象限平均滞留时间均延长(分别p<0.01,p<0.05);甘露醇预处理后BMSCs移植组的逃避潜伏期比BMSCs移植组更明显缩短,平台象限平均滞留时间更长(p<0.001);甘露醇预处理后BMSCs移植组的的逃避潜伏期和平台象限平均滞留时间与假手术组的差异无统计学意义(P>0.05)。②BMSCs移植组额叶皮质组织HE染色病理片显示其病理损伤较培养基对照组轻,神经元细胞数量较多,神经元肿胀、脱失及核固缩现象减少,而以甘露醇预处理后BMSCs移植组的病理损伤更轻。③BMSCs移植组海马和额叶组织BDNF含量高于培养基对照组(P<0.05);甘露醇预处理BMSCs移植组海马和额叶BNDF含量不但高于培养基对照组(P<0.05),而且比BMSCs移植组更高(P<0.05);但是,尚未达到假手术组的水平(P<0.05)。④甘露醇预处理BMSCs移植组、BMSCs移植组额叶组织VEGF含量均值比培养基对照组显著增高(P=0.000);甘露醇预处理BMSCs移植组额叶VEGF含量比BMSCs移植组更高(P=0.000);与假手术对照组比较,培养基对照组大鼠额叶VEGF含量也升高(p=0.006)。⑤培养基组大鼠海马组织AChE和ChAT活性较假手术组明显减弱(P<0.05); BMSCs移植组大鼠海马组织AChE和ChAT活性较培养基组有明显增强(P<0.05);甘露醇预处理BMSCs移植组大鼠海马组织AChE和ChAT活性不仅比培养基组有更显著增强(P<0.05),而且比BMSCs移植组也显增强(P<0.05)。
     [结论]用甘露醇预处理后静脉移植同种异体BMSCs能使VD模型大鼠的学习及记忆能力的改善比单纯静脉移植BMSCs更明显。BMSCs静脉移植可减轻大脑的病理性损伤,而甘露醇预处理后行BMSCs静脉移植的病理损伤更轻。提示甘露醇预处理可能增加了BBB通透性,使更多BMSCs进入脑内发挥作用。静脉移植BMSCs4w时所获的疗效与脑内BDNF和VEGF表达升高,胆碱能神经系统活性增强有关。
【Objective】To explore the way of isolation, culture, purification, passage, identification, and labeling of rat bone marrow mesenchymal stem cells (BMSCs), providing seed cells with stabilized functions for transplantation in vascular dementia (VD) rat models.
     【Methods】BMSCs were harvested from rats by whole marrow method and adherent culture method in vitro, cell morphology was observed by phase contrast microscopy, and BMSCs ultrastructure was observed by transmission electron microscope. BMSCs cellular growth curve was drawn, induced to differentiate into osteoblasts, adipocytes by substances such as dexamethasone. Labeled by BrdU in vitro BMSCs were stained immunohistochemical and calculated the rate of BrdU positive cells.①SD rats aged 3-4 weeks were selected. and cells were collected from their femur bone marrow. All operations were conducted under sterile conditions, during which both ends of the femur were cut off using scissors to expose the bone marrow cavity, and the bone marrow cavity was then washed using 15% fetal bovine serum (FBS) in DMEM-LG complete medium in a petri dish, and cultured with the same complete medium. BMSCs were purified by whole marrow method and adherent culture method. The cells'growth state was observed with a naked, cell morphology by phase contrast microscopy, BMSCs ultrastructure by transmission electron microscope, and the BMSCs cellular growth curve was drawn.②The expression of cell surface antigens of the thriving 3th-generation BMSCs were analyzed by flow cytometry including CD34 (PE labeled), CD90 (FITC labeled), CD44 (FITC labeled) and compared with control mice anti-rat IgG1 monoclonal antibody (labeled with PE and FITC, respectively). After isolated and expended, BMSCs were identified by inducement to differentiate into osteoblasts and adipocytes.③The 3th-generation BMSCs were labeled by BrdU in vitro, stained immunohistochemical and calculated the rate of BrdU-positive cells.
     【Results】①In primary rat culture, cells were round cells of varying sizes. Purified and expended BMSCs were spindle shape, typically uniform in shape, arranged in order in fish-like or whirlpool-like arrangement. SD rat BMSCs ultrastructural features are as follows:BMSCs were small, nuclear-cytoplasmic ratio was a larger proportion, the nucleus was oval, irregular shape can also be found with 1 to 2 large and obvious nucleolus. The chromatins were loosing. A lot of microvillus were found on the surface of cells. Abundant organelles can be found in cytoplasm, such as mitochondria, rough endoplasmic reticulum and Golgi apparatus. Passage cycle was 8~9d, the 1~2d after passage was latency, convened into the exponential phase after 3d and entered into the beginning of platform growth after 6d.②The results of flow cytometry analysis indicated the positive rate of CD44 was 89.4%, CD90 was 99.2%, CD34 was 1.82%. After osteogenic induction, Alizarin red staining showed the formation of calcium nodules. After adipocytes induction, followed by oil red O dyeing and Hematoxylin staining, specific orange-red round droplets of fat were revealed, stained by oil red O.③48h after culture in 10μmol/L BrdU medium in vitro, BrdU-positive cells were brown or tawny, positive production located in the nucleus, with a labeled rate of 90%.
     [Conclusion] The culture method combining the whole medulloculture and digestion control is simply performed in need of little condition. The cultured BMSCs are active in high purity with stable biological character. BMSCs of rat cultured in vitro have unique ultrastructural features. BMSCs can be induced to differentiate into osteoblasts and adipocytes. The suitable concentration for BrdU labeling BMSCs is 10μmol/L, over a period of 48h.
     【Objective】To research the influence of transplanting BMSCs stereotactically into hippocampus about The improvement of the learning and memory, the histopathological change of brain tissue, the migration and survival of transplanted BMSCs and the expression of BDNF in brain.
     【Methods】①SD Rats of 11-13 months old received permament bilateral carotid arteries ligation to establish VD models and randomly divided into three groups. sham group (n=10):only bilateral carotid arteries exposed but not ligated. culture medium control group (n=15):lOul serum-free medium was transplanted stereotactically into hippocampus at the Thirty day after bilateral carotid arteries ligation。BMSCs group(n=15):1×106 BMSCs were transplanted stereotactically into hippocampus at the same time.②Fifth week after transplantion, The learning and memory ability of three group rats were tested by Morris water maze.③The histopathological change of hippocampus and frontal lobe were observed by light microscope after HE staining.④Observing and analyzing the survival of BrdU labeled BMSCs in VD rats brain tissue by immunohistochemical staining in the rat brain of three group.
     【Results】①The learning and memory ability of three group rats was not statistically significant, before ligationo At the fifth week after transplantation, Compared with sham group, The average escape latency of PBS control group rats was lengthened obviously(P<0.01) and the retention time quadrant were receded distinctly(P<0.01); Compared with PBS control group, The average escape latency of BMSCs group was reduced distinctly(P<0.01) the retention time quadrant was lengthened obviously(P<0.01); Compared with BMSCs group,the ethology of sham group was better Performanced (P<0.01).②Sham group cell nuclei become pyknotic, cytoplasmic density increase and cell depigmentation in light microscope.③At the fifth week after transplantation, BrdU positive cells were found in the hippocampus tissue of BMSCs group, in the brain tissue of rats in the treatment group by immunohistochemical assessment. there was a focal gathered phenomenon. A few scattered BrdU positive cells were observeded in the frontal tissue.
     【Conclusions】①The learning and memory ability of BMSCs group rats was improved at the fifth week after transplantation, but not as well as the sham group.②BrdU immunohistochemical staining confirmed that BMSCs transplanted stereotactically into hippocampus can survival and migrate in brain.
     【Objective】To research the influence of Mannitol pretreatment to improve the learning and memory functions after intravenous transplantation allogeneic BMSCs in the rat model of VD. To discuss the mechanism of the effect about intravenous transplantation allogeneic BMSCs and BMSCs transplantation of Mannitol pretreatment in the VD rat model by observeding BDNF expression, VEGF and the hippocampal cholinergic system activity.
     【Methods】①VD model rats were randomly divided into three groups. culture media control group (n=8):1ml serum-free medium was injected through tail vein at the Thirty day after bilateral carotid arteries ligation。BMSCs group (n=11):1×106 BMSCs in lml PBS were transplanted by tail vein injection。Mannitol with BMSCs group(n=9):intravenous injection of Mannitol at a dose of 1.5 g/kg,10-30 minutes later, intravenous injection of 1×106 BMSCs in lml PBS. Moreover, a sham group (n=10):no ligation and no intravenous injection.②Morris water maze test including training trail and probe trail to detect the spatial learning and memory in rats at the fifth week after transplantation.③Brain tissue pathological change was observeded by HE staining.④BDNF and VEGFcontent in brain tissue were detected by ELISA experiments.⑤The activity of ChAT and AchE in hippocampus were detected respectively ChAT and AchE kit.
     【Results】①At the fifth week after transplantation, the result of Morris water maze test showed:Compared with PBS control group The average escape latency of Mannitol with BMSCs group and BMSCs group rats was reduced obviously(respectively p<0.01, p<0.05) and the retention time quadrant were lengthened distinctly(respectively p<0.01, p<0.05); Compared with BMSCs group,The average escape latency of Mannitol with BMSCs group was reduced more obviously and the retention time quadrant were lengthened distinctly (p<0.001); There was no statistical difference between Mannitol with BMSCs group and sham group about the result of Morris water maze test (P>0.05)②The HE staining of Frontal cortex showed:Compared with PBS group, the phenomenon of neuronal swelling、neurons drop out and pyknosis of neurons was reduced in BMSCs group. the phenomenon was reduced more in Mannitol with BMSCs group③Compared with PBS group, BDNF content of Hippocampus and frontal increased obviously in BMSCs group (P<0.05) BDNF content increased more obviously than PBS group and BMSCs group (P <0.05),but There was no statistical difference between Mannitol with BMSCs group and sham group (P>0.05)④Compared with PBS group, the VEGF content of Mannitol with BMSCs group and BMSCs group increased obviously (P=0.000), the VEGF content of Mannitol with BMSCs group increased more obviously than BMSCs group (P=0.000), the VEGF content of PBS group increased obviously than sham group (p=0.006)。⑤The activity of ChAT and AchE in hippocampus of BMSCs group increased obviously than PBS group (P <0.05), The activity of ChAT and AchE of Mannitol with BMSCs group not only increased obviously than BMSCs group,but also increased more obviously than PBS group (P<0.05)
     【Conclusions】Intravenous transplantation BMSCs can improve spatial learning and memory ability in VD rats. Mannitol pretreatment with intravenous transplantation BMSCs can improve spatial learning and memory ability even more. Intravenous transplantation BMSCs can reduce the pathological damage in VD rats, intravenous transplantation BMSCs of Mannitol pretreatment can reduce the pathological damage even more. The result suggest that Mannitol pretreatment may increase the BBB permeability and more BMSCs got into the brain tissue, and the Efficacy of intravenous transplantation BMSCs associated with the increased expression of BDNF and VEGF and Cholinergic activity in brain, at the fifth week after transplantation.
引文
[1]Roman GC. Vascular dementia prevention:a risk factor analysis [J] Cerebrovascular diseases (Basel, Switzerland) 2005;20 Suppl 2:91-100.
    [2]Moretti R, Torre P, Antonello RM, et al. Risk factors for vascular dementia: hypotension as a key point [J]. Vascular health and risk management 2008;4(2):395-402.
    [3]Erkinjuntti T, Roman G, Gauthier S. Treatment of vascular dementia--evidence from clinical trials with cholinesterase inhibitors[J]. Journal of the neurological sciences 2004;226(1-2):63-66.
    [4]Moretti A, Gorini A, Villa RF. Pharmacotherapy and Prevention of Vascular Dementia [J]. CNS & neurological disorders drug targets 2011;[Epub ahead of print].
    [5]田新,袁天柱,符仁义,等.问充质干细胞的历史沿革、生物学特性与应用前景[J].现代肿瘤医学2010;18(3):610-614.
    [6]Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers[J]. Cell and tissue kinetics 1987;20(3):263-272.
    [7]Ohgushi H, Caplan AI. Stem cell technology and bioceramics:from cell to gene engineering [J]. Journal of biomedical materials research 1999;48(6):913-927.
    [8]Fortier LA, Nixon AJ, Williams J, et al. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells [J] American journal of veterinary research 1998;59(9):1182-1187.
    [9]Azizi SA, Stokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Proceedings of the National Academy of Sciences of the United States of America 1998;95(7):3908-3913.
    [10]Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America 1999;96(19):10711-10716.
    [11]Dennis JE, Merriam A, Awadallah A, et al. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse [J]. J Bone Miner Res 1999;14(5):700-709.
    [12]Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model [J].Journal of cell science 2000;113 (Pt 7):1161-1166.
    [13]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science New York 1999;284(5411):143-147.
    [14]Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli [J]. Blood 2002;99(10):3838-3843.
    [15]Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells [J]. Cytotherapy 2003;5(6):485-489.
    [16]Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation [J]. Transplantation 2003;75(3):389-397.
    [17]Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside:an update on clinical trials with mesenchymal stem cells [J] Journal of cellular physiology 2007;211(1):27-35.
    [18]Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells [J]. Journal of cellular physiology 1999;181(1):67-73.
    [19]Erica L. Herzog, Li Chai,et al. Plasticity of marrow-derived stem cells [J]. Blood,2003,102(10):3483-3493.
    [20]Tatiana Tondreau, Nathalie Meuleman, Alain Delforge,et al. Mesenchymal Stem Cells Derived from CD133-Positive Cells in Mobilized Peripheral Blood and Cord Blood:Proliferation, Oct4 Expression, and Plasticity [J]. Stem Cells 2005,23(8):1105-1112
    [21]Hadani M, Freeman T, Munsiff A, et al.Fetal cortical cells survive in focal cerebral infarct after permanent occlusion of the middle cerebral artery in adult rats [J]. Neurotrauma,1992,9(2):107-112.
    [22]Grabowski M, Brundin P, Johansson BB,et al.Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion:ingrowth of afferent fibers from the host brain [J] Exp Neurol,1992,116(2):105-121.
    [23]Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats [J]. Experimental neurology 2002;174(1):11-20.
    [24]Chen X, Li Y, Wang L, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production [J]. Neuropathology 2002;22(4):275-279.
    [25]Yarygin KN, Kholodenko IV, Konieva AA, et al. Mechanisms of positive effects of transplantation of human placental mesenchymal stem cells on recovery of rats after experimental ischemic stroke [J]. Bulletin of experimental biology and medicine 2009;148(6):862-868.
    [26]Seyfried D, Ding J, Han Y, et al. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats [J] Journal of neurosurgery [J].2006;104(2):313-318.
    [27]Kan I, Melamed E, Offen D. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases [J] Handbook of experimental pharmacology 2007;(180):219-242.
    [28]Torrente Y, Polli E. Mesenchymal stem cell transplantation for neurodegenerative diseases [J]. Cell transplantation 2008;17(10-11):1103-1113.
    [29]Joyce N, Annett G, Wirthlin L, et al. Mesenchymal stem cells for the treatment of neurodegenerative disease [J]. Regenerative medicine 2010;5(6):933-946.
    [30]高唱,王景周,陈曼娥.骨髓间质干细胞对血管性痴呆大鼠长时程增强的影响[J].中国临床康复2003;7(16):12-14.
    [31]高唱,王景周,范文辉,等.静脉注射骨髓间质干细胞对血管性痴呆模型大鼠认知障碍的影响[J].中华老年医学杂志2004;24(11):808-812.
    [32]Zhang ZG, Zhang L,Jiang Q, et al. Bone Marrow-Derived Endothelial Progenitor Cells Participate in Cerebral Neovascularization After Focal Cerebral Ischemia in the Adult Mouse [J].Circulation Research,2002,90(3):284-288.
    [33]Chen J, Zhang ZG, Li Y, et al. Intravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis in the Ischemic Boundary Zone After Stroke in Rats [J].Circulation Research,2003,92(6):692-699.
    [34]Zacharek A, Chen J, Cui X, et al. Angiopoietinl/Tie2 and VEGF/Flkl induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke [J]. Cereb Blood Flow Metab,2007,27(10):1684-1691.
    [35]Borlongan CV, Hadman M, Sanberg CD, et al. Central Nervous System Entry of Peripherally Injected Umbilical Cord Blood Cells Is Not Required for Neuroprotection in Stroke [J]. Stroke,2004,35(10):2385-2389.
    [36]Mahmood A, Lu D, Chopp M,et al. Intravenous administration of marrow stromal cells (BMSCs) increases the expression of growth factors in rat brain after traumatic brain injury [J]. Neurotrauma,2004,21(1):33-39.
    [37]Mahmood A, Lu D, Qu C,et al. Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats [J]. Neurosurg,2006, 104(2):272-277.
    [38]Bradbury MW. The structure and function of the blood-brain—barrier [J]. Fed Proc,1984,43(2):186-90.
    [39]Takagi M, Umetsu Y, Fujiwara M,et al. High inoculation cell density could accelerate the differentiation of human bone marrow mesenchymal stem cell to chondrocyte cell[J].J Biosci Bioeng. 2007;103(1):98-100.
    [40]Gao J, Dennis JE, Muzic RF, et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion [J]. Cells, tissues, organs 2001;169(1):12-20. [7]
    [41]姜海洋.选择性开放血脑屏障的相关方法研究[J].医学综述2010;16(11):87-89.
    [42]赵志刚,龚凌志.血脑屏障及药物通过血脑屏障方法研究进展[J]中国药学杂志2000;35(4):19-20.
    [43]Joshi S, Ergin A, Wang M, et al. Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits:implications for chemotherapy [J]. J Neurooncol November 2010[Epub ahead of print].
    [44]Weyerbrock A, Walbridge S, Pluta RM, et al. Selective opening of the blood-tumor barrier by a nitric oxide donor and long-term survival in rats with C6 gliomas [J]. Journal of neurosurgery 2003;99(4):728-737.
    [45]Seyfried DM, Han Y, Yang D, et al. Mannitol enhances delivery of marrow stromal cells to the brain after experimental intracerebral hemorrhage [J]. Brain research 2008;1224:12-19.
    [1]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science,1999,284(5411):143-147.
    [2]Hakuno D, Fukuda k, Makino S, et al. Bone marrow-derived regenerated cardiomyocytes(CMG cells) express functional adrenergic and muscarinic receptors[J]. Circulation,2002,105(3):380-386.
    [3]江逊,崔鹏程,陈文弦,等.人骨髓间充质干细胞体外培养及生物特性的观察[J].第四军医大学学报,2003,24(4):351-353.
    [4]Koc ON, Day J, Nieder M, et al. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukody strophy(MLD) and Hurler syndrome(MPS-IH). Bone Marrow Transplant,2002,30:215-222.
    [5]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY 1999;284(5411):143-147.
    [6]Le Blanc K, Gotherstrom C, Ringden O, et al. Fetal mesenchymal stem cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation,2005,79:1607-1614.
    [7]Dennis JE, Carbillet JP, Caplan AI, et al. The STRO-1+ marrow cell population is multipotential[J]. Cells Tissues Organs,2002,170(2-3):73-82.
    [8]Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection:phenotype, proliferation kinetics and differentiation potential. Cytotherapy,2004,6(4):372-379.
    [9]Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC:the international Society for Cellular Therapy position statement. Cytotherapy,2005,7:393-395.
    [10]Dominici M, Le BK, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8(4):315-317.
    [11]路艳蒙,付文玉,朴英杰,等.人骨髓间充质干细胞超微结构[J].电子显微学报,2002,21(4):373-376.
    [12]鄂征.组织培养和分子细胞学技术[M].北京出版社.1995,第一版:16-19.
    [13]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med, 2001,226(6):507-520.
    [14]Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology and potential applications. Stem Cells,2001,19(3):180-192.
    [15]Erica L. Herzog, Li Chai,et al. Plasticity of marrow-derived stem cells [J]. Blood,2003,102(10):3483-3493.
    [16]Tatiana Tondreau, Nathalie Meuleman, Alain Delforge,et al. Mesenchymal Stem Cells Derived from CD133-Positive Cells in Mobilized Peripheral Blood and Cord Blood:Proliferation, Oct4 Expression, and Plasticity [J]. Stem Cells 2005,23(8):1105-1112)
    [17]高唱,王景周,陈曼娥.骨髓间充质干细胞对血管性痴呆BDNF和NGF的影响[J].中国临床康复,2003,7(25):3434-3435.
    [18]James M, Julie C, Hiao Yan, et al. Distribution of BDNF protein and mRNA in the normal adult rat CNS [J]. J Neurosci,1997,17(7):2295-2313.
    [19]Castillo DV, Figueroa-Guzman Y, Escobar ML. Brain-derived neurotrophic factor enhances conditioned taste aversion retention[J]. Brain Res,2006, 1067(1):250-255.
    [20]von Bohlen und Halbach O, Krause S, Medina D, et al. Regional-and-age-dependent reduction in trkB receptor expression in the hippocampus is associated with altered spine morphologies[J]. Biol Psychiatry, 2006,59(9):793-800.
    [21]Gingrich JA, Hen R. The broken mouse:The role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice[J]. Curr Opin Neurobiol,2000,10(1):146-152.
    [22]Gratzner HG. Monoclonal antibody to 5-bromo and 5-iodo-deoxyuridine. A new reagent for detection of DNA replication[J]. Science,1982,218(4571): 474-475.
    [1]Lee J,Kuroda S,Shichinohe H,et al.Migration and diffe-Rentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice[J].Neuropathology,2003,23(3):169-80.
    [2]Shen LH, Li Y, Chen J,et al.Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke[J].Neuroscience, 2006,137(2):393-9.
    [3]Pavlichenko N, Sokolova I, Vijde S,et al.Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats[J].Brain Res,2008,1233:203-13.
    [4]高唱,王景周,范文辉等,静脉注射骨髓间充质干细胞对血管性痴呆模型大鼠认知障碍的影响[J].中华老年医学杂志,2004,23(11):808-812
    [5]高唱,王景周,陈曼娥等,骨髓间充质干细胞对血管性痴呆大鼠BDNF和NGF的影响[J].中国临床康复,2003,7(25):3434-3435
    [6]金善,曹秉振,张秀花等,静脉注射同种异体骨髓间充干细胞对血管性痴呆大鼠海马区脑组织形态及微管相关蛋白2表达的影响[J].中国组织工程研究与临床康复,2007,11(33):6637-6640
    [7]Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain research 1982;239(1):57-69.
    [8]高东,周中和,王景周.实验性血管性痴呆的模型制作问题[J].国外医学(老年医学分册),2002,23(2):59-61.
    [9]Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanestheized rat[J]. Stroke,1979,10(3):267-272.
    [10]刘红梅,高天明.急性脑缺血动物模型实验研究进展[J].第一军医大 学学报,1999,19(4):368-370.
    [11]王蕊,杨秦飞,唐一鹏,等.大鼠拟“血管性痴呆”模型的改进[J].中国病理生理杂志,2000,16(10):914-916.
    [12]Tsuchiya M, Sako K, Yura S, et al. Local cerebral glucose utilisation following acute and chronic bilateral carotid artery ligation in wistar rats: relation to changes in local cerebral blood flow[J]. Exp Brain Res,1993, 95(1):1-7.
    [13]刘汇波,叶翠飞,李斌,等.双侧颈总动脉结扎对大鼠学习记忆功能和海马组织形态学的影响[J].基础医学与临床,1998,18(4):54-58.
    [14]贾建平.神经病学.北京人民卫生出版社.2001.178页
    [15]Gage FH. Mammalian neural stem cells[J]. Science,2000, 287(5457):1433-1438.
    [16]Lindvall O, Kokaia Z, Bengzon J, et al. Neurotrophins and brain insults[J]. Trends Neurosci,1994,17(11):490-496.
    [17]Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(BMSCs) and stromal cells[J]. J Cell Physiol,1998,176(1):57-66.
    [1]高唱,王景周,范文辉等,静脉注射骨髓间充质干细胞对血管性痴呆模型大鼠认知障碍的影响[J].中华老年医学杂志,2004,23(11):808-812
    [2]Gao J, Dennis JE, Muzic RF, et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion[J]. Cells, tissues, organs 2001;169(1):12-20. [7]
    [3]Bradbury MW. The structure and function of the blood-brain-barrier[J]. Fed Proc,1984 Feb,43(2):186-90.
    [4]Takagi M, Umetsu Y, Fujiwara M,et al. High inoculation cell density could accelerate the differentiation of human bone marrow mesenchymal stem cell to chondrocyte cell[J]. J Biosci Bioeng.2007 Jan;103(1):98-100.
    [5]Weyerbrock A, Walbridge S, Pluta RM, et al. Selective opening of the blood-tumor barrier by a nitric oxide donor and long-term survival in rats with C6 gliomas[J]. Journal of neurosurgery 2003;99(4):728-737.
    [6]Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia[J]. Brain research 1982;239(1):57-69.
    [7]杨龙秀,刘金萍,张泰鹏,等.甘露醇对骨髓间充质干细胞静脉移植治疗血管性痴呆大鼠模型行为学的影响[J].广西医科大学学报,2011,28:30-42.
    [8]Nissenson AR, Weston RE, Kleeman CR. Mannitol. The Western journal of medicine 1979;131(4):277-284.
    [9]Miyagami M, Kagawa Y, Tsubokawa T.ACNU delivery to malignant glioma tissue by osmotic blood brain barrier modification with intracarotid infusion of hyperosmoral mannitol[J]. No shinkei geka 1985;13(9):955-963.
    [10]Joshi S, Ergin A, Wang M, et al. Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits:implications for chemotherapy [J]. J Neurooncol. Springer Science+Business Media, LLC. Published online:12 December 2010[Epub ahead of print].
    [11]Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes:osmotic opening and other means[J]. Neurosurgery 1998;42(5):1083-1099; discussion 1099-1100.
    [12]Kroll RA, Pagel MA, Muldoon LL, et al. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model:a comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers[J]. Neurosurgery 1998;43(4):879-886; discussion 886-879.
    [13]Doolittle ND, Miner ME, HallWA, et al. Safety and efficacy of a multicenter study using ntraarterial chemotherapy in conjunction with osmotic opening of the blood-brain-barrier for the treatment of patients with malignant brain tumors[J]. Cancer,2000,88(3):637-647.
    [14]Cosolo WC, Martinello P, Louis WJ, et al. Blood-brain barrier disruption using mannitol:time course and electron microscopy studies[J]. The American journal of physiology 1989;256(2 Pt 2):R443-447.
    [15]Seyfried DM, Han Y, Yang D, et al. Mannitol enhances delivery of marrow stromal cells to the brain after experimental intracerebral hemorrhage[J]. Brain research 2008;1224:12-19.
    [16]Cosolo WC, Martinello P, Louis WJ, et al. Blood-brain barrier disruption using mannitol:time courae and electron microscopy studies[J]. Am J Physiol.1989.256(2-2):443-447.
    [17]Muldoon LL, Nilaver G, Kroll RA, et al. Comparison of intracerebral inoculation and osmotic blood-brain barrier discruption for delivery of adenoviras,herpersvirus,and iron oxide particles to normal rat brain[J].AM J Pathol,1995,147(6):1840-1851.
    [18]Robinson PJ, Rapoport SI. Size Selectivity of Blood-brain Barrier Permeability at Various Times after Osmotic Opening [J].Am J Physiol,1987, 253(3pt2):R459-466.
    [19]Rapoport SI. Advances in osmotic opening of the blood-brain barrier to enhance CNS chemotherapy [J]. Expert Opin Investlg Drugs,2001,10(10): 1809-1818.
    [20]Bhattacharjee A K, N agash ina T, Kondoh T, et al. The effects of the Na+/Ca++ exchange blocker on osmotic blood-brain-barrier disruption [J]. Brain Res,2001,900(2):157-162.
    [21]Rapoport SI. Advances in osmotic opening of the blood-brain-barrier to enhance CNS chemotherapy [J]. Expert Opin Investig Drugs,2001,10(10): 1809-18.
    [22]李旭光,吴波,游潮.镧示踪甘露醇开放大鼠血脑屏障机制的实验研究[J].长治医学院学报,2007,21(6):407-409.
    [23]Machi T, Kassell NF, Scheld MW, et al. Effect of mannitol on the permeability of cultured endothelial cells[J]. Fukuoka igaku zasshi= Hukuoka acta medica 1996;87(8):178-183.
    [24]Burke AM, Quest DO, Chien S, et al. The effects of mannitol on blood viscosity [J]. Journal of neurosurgery 1981;55(4):550-553.
    [25]Mahmood A, Lu D, Qu C, et al. Human marrow stromal cell treatment provides long—lasting benefit after traumatic brain injury in rats[J]. Neurosurgery,2005,57(5):1026.
    [26]Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J]. Exp Neurol,2002,174(1):11-20.
    [27]Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(BMSCs) and stromal cells[J]. J Cell Physiol,1998,176(1):57-66.
    [28]Suzumura. The cytokines and their functions on neural cells[J]. Tanpakushitsu Kakusan Koso,1995,40(6):691-699.
    [29]Bao X, Wei J, Feng M, et al. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats[J]. Brain Res,2011,7, 1367:103-13.
    [30]Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J]. Exp Neurol,2002,174(1):11-20.
    [31]James M, Julie C, Hiao Yan, et al. Distribution of BDNF protein and mRNA in the normal adult rat CNS:evidence for anterograde axonal transport[J]. J Neurosci,1997,17(7):2295-2313.
    [32]Horch HW, Katz LC. BDNF release from single cells elicits local dendritic growth in nearby neurons[J]. Nat Neurosci,2002,5(11):1177-1184.
    [33]Schabitz WR, Berger C, KoUmar R,, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia[J]. Stroke,2004,35(4):992-997.
    [34]Shetty AK, Turner DA. In vitro survival and differentiation of neurons derived from epidemal growth factor-responsive postnatal hippocmpal stem cells:inducing effects of brain—derived neurotrophic factor[J]. J Neufobiol, 1998,35(4):395-425.
    [35]Schabitz WR, Schwab S, Spranger M, et al. Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats[J]. J Cereb Blood Flow Metab,1997,17(5):500-506.
    [36]Kiprianova I, Freiman TM, Desiderato S, et al. Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat[J]. J Neurosci Res,1999,56(1):21-27.
    [37]Gospodarowicz D, Abraham JA, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells[J]. Proceedings of the National Academy of Sciences of the United States of America 1989;86(19):7311-7315.
    [38]Siemeister G, Schnurr B, Mohrs K, et al. Expression of biologically active isoforms of the tumor angiogenesis factor VEGF in Escherichia coli[J]. Biochemical and biophysical research communications 1996;222(2):249-255.
    [39]梁雄安,曾慧明,斌邓.血管内皮生长因子及其受体在皮肤病中的研究进展[J].海南医学院学报2008;14(5):577-580.
    [40]Li Y, Chen J, Wang L, et al. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease[J]. Neuroscience letters 2001;316(2):67-70.
    [41]陈文明.血管内皮生长因子的生物学及其临床的初步应用[J].基础医学与临床2003;23(5):56-59.
    [42]Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats[J]. Circulation research 2003;92(6):692-699.
    [43]Liu X, Zheng SX, Zhou LJ, et al. Basic fibroblast growth factor up-regulates the expression of vascular endothelial growth factor in primary cultured rat astrocytes[J]. Acta pharmacologica Sinica 2000;21(1):19-22.
    [44]Pepper MS, Mandriota SJ. Regulation of vascular endothelial growth factor receptor-2 (Flk-1) expression in vascular endothelial cells. Experimental cell research 1998;241(2):414-425.
    [45]Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition [J]. Trends in pharmacological sciences 2001;22(4):201-207.
    [46]Hamano K, Li TS, Kobayashi T, et al. Angiogenesis induced by the implantation of self-bone marrow cells:a new material for therapeutic angiogenesis[J]. Cell transplantation 2000;9(3):439-443.
    [47]Villars F, Bordenave L, Bareille R, et al. Effect of human endothelial cells on human bone marrow stromal cell phenotype:role of VEGF[J]? Journal of cellular biochemistry 2000;79(4):672-685.
    [48]Halkos ME, Zhao ZQ, Kerendi F, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction[J]. Basic research in cardiology 2008;103(6):525-536.
    [49]Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis:initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia[J]. Circulation 1998;98(25):2800-2804.
    [50]陈波,曾秋棠,郎明健,et al.血管内皮生长因子基因转染骨髓间充质干细胞同种异体移植治疗大鼠急性心肌梗死[J].基础医学与临床2005;25(6):45-49.
    [51]Haense C, Kalbe E, Herholz K, et al.Cholinergic system function and cognition in mild cognitive impairment[J]. Neurobiol Aging.2010,18 (3):235-238.
    [52]Tomimoto H, Ohtani R, Shibata M, et al. Loss of cholinergic pathways in vascular dementia of the Bins wanger type[J]. Dement Geriatr Cogn Disord, 2005,19(5-6):282-288.
    [53]Nardone R, Bergmann J, Tezzon F, etal. Cholinergic dysfunction in subcortical ischaemic vascular dementia:a transcranial magnetic stimulation study[J]. J Neural Transm.2008,115(5):737-43.
    [54]Roman GC, Kalaria RN. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia[J]. Neurobiol Aging.2006, 27(12):1769-85.
    [55]邵福源,王宇卉.分子神经药理学[M].上海:上海科学技术出版社,2005:267-276.
    [56]Doolittle ND, Miner ME, HallWA, et al. Safety and efficacy of a multicenter study using ntraarterial chemotherapy in conjunction with osmotic opening of the blood-brain-barrier for the treatment of patients with malignant brain tumors[J]. Cancer,2000,88(3):637-647.
    [57]田明秀,陈加俊,怀淑君,等.电针体穴治疗对大脑中动脉梗死模型大鼠胆碱乙酰转移酶表达的影响[J].中国老年学杂志,2010,30(5):657-659.
    [58]Sharp SI, Francis PT, Elliott MS, et al. Choline acetyltransferase activity in vascular dementia and stroke[J]. Dement Geriatr Cogn Disord.2009, 28(3):233-8.
    [59]吕佩源,靳玮,冯志山,等.双氢麦角碱对血管性痴呆小鼠海马乙酰胆碱酯酶活性变化的影响[J].神经疾病与精神卫杂志,2008,8(2):88-90.
    [60]Haense C, Kalbe E, Herholz K, et al.Cholinergic system function and cognition in mild cognitive impairment[J]. Neurobiol Aging.2010,18 (3):235-238.
    [61]金善,曹秉振,赵忠新,等.骨髓问充质干细胞移植对血管性痴呆大鼠海马胆碱能系统的影响[J].中国神经免疫学和神经病学杂志2008,15(5)353-356.
    [62]Mahmood A,Lu D,Chopp M. Intravenous administration of marrow st romal cells (BMSCs) increases the expression of growth factors in rat brain after traumatic brain injury [J]. J Neurotrauma,2004,21 (1):33-39.
    [63]Li Y, Chen J, Chen XG, et al.Human marrow stromal cell therapy for stroke in rat:Neurotrophins and functional recovery [J]. Neurology,2002, 59(4):514-523.
    [64]Marmigere F, Rage F, Tapia-Arancibia L, et al. Regulation of brain-derived neurotrophic factor transcripts by neuronal activation in rat hypothalamic neurons[J]. J Neurosci Res,2001,66(3):377-389.
    [65]Schabitz WR, Berger C, Kollmar R, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia[J]. Stroke,2004,35(4):992-997.
    [1]Persidsky Y, Heilman D, Haorah J, et al. Rho-mediated regulation of tight junction during monocyte migration across blood-brain barrier in HIV-1 encephaliris(HIVE)[J]. Blood,2006,107(12):4770-4880.
    [2]Nagaraja TN, Keenan KA, Fenstermacher JD, et al. Acute leakage patterns of fluorescent plasma flow markers after ransient focal cerebral ischemia suggest large openings in blood-brain barrier [J]. Microcirculation,2008,15: 1-14.
    [3]Pardridge WM. The blood-brain barrier:Bottleneck in bmin drug development[J]. NeumRx,2005,2:3-14.
    [4]Seyfried D, Ding J, Han Y, et al. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats [J] Journal of neurosurgery [J].2006;104(2):313-318.
    [5]Savitz SI, Chopp M, Deans R, et al. Stem Cell Therapy as an Emerging Paradigm for Stroke (STEPS) Ⅱ[J]. Stroke,2011,42(3):825-9.
    [6]Dantuma E, Merchant S, Sugaya K. Stem cells for the treatment of neurodegenerative diseases[J]. Stem Cell Res Ther,2010,1(5):37.
    [7]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow cells after cerebral ischemia in rats[J]. Stroke, 2001,32(4):1005-11.
    [8]Sey fried D, Ding J, Han Y, et al. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats[J]. Neurosurg,2006,104(2):313-8.
    [9]李若龙,罗俊生,董晓峰.甘露醇对骨髓基质细胞移植治疗缺血性脑损伤的研究[J].锦州医学院学报[J].2006,27(6):40-47.
    [10]Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers [J]. Lancet Neurol,2008,7:84-96.
    [11]Black KL, Cloughesy T, Huang SC, et al. Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas[J]. J Neurosurg,1997, 86:603-609.
    [12]Bhattacharjee AK, Kondoh T, Nagashima T, et al. Quantitative analysis of papaverine-mediated blood-brain barrier disruption in rats[J]. Biochem Biophys Res Commun,2001,289:548-552.
    [13]Lee HJ, Zhang Y, Pardridge WM. Blood-brain barrier disruption following the internal carotid arterial perfusion of alkyl glycerols[J]. J Drug Target,2002, 10:463—467.
    [14]Tetrault S, Chever O, Sik A et al. Opening of the blood-brain barrier during isoflurane anaesthesia[J]. J Neurosci,2008,28(7):1330-41.
    [15]Preston E, Slinn J, Vinokourov I. Graded reversible opening of the rat blood-brain barrier by intracarotid infusion of sodium caprate[J]. J Neurosci Methods,2008,168(2):443-9.
    [16]Vykhodtseva N, Hynynen K, Daminnou C, et al. Hestologic effect of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo[J]. Ultrasound Med Biol,1995,21:969-979.
    [17]付齿学,谭开彬,高云华,等.微泡介导下诊断超声波开放人血脑屏障的可行性研究:体外微泡破坏试验[J].临床超声医学杂志,2008,10:721-724.
    [18]樊立林,张震,夏春义,等.低频超声对C6胶质瘤细胞瘤TNF-α表达的影响[J].中国药理学通报,2008,24:1595-1598.
    [19]Yang FY, Horng SC, Lin YS et al. Association between contrast-enhanced MR images and blood-brain barrier disruption following transcranial focused ultrasound[J]. J Magn Reson Imaging,2010,32(3):593-9.
    [20]Reilly MA, Waspe AC, Ganguly M, et al. Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses:influence of sonication parameters and injection rate[J]. Ultrasound Med Biol,2011,37(4): 587-94.
    [21]Rapoport SI, Hori M, Klatzo I. Testing of a hypothesis for osmotic opening of the blood-brain barrier [J]. Am J Physiol,1972,223(2):323-31.
    [22]Neuwelt EA, Goldman DL, Dahlboxg SA, et al. Primary CNS lymphoma treated with osmotic BBBD:Prolonged survival and preservation of cognitive function[J]. J of clin Oncol,1991,9(9):1580.
    [23]Muldoon LL, Nilaver G, Kroll RA, et al. Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain [J]. Am J Pathol,1995,147(6):1840—1851.
    [24]Rapoport SI. Osmotic opening of the blood-brain barrier:principles, mechanism, and therapeutic applications[J]. Cell Mol Neurobiol,2000,20(2): 217-30.
    [25]袁波,夏志民,杨明等.甘露醇渗透性开放血脑屏障的时间窗对脑脊液中药物浓度的影响[J].中国医学创新,2009,6(32):1-2.
    [26]Aronov MS, Kobiakov GL. Temporary hyperosmolar breakage of the blood-brain barrier improves effectiveness of chemotherapy for cerebral tumors[J]. Zh Vopr Neirokhir Im N N Burdenko,2008, (3):52-9.
    [27]Blanchette M, Fortin D. Blood-brain barrier disruption in the treatment of brain tumors[J]. Methods Mol Biol,2011,686:447-63.
    [28]陶晓峰,施增儒,肖湘生.甘露醇开放血脑屏障在大鼠脑胶质瘤动脉介入化疗应用中的价值[J].中国医学影像学杂志,2000,2(8):127-130.
    [29]Boockvar JA, Tsiouris AJ, Hofstetter CP. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma[J]. J Neurosurg,2011,114(3):624-32.
    [30]Wang M, Etu J, Joshi S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits[J]. J Neurosurg Anesthesiol,2007,19(4):249-56.
    [31]Ikeda M, Bhattacharjee AK, Kondoh T, et al. Synergistic effect of cold mannitol and Na(+)/Ca(2+) exchange blocker on blood-brain barrier opening[J]. Biochem Biophys Res Commun,2002,291(3):669-74.
    [32]Lu TS, Chen HW, Huang MH, et al. Heat shock treatment protects osmotic stress-induced dysfunction of the blood-brain barrier through preservation of tight junction proteins [J]. Cell Stress Chaperones,2004,9(4):369-77.
    [33]李旭光,吴波,游潮.镧示踪甘露醇开放大鼠血脑屏障机制的实验研究[J].长治医学院学报,2007,21:407-409.
    [34]Kiptoo P, Sinaga E, Calcagno AM at el. Enhancement of drug absorption through the blood-brain barrier and inhibition of intercellular tight junction resealing by E-cadherin peptides[J]. Mol Pharm.,2011,8(1):239-49.
    [35]Siegal T, Rubinstein R, Bokstein F, et al. In vivo assessment of he window of barrier opening after blood—brain barrier disruption in humans[J]. J Neurosur,2000,92(4):599—605.
    [36]孟然,周晋,王德生.甘露醇暂时渗透性开放血脑屏障的研究[J].中风与神经疾病杂志,2003,20(4):350—352.
    [37]Joshi S, Ergin A, Wang M, et al. Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits:implications for chemotherapy [J]. J Neurooncol, Springer Science+Business Media, LLC. Published online:12 December 2010.
    [38]Bellavance MA, Blanchette M, Fortin D. Recent advances in blood-brain barrier disruption as a CNS delivery strategy [J]. AAPS J,2008,10:166-177.
    [39]Zylber-Katz E, Gomori JM, Schwartz A, et al. Pharmacokinetics of methotrexate in cerebrospinal fluid and serum after osmotic blood-brain barrier disruption in patients with brain lymphoma[J]. Clin Pharmacol Ther,2000,67: 631-641.
    [40]Hynynen K, Mcdannold N, Vykhodtseva NI, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits[J]. Radiology,2001,220(3):640-646.
    [41]Mcdannold N, Vykhodtseva NI, Hynynen K, et al. Targeted disruption of blood-brain barrier with focused ultrasound:association with cavitation activity[J]. Phys Med Boil,2006,51(4):793-807.
    [42]程远,于锐,宋或,等.低频超声联合微泡经颅开放血脑屏障初步研究[J].中国医学影像技术杂志,2006,22:42-44.
    [43]宋或,程远,杨延庆,等.MRI温度图监控聚焦超声开放家兔血脑屏障的作用[J].中国医学影像技术杂志,2008,2:322-325.
    [44]Sheikvo N, Mcdannold N, Jolesz F, et al. Brain arterioles show more active vesicular tansport of blood-brain barrier molecules that capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier[J]. Ultrasound Med Biol,2006,32:1399-1409.
    [45]Xie F, Boska MD, Lof J, et al. Effects of tanscranial ultrasound and intravenous microbubbles on blood-brain barrier permeability in a large animal modle[J]. Ultrasound Med Biol,2008,34:1-7.
    [46]Howles GP, Bing KF, Qi Y at el. Contrast-enhanced in vivo magnetic resonance microscopy of the mouse brain enabled by noninvasive opening of the blood-brain barrier with ultrasound[J]. Magn Reson Med,2010,64(4): 995-1004.
    [47]汪峰,梅杰,王智彪,等.低功率聚焦超声联合微泡对兔血脑屏障通透性影响的实验研究[J].中华神经外科杂志,2010,3(26):277-280.
    [48]Vykhodtseva NI, Mcdannold N, Hynynen K, et al. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption[J]. Ultrasonics,2008,48:279-296.
    [49]Hynynen K. Maromolecular delivery across the blood-brain barrier[J]. Methods Mol Biol,2009,480:175-185.
    [50]Choi JJ, Selert K, Gao Z, Samiotaki G, et al. Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies[J]. J Cereb Blood Flow Metab,2011,31(2):725-37.
    [51]Sheikvo N, Mcdannold N, Vykhodtseva, et al. Cellular mechanisms of the blood-brain barrier by ultrasound in presences of microbubbles[J]. Ultrasound Med Boil,2004,30(7):979-989.
    [52]Alonso A, Reinz E, Jenne JW, et al. Reorganization of gap junctions after focused ultrasound blood-brain barrier opening in the rat brain[J]. J Cereb Blood Flow Metab,2010,30(7):1394-402.
    [53]Jalali S, Huang Y, Dumont DJ, et al. Focused ultrasound-mediated bbb disruption is associated with an increase in activation of AKT:experimental study in rats [J]. BMC Neurol,2010,10:114.
    [54]Mei J, Cheng Y, Song Y, et al. Experimental study on targeted methotrexate delivery to the rabbit brain via magnetic resonance imaging-guided focused ultrasound[J]. J Ultrasound Med,2009,28(7):871-80.
    [55]Liu HL, Hua MY, Chen PY, et al. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment[J]. Radiology,2010,255(2):415-25.
    [56]童林艳,胡长林,李晋芳.两种不同开放血脑屏障方法的比较[J].第三军医大学学报,2007,18(29):1749-1751
    [1]James M, Julie C, Hiao Yan, et al. Distribution of BDNF protein and mRNA in the normal adult rat CNS. J Neurosci,1997,17:2295.
    [2]Castillo DV, Figueroa-Guzman Y, Escobar ML. Brain-derived neurotrophic factor enhances conditioned taste aversion retention. Brain Res,2006, 1067(1):250-255.
    [3]von Bohlen und Halbach O, Krause S, Medina D, et al. Regional-and-age-dependent reduction in trkB receptor expression in the hippocampus is associated with altered spine morphologies. Biol Psychiatry, 2006,59(9):793-800.
    [4]Mizuno M, Yamada K, Olariu A, et al. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neursci,2000,20(18):7116-7121.
    [5]Linnarsson S, Bjuorklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci,1997,9:2581-2587.
    [6]Minichiello L, Korte M, Wolfer D, et al. Essential role for trkB receptors in hippocampus-mediated learning. Neuron,1999,24:401-414.
    [7]Ma YL, Wang HL, Wu HC, et al. Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience,1998,82:957-967.
    [8]穆军山,杨渤生,林航.脑室内注射BDNF抗体对大鼠海马NOS表达的影响.福州总医院学报,2007,14(1):69-70.
    [9]Johnston ANB, Clements MP, Rose SPR. Role of brain-derived neurotrophic factor and presynaptic proteins in passive avoidance learning in day-old domestic chicks. Neuroscience,1999,88:1033-1042.
    [10]Mrsic J, Zupan G, Erakovic V, et al. The influence of nimodipine and MK-801 on the brain free arachidonic acid level and the learning ability in hypoxia-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry,1997, 21(2):345-358.
    [11]Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of interleukin lbeta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA.1997,94 (5):2007-2012.
    [12]Timo Erkinjuntti, MD; Gustavo Roman, MD; Emerging Therapies for Vascular Dementia and Vascular Cognitive Impairment. Stroke,2004,35 (4): 1010-1017.
    [13]黄敬,刘学源,梅元武.缺血性痴呆大鼠行为学及突触素改变的研究.中国临床神经科学.2007,15(1):28-32.
    [14]Kudo T, Tada K, Takeda M, et al. Learning impairment and microtubule-associated protein 2 decrease in gerbils under chronic cerebral hypoperfusion. Stroke,1990,21(8):1205-1209.
    [15]Yamasaki Y, Matsuura N, Shozuhara H, et al. Interleuki-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke,1995,26(4):676-680.
    [16]Schabitz WR, Schwab S, Spranger M, et al. Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab,1997,17:500-506.
    [17]Kiprianova I, Freiman TM, Desiderato S, et al. Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat. J Neurosci Res.1999,56(1):21-27.
    [18]Ando S, Kobayashi S, Waki H, et al. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine. J Neurosci Res,2002,70(3):519-527.
    [19]高唱,王景周,陈曼娥.骨髓间充质干细胞对血管性痴呆大鼠BDNF和NGF的影响.中国临床康复,2003,7(25):3434-3435.
    [20]Brandoli C, Sanna A, De Bernardi MA, et al. Brain-derived neurotrophic factor and basic fibroblast growth factor downregulate NMDA neurons receptor function in cerebellar granule cells. J Neurosci,1998,18(19):7953-7961.
    [21]Lindvall O, Kokaia Z, Bengzon J, et al. Neurotrophins and brain insults. TINS,1994,17(11):490-496.
    [22]Hempstead BL, Martin-Zanca D, Kaplan DR, et al. High-affinity NGF binding requires coexpression of the trk protooncogene and the low-affinity NGF receptor. Nature,1991,350:678-683.
    [23]Kiprianova I, Freiman TM, Desiderato S, et al. Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat. J Neurosci Res,1999,56(1):21-27.
    [24]Kim DH, Zhao X. BDNF protects neurons following injury by modulation of caspase activity. Neurocrit Care,2005,3(1):71-76.
    [25]吴伟,王虔,梁浩.重组腺病毒载体转导的脑源性神经生长因子在大鼠体外培养海马神经元谷氨酸损伤模型中的保护作用.中华神经科杂志,2005,38(7):457-459.
    [26]Pang PT, Teng HK, Zaitsev E, et al. Cleavage of pro-BDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science,2004, 306:487-491.
    [27]Horch HW, Katz LC. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci,2002,5:1177-1184.
    [28]Schabitz WR, Berger C, Kollmar R, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke,2004,35:992-997.
    [29]Marmigere F, Rage F, Tapia-Arancibia L, et al. Regulation of brain-derived neurotrophic factor transcripts by neuronal activation in rat hypothalamic neurons. J Neurosci Res,2001,66:377-389.
    [30]Schabitz WR, Schwab S, Spranger M, et al. Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab,1997,17:500-506.
    [31]Zhang F, Signore AP, Zhou Z, et al. Erythropoietin protects CA1 neurons against global cerebral ischemia in rat:Potential signaling mechanisms. J Neurosci Res,2006,83(7):1241-1251.
    [1]Tomimoto H, Ohtani R, Shibata M, etal. Loss of cholinergic pathways in vascular dementia of the Bins wanger type[J]. Dement Geriatr Cogn Disord, 2005,19(5-6):282-288.
    [2]Nardone R, Bergmann J, Tezzon F, etal. Cholinergic dysfunction in subcortical ischaemic vascular dementia:a transcranial magnetic stimulation study [J]. J Neural Transm.2008,115(5):737-43.
    [3]Roman GC, Kalaria RN. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia[J]. Neurobiol Aging.2006, 27(12):1769-85.
    [4]周丽华,姚志彬.基底前脑解剖学及其临床意义[J].神经解剖学杂志,1998:14(4):401-405.
    [5]邓小华,蔡维君,王淼,等.不同年龄大鼠斜角带核水平支神经元内TrkA和ChAT的表达:免疫组织化学研究[J].解剖学报,2001;32(1):38-42.
    [6]邵福源,王宇卉.分子神经药理学[M].上海:上海科学技术出版社,2005:267-276.
    [7]Klinkenberg I, Sambeth A, Blokland A.Acetylcholine and attention[J]. Behav Brain Res.2010,23 (2):143-147.
    [8]林航,叶建新,穆军山,等.bFGF对血管性痴呆大鼠海马乙酰胆碱含量及胆碱酯酶活性的影响[J].脑与神经疾病杂志,2009,17(5):359-362.
    [9]王征,李运曼,龚晓健,等.脑脉泰胶囊对脑缺血再灌大鼠学习记忆功能及脑组织乙酰胆碱含量的影响[J].中国中药杂志,2005,30(6)459-462.
    [10]Tayebati SK, Di Tullio MA, Amenta F, et al. Effect of treatment with the cholinesterase inhibitor rivastigrnine on vesicular acetylcholine transporter and choline acetyltransferase in rat brain[J]. Clin Exp Hypertens,2004,26(4): 363-373.
    [11]贾建平,贾健民,周卫东,等.阿尔茨海默病和血管性痴呆患者脑脊液中乙酰胆碱和胆碱检测及其临床意义[J].中华神经科杂志2002,35(3):168-170.
    [12]Corey BJ, Tiraboschi P, HansenLA, et al. E4 allele dosage does not predict cholinergic activity or synapse loss in Alzheimer's disease[J]. Neurology,2000,54 (2):403-407.
    [13]Scremin OU, Jenden DJ, Time—dependent changes in cerebral choline and acetyl choline induced transient obal ischemia in rats[J].Stroke 1991,22(5): 643-647.
    [14]Hulette C, Nochlin D, Mckeel D, et al. Clinical neuropathologic findings in multi-infarct dementia:A report of six autopsied cases[J]. Neurology,1997, 48(3):668-672.
    [15]张丽香,蔺心敬,李吕力,等.血管性痴呆大鼠海马神经元凋亡与乙酰胆碱含量变[J].中国老年学杂志,2009,29(24):3222-3224
    [16]Perry E, Ziabreva I, Perry R, et al. Absence of cholinergic deficits in "pure" vascular dementia[J].Neurology.2005,64(1):132-3.
    [17]田明秀,陈加俊,怀淑君,等.电针体穴治疗对大脑中动脉梗死模型大鼠胆碱乙酰转移酶表达的影响[J].中国老年学杂志,2010,30(5):657-659.
    [18]金善,曹秉振,赵忠新,等.骨髓间充质干细胞移植对血管性痴呆大鼠海马胆碱能系统的影响[J].中国神经免疫学和神经病学杂志2008,15(5):353-356
    [19]Sharp SI, Francis PT, Elliott MS, et al. Choline acetyltransferase activity in vascular dementia and stroke. Dement Geriatr Cogn Disord.2009, 28(3):233-8.
    [20]GuO Q, Xie J, Du H.Par-4 induces cholinergic hypoactivity by suppressing ChAT protein synthesis and inhibiting NGF-inducibility of ChAT activity [J]. Brain Res 2000,874(2):221-232
    [21]吕佩源,尹昱,王伟斌,等.石杉碱甲对血管性痴呆小鼠海马神经细胞[Ca2+]i及钙调蛋白、蛋白激酶Ⅱ信使核糖核酸表达的影响[J].中国新药与临床杂志,2004,23(2):73-76.
    [22]Dobransky T,Rylett RJ,Functional regulation of choline acetyltransferase by phosphorylation[J].Neurochem Res,2003,28(3-4):537-542.
    [23]White house PJ. Paying attention to Acetylcholine:The key towisdom and quality of life[J]. ProgBrain Res,2004,145:311-317.
    [24]Haense C, Kalbe E, Herholz K, et al.Cholinergic system function and cognition in mild cognitive impairment[J]. Neurobiol Aging.2010,18 (3):235-238.
    [25]肖雁,张蓝江,齐晓岚,等.血管性痴呆患者血中胆碱酯酶活性及神经型尼古丁受体mRNA表达水平变化[J].中风与神经疾病杂志,2008,25(4):394-397.
    [26]吕佩源,靳玮,冯志山,等.双氢麦角碱对血管性痴呆小鼠海马乙酰胆碱酯酶活性变化的影响[J].神经疾病与精神卫杂志,2008,8(2):88-90.
    [27]陈燕清,李丽.红景天对血管性痴呆大鼠海马组织AchE及神经元凋亡影响的实验研究[J].世界中西医结合杂志,2008,3(1):20-22.
    [28]戴云,夏翔,沈小珩,等.脑康饮对脑缺血模型大鼠学习记忆功能的影响[J].上海中医药杂志,2003,37(4):7-10.
    [29]申敬顺,雷征霖,刘喜珍,等.脑梗塞痴呆病人血清乙酰胆碱酯酶G4同工酶活性测定及其意义的研究[J].脑与神经疾病杂志,2001,9(1)28-29.
    [30]吴江.神经病学[M]第二版.北京:人民卫生出版社,2010:190-193.
    [31]Black S, Roman GC, Geldmacher DS, et al. Efficacy and tolerability of donepezil in vascular dememia:positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial [J]. stroke,2003, 34 (10):2323-2330.
    [32]Wilkinson D, Doody R, Helme R, et al. Donepezil in vascular dementia: a randomized, placebo-controlled study[J]. Neurology,2003,61 (4):479-486.
    [33]Roman GC, Salloway S, Black SE, et al. Randomized, placebo-controlled, clinical trial of donepezil in vascular dementia:differential effects by hippocampal size[J]. Stroke.2010,41(6):1213-21.
    [34]Auchus AP, Brashear HR, Salloway S, et al. Galantamine treatment of vascular dementia:a randomized trial[J]. Neurology.2007,69(5):448-58.
    [35]Ballard C, Sauter M, Scheltens P, et al. Efficacy, safety and tolerability of rivastigmine capsules in patients with probable vascular dementia:the VantagE study [J]. Curr Med Res Opin.2008,24(9):2561-74.
    [36]任蕾,杜井波,翁秋林,等.不同剂量石杉碱甲对血管性痴呆患者的疗效评价[J].中国临床神经科学,2010,18(6):644-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700