遥感技术在长江三峡库区奉节县滑坡灾害调查中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江三峡工程是当今世界上最大的水利枢纽工程,论文研究区重庆市奉节县,位于三峡库区的腹地,历史上就是滑坡多发地带,调查研究滑坡的分布、变化规律具有重大的实际意义。采用遥感技术,可以突破传统调查方法的限制,发挥其宏观、综合、直观、快速的特点,取得更好的效果。
     论文选取目前应用最广的陆地卫星最新系列Landsat-7 ETM+数据和空间分辨率最高的商业卫星Quickbird数据作为主要的数据源,根据数据的特点及滑坡灾害应用特征,对Quickbird遥感数据则基于1:10000DEM进行了正射校正,对ETM+遥感数据进行了①波段优选,选取了753作为最佳组合波段;②图像增强,通过各种增强处理方法的效果对比,选择主成分分析法对图像进行增强;③几何精校正,纠正图像的几何变形;④影像融合,主要选取了效果较好的HIS空间变换融合和分辨率融合,得到的图像既具有较高的光谱分辨率,同时也具有较高的空间分辨率。经过上述数字处理,较好地改善了图像的视觉效果,提高了图像解译的精度。最后在ETM+图像上对滑坡发育的地质背景进行解译,提取了地形、地层岩性、地质构造等信息,在Quickbird影像上详细地圈定了滑坡灾害体的实体位置及发育范围,通过对所提取信息进行分析,本文认为,奉节县地质构造复杂,岩性破碎;峡谷段岩层稳定性较好;南岸部分地段为顺向岩层分布区,人类工程活动容易诱发顺层滑坡,蓄水后库岸整体稳定性下降。
The research area, Fengjie County, is located in the center of Three Gorge Reservoir Area and is a place with landslides frequently occurring in history, so it is of great practical meaning to investigate and study the forming and distribution regularities of landslides there. Investigation using Remote Sensing (RS) technology can breakthrough the limits of traditional methods, make full use of its capability of integration, visualization, rapidity and vast-dimensions analysis, and get better results
    The paper takes the up-to-date Landsat-7 ETM+ data, which is the most widely used, and Quickbird data, which has the highest resolution nowadays, and according the features of the data and landslides, processes the Quickbird data with 1:10 000 DEM orthophoto correction and the landsat-7 ETM+ data as follows:(1) selecting optimal spectrum band: selects 753 bands as the optimal bands;(2)image intensifying: selects the principle components processing method on the basis of comparing several image intensifying methods;(3)rigour geometric Direction: corrects the geometric distortion of the map;(4)image fusion: mainly takes HIS space transform fusion and resolution fusion method, and acquires maps with higher spectrum resolution as well as space resolution.After that, the visual effect of the image has been enhanced, and the interpretation precision. At last, the paper interprets the geological background of the forming of landslides, and reveals the landform, stratum, lithology and geologic structure based on the ETM+ image. And also, the paper interprets the location and distribution of the specific disaster bodies based On the Quickbird image. Through the analysis of the extracted information, the paper considers: the geologic structure of Fengjie County is complex, and lithology is crashed; the terrane in the canyon segment is fairly stable; the terrane in some segments of the southern bank will be less stable after the water is stored, because the rock is in the same direction and is apt to slip with human project.
引文
[1] Toshitaka Kamai. Monitoring the processs of ground failure in repeated landslides and associated stability assessments [J], Engineeing Geology, 1998, Vol. 50: 71-84
    [2] V.Singhroy, K.E.Mattar, A.L.Gray. Landslide characterization in Canada using interferometric SAR and combined SAR and TM images [J]. Advances in Space Research, 1998, 21 (3): 465-476
    [3] Sambhu V.Panikkar, V.Subramanyan. A geomorphic evaluation of the landslides around Dehradun and Mussoorie, Uttar Pradesh, India [J]. Geomorphology, 1996, Vol. 15: 169-181
    [4] http://ltpwww. gsfc.masa.gov
    [5] http://geo.arc.nasa.gov
    [6] http://is7pm3.gsfa.gov
    [7] Chavez P.S. et al.. Statistical method for selecting Landsat MSS ratios [J]. Journal Applied photographic Engineering, 1982, Vol. 8, No.1: 23-30
    [8] Pat S. Chavez, J. Digital Processing techniques for image mapping with Landsat TM and SPOT simulator data [J]. Eighteenth International Symposium on Remote sensing of Environment, 1984, Octl-5: 101-106
    [9] Sheffielc C. Selecting band combinations from multispectral data [J]. Photogrammetric Engineering & Remote Sensing, 1985, Vol. 51, No. 6: 681-687
    [10] Ranchin T, Wald L. Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation[J]. Photogrammetric Engineering & Remote Sensing, 2000, 66 (1): 49-61
    [11] Wald L, Ranchin T, Mangolini M. Fusion ofsatelltie images of different spatial resolution: assessing the quality of resulting images [J]. Photogrammetric Engineering & Remote Sensing, 1999, 63(6): 691-699
    [12] Shettigara V K. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set [J]. Photogrammetric Engineering & Remote Sensing, 1992, 58 (5): 561-567
    [13] F Sunar, N Musaoglu. Merging multireaolution SPOT P and Landst TM data: the Effects and advantages [J]. INT.J.Remote Sensing, 1998, 19 (2): 219-224
    [14] C POHL J L. Van genderen multisensor image fusiong in remote sensing: Concepts, methods and application [J].1998, 19 (5): 823-854
    [15] Pat S Chavez. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic [J]. PE&RS 1991, 57 (3): 259-303
    
    
    [16] 杨武年,濮国梁,郑平元.长江三峡库区多类型、多时相遥感图像数字处理和地质构造信息提取[J].成都理工大学学报(自然科学版),2003,30(4):378-385
    [17] 朱述龙,张占睦.遥感图像获取与分析[M].2000;
    [18] 夏德深,李华.国外灾害遥感应用研究现状[J].国土资源遥感,1996,(3):1-8
    [19] 王治华.遥感技术在我国水电建设前期工作中的应用[J] .北京地质,1997,(4):22-28
    [20] 吴景坤,满开言,蔡军刚等.铁路地质灾害研究中的遥感技术的应用[J].中国地质灾害与防治学报,1994.Vol5(增刊):272-276
    [21] 方向池.遥感技术应用于公路工程及铁路工程的现状[J].云南交通科技,1998,14(3):34-37
    [22] 梅安新.遥感导论[M].北京:高等教育出版社,2001
    [23] 胡明城.卫星遥感技术的发展和最新成就[J].测绘科学,2000,25(1):25-28
    [24] 赵秋艳.LANDSAT-7卫星的有效载荷ETM+[J].航天返回与遥感,2000,21(4):25-32
    [25] 冯钟葵,叶晓端.Landsat7卫星快速格式数据产品[J].遥感技术与应用,2000,15(4):270-273
    [26] 吴培中.快鸟-2卫星的技术性能与应用[J].国际太空,2002
    [27] 靳颖.“快鸟”:高分辨率商业遥感卫星中的一颗新星[J].国际太空,1999
    [28] 丰茂森.遥感图像数字处理[M].北京:地质出版社,1992.
    [29] 戴吕丛,雷莉萍.TM图像的光谱信息量特征与最佳波段组合[J].环境遥感,1989,4(4):282-292.
    [30] 李德熊.TM合成图像波段组合的选择[J].遥感信息.1989,(4):68~70.
    [31] 阎积惠.康慧.甘肃北山TM合成图像的波段组合模式与解释[J].遥感信息.1989,(1):25-27.
    [32] 王典洪,段先,张汀汀等.一种遥感图象几何校正快速算法[J].地球科学-中国地质大学学报.1990,15(2):183-188.
    [33] 夏亚,李春升,周荫消.遥感图像几何校正方法[J].电子测量技术,2003(4):18-19
    [34] 韩玲.关于遥感影像几何校正中纠正变换方法的探讨[J].西安地质学院学报,1997,19(4):86-90
    [35] 瞿继双,王超等.基于数据融合的遥感图象处理技术[J].中国图象图形学报:A辑,2002,7(10):985-993
    [36] 翁永玲,田庆久.遥感数据融合方法分析与评价综述[J].遥感信息,2003(3):49-54
    [37] 李弼程 魏俊 彭天强.基于IHS变换与小波变换的遥感图像融合[J].数据采集与处理.2003.18(3):268-272
    [38] 李长伟 彭嘉雄.多源遥感图像的分层融合研究[J].华中科技大学学报:自然科学版,2002.30(5):25-27
    
    
    [39] 贾永红,李德仁.多源遥感影像数据融合[J].遥感技术与应用,2000,15(1):41-44
    [40] 罗忠.多源遥感数据融合的现[J].测试技术学报.1999,13(1):32-38
    [41] 兀玮、王红.浅谈DEM的应用[J].测绘标准化,1999,16(1):44-46.
    [42] 李志林,朱庆著.数字高程模型[M].武汉:武汉测绘科技大学出版社,1999
    [43] 王茜,薛怀平,吴胜军等.利用地形图批量生产DEM数据的方法[J].上海师范大学学报:自然科学版,2003,32(2):83-86
    [44] 唐新明,林宗坚,吴岚.基于等高线和高程点建立DEM的精度评价方法探讨[J].遥感信息,1999,55(3):7-10
    [45] 陈茂勋.长江三峡地质地貌与崩塌滑坡考察指南[M].成都:成都科技大学出版社,1992
    [46] 欧正东.长江三峡工程库区环境工程地质[M].成都:成都科技大学出版社,1992,7
    [47] 卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社,2002
    [48] 牛宝茹.滑坡灾害遥感调查与分析[J].公路,2002(10):15-17
    [49] 伍法权.三峡工程库区影响135m水位蓄水的滑坡地质灾害治理工程及若干技术问题[J].岩土工程界,2002,5(6):15-16
    [50] 杨达源,李徐生,冯立梅等.长江三峡库区崩塌滑坡的初步研究[J].地质力学学报.2002,8(2):173-178
    [51] 张振德,何宇华.遥感技术在长江三峡库区大型地质灾害调查中的应用[J].国土资源遥感.2003.(2):11-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700