CBCT 图像引导放射治疗中若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤放射治疗技术已进入以影像引导的三维适形放疗和调强放疗为代表的精确放疗新时代。影像引导的放射治疗(IGRT)技术的开展,尤其是锥形束CT(CBCT)成像系统的使用,大大提高了放射治疗的精度。目前基于CBCT成像的IGRT研究在国内外方兴未艾,其临床应用尚存在若干关键问题急待解决。
     IGRT临床应用的主要关键问题之一是要对CBCT重建靶区影像与治疗计划CT进行精确快速的配准。目前的配准技术在速度和精度上尚难达到临床实施要求。本论文采用了基于互信息的多分辨率配准算法框架以减少配准时间,从理论和实验两方面阐明了基于多尺度空间的三维医学图像多分辨率配准方案可以显著提高配准速度。完成了基于互信息刚性配准算法的CBCT影像重建三维病人模型与治疗计划CT病人模型配准实验,比较了多分辨率配准框架中高斯金字塔和直接抽取塔式结构的配准性能。研究表明,直接抽取结构框架可以更快地完成配准,且鲁棒性更好;基于互信息配准方法可以有效地克服目前常用基于骨形特征的有框架配准缺陷,具有精度高、鲁棒性好、无需提取特征、易实现全自动配准等优点,适合用于CBCT与计划CT的配准实验及指导摆位。
     IGRT临床应用尚待解决的另一关键是缺乏CBCT图像质量的评价标准及质量控制方法。论文对此进行了开创性研究,建立了以图像均匀性、高低分辨率、CT值稳定性、空间线形、焦点辐射剂量等多项参数为指标的CBCT图像质量分析评价标准、方法及质量控制体系,开拓了基于CBCT图像的放疗计划设计和评价新途径。
     论文研制了二维运动体模系统以探讨器官运动和形变对CBCT成像的影响。实验表明:呼吸运动在横轴和纵轴方向对体模CBCT成像均有明显影响,皆使图像变形、体积增大、清晰度下降,运动幅度越大,效果越显著;呼吸频率对图像大小影响不明显。
     为解决目前CBCT存在的扫描区域狭窄问题,论文设计了对分段锥形束CT图像进行拼接以获得完整图像的新方法。其过程为:将两段图像分别进行显像解析,再经三维重建后分别与计划CT进行图像融合,通过对融合后骨性标志的分析来选取拼接层面来实现两段CBCT图像的拼接处理。新方法扩大了肿瘤靶区及周围正常器官的观察范围,保证了基于CBCT图像制定放疗计划的可行性及评价剂量体积参数的完整性,有广泛的临床应用前景。
Tumor radiation therapy has entered into a new era, in which tumor is being treated by 3-dimentional conformal radiotherapy (3D-CRT) and intensity modulated radiotherapy (IMRT). A typical representative of the new treatment technology is the image guided radiotherapy (IGRT) based on the cone-beam computed tomography (CBCT), with which there’s a great improvement on the accuracy and precision of treatment.
     One of the key issues in IGRT clinical application is achieving accurate and rapid registration for Planning CT and CBCT. Existing registration methods cannot still satisfy the clinical implementation requirements in the speed and accuracy. In this paper, mutual information based multi-resolution registration framework is used to accelerate the registration process. Theoretically and experimentally, it’s demonstrated that multi-scale space based multi-resolution three-dimensional medical image registration framework can greatly increase the speed of registration process rather to direct registration. We realized that mutual information based rigid registration algorithm for IGRT system by registering CBCT of the three-dimensional image reconstruction of patients with the Planning CT of the patient treatment model. Furthermore, two multi-resolution registration frameworks are compared: direct equidistant sampling pyramid and Gaussian pyramid. Studies have shown that direct equidistant sampling pyramid framework can be implemented quickly to complete registration, and with better robustness; and moreover mutual information-based registration method can be used to overcome the limitation of the current bone-shaped characteristics based framework for the registration. Now we can get high precision and robustness, and there is no need to extract features and easy to achieve automatic registration etc. It is very suitable for CBCT and Planning CT registration for image guided radiation therapy.
     Another key issue is the evaluation standard and quality control system on CBCT. The dissertation studied on and developed innovatively an evaluation standard and quality control system, which are based on the image uniformity, image resolution, CT value stability, space linearity, and dose on the isocenter. With them, it is more feasible and easy to design and evaluate a radiotherapy plan based on CBCT.
     A 2D kinetic phantom system, which is used to simulate respiratory motion, has been developed to study on the impacts of organs motion and deformation upon CBCT. From tests, it has been revealed that the impacts of respiratory motion upon the reconstruction and deformation of CBCT images in latitude and longitude directions were remarkable. Compared to the CBCT images under quiescence, it was fuzzy and deformed, with a larger volume. Respiratory extent played an important role in it, but the frequency not.
     The dissertation has studied and developed a new program to paste two respective CBCT images to enlarge length of CBCT images, and offer the integrity of structures. The process is that importing two CBCT image series to TPS and then fusion the planning CT and CBCT together. Find the same layer of two CBCT series by analyzing the two fusion results and the bone as the reference. When enlarged, more information including tumor and organs at risk (OAR) could be integrated. This new technique can provide the chance to observe the whole target and OAR and the chance for physicists to evaluating the treatment plan and re-planning based on CBCT.
引文
1. Uy NW, Woo SY, Teh BS , et al . Intensity modulated radiation therapy (IMRT) for meningioma. Int J Radiat Oncol Biol Phys, 2002, 53 :12652 1270.
    2.殷蔚伯,谷铣之.肿瘤放射治疗学[M].第3版,北京:中国协和医科大学出版社,2002:339.
    3.戴建荣,胡逸民.图像引导放疗的实现方式[J].中华放射肿瘤学杂志,2006,15(2):132-135.
    4.胡逸民.肿瘤放射物理学[M].北京:原子能出版社,1999:289.
    5. Rietzel E, Pan T, Chen GT. Four-dimensional computed tomography: Image formation and clinical protocol [J]. Med Phys,2005, 32(4): 874-889.
    6. Caldwell CB, Mah K, Skinner M, et al. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET [J]. Int J Radiat Oncol Biol Phys, 2003, 55: 1381-1393.
    7. Jacob R, Hanlon A, Horwitz E, et al. The relationship of increasing radiotherapy dose to reduced distant metastases and mortality in men with p rostate cancer [J]. Cancer, 2004, 100: 538-543.
    8. Lee N, Xia P, Fischbein NJ, et al. Intensitymodulated radiation therapy for head–and-neck cancer: The UCS Fexperience focusing on target volume delineation [J]. Int J Radiat Oncol Biol Phys, 2003, 57: 49-60.
    9. Kuban D, Pollack A, Huang E, et al. Hazards of dose escalation in prostate cancer radiotherapy [J]. Int. J. Radiat. Oncol. B iol. Phys, 2003, 57: 1260-1268.
    10. Hurkmans CW, Cho BC, Damen E, et al. Reduction of cardiac and lung complication probabilities after breast irradiation using conformal radiotherapy with or without intensity modulation [J]. Radiother. Oncol, 2002, 62: 163-171.
    11. Tubiana M, Eschwege F. Conformal radiotherapy and intensity-modulated radiotherapy: Clinical data [J]. Acta Oncologica, 2000, 39: 555-567.
    12. Shih HA, Jiang SB, Aljarrah KM, et al. Internal target volume determined with expansion margins beyond composite gross tumor volume in three dimensional conformal radiotherapy for lung cancer [J]. Int J Radiat Oncol Biol Phys, 2004,
    60: 613-622.
    13. Lometti MW, Morin O, Aubin M, et al. Intrafractional and inter/intra - field organ motion and aproposal for a new patient set-up protocol. American Association of Physicists in Medicine 47th Annual Meeting [J]. Seattle, WA. Med.Phys, 2005,
    32: 2160.
    14. Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the p lanning CT for prostate cancer radiotherapy [J]. Int J Radiat Oncol Biol Phys, 2005, 62:965.
    15. Hansen EK, Bucci MK, Quivey JM, et al. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer [J]. Int J Radiat Oncol Biol Phys, 2006, 64: 355-362.
    16. Barker JL, Garden AS, Ang, KK, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT linear accelerator system [J]. Int J Radiat Oncol Biol hys, 2004, 59: 960-970.
    17. Wong JR, Cheng CW, Grimm L, et al. Clinical implementation of the world’s first Primatom, a combination of CT scanner and linear accelerator for precise tumor targeting and treatment. M Physica Istituti Editoriali e Poligrafici Internazionali [J]. Italy. Medica Physica, 2001, 17: 271-276.
    18. Sillanpaa J, Chang J, Mageras G, et al. Developments in megavoltage cone beam CT with an amorphous silicon EPID: reduction of exposure and synchronization with respiratory gating [J]. Med Phys, 2005, 32: 819-829.
    19. Gildersleve J, Dearnaley DP, Evans PM, et al. A randomised trial of patient repositioning during radiotherapy using a megavoltage imaging system [J]. Radiother Oncol, 1994, 31: 161-168.
    20. Evans PM, Gildersleve JQ, Rawlings C, et al. Technical note: The implementation of patient position correction using a megavoltage imaging device on a linear accelerator [J]. Br J Radiol, 1993, 66: 833-838.
    21. Mackie TR, Kapatoes J, Ruchala K, et al. Image guidance for precise conformal radiotherapy [J]. Int J Radiat Oncol Biol Phys, 2003, 56: 89-105.
    22.于金明,李宝生,调强放射治疗的临床应用现状与存在的问题,中华肿瘤杂志,2005,27(3):188-190
    23.于金明,袁双虎,图像引导放射治疗研究及其发展,中华放射肿瘤学,2006, 28(2):81-83
    24.岳金波,于金明,刘菁,尹勇,锥形束CT测量鼻咽癌放疗计划靶区外放研究中华放射肿瘤学杂志, 2007,16(3):223-224
    25. Yinyong, The primary Study of Image Guided Radiotherapy in liver Tumor , Medical Physics, 2007(34), p2383
    26. Yinyong, The Effect of Respiratory Montion On the GTV Contoured with PET Image, Medical Physics, 2007(34), p2398
    27. Ling CC, Yorke E, Fuks Z. From IMRT to IGRT: frontierland or neverland [J] Radiother Oncol, 2006, 78(2):119-122.
    28. Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-beam computed tomography for image-guided radiation.[J], Int J Radiat Oncol Biol Phys., 2002, Aug 1;53(5):1337-1349
    29. Chen X, Gilkeson RC, Fei B. Automatic 3D-to-2D registration for CT and dual-energy digital radiography for calcification detection. Med Phys. 2007,34(12):4934-4943.
    30. Lu X, Zhang S, Su H, et al. Mutual information-based multimodal imageregistration using a novel joint histogram estimation. Comput Med Imaging Graph, 2008, 32(3):202-9.
    31. Ren L, Godfrey DJ, Yan H, et al. Automatic registration between reference and on-board digital tomosynthesis images for positioning verification. Med Phys. 2008, 35(2):664-672.
    32. Sykes JR, Lindsay R, Dean CJ, et al. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR Penta-Guide phantom. Phys Med Biol. 2008 Oct 7; 53(19):5275-5293.
    33. Yue NJ, Kim S, Lewis BE, et al. Optimization of couch translational corrections to compensate for rotational and deformable target deviations in image guided radiotherapy. Med Phys. 2008 Oct; 35(10):4375-4385.
    34. Perks JR, Lehmann J, Chen AM, et al. Comparison of peripheral dose from image-guided radiation therapy (IGRT) using kV cone beam CT to intensity-modulated radiation therapy (IMRT). Radiother Oncol. 2008 Dec; 89(3):304-310.
    35. Cho S, Xia D, Pelizzari CA, et al. Exact reconstruction of volumetric images in reverse helical cone-beam CT. Med Phys. 2008 Jul; 35(7):3030-3040.
    36. Verellen D, De Ridder M, Tournel K, et al. An overview of volumetric imaging technologies and their quality assurance for IGRT. Acta Oncol. 2008; 47(7):1271-1278.
    37. Walter C, Boda-Heggemann J, Wertz H, et al. Phantom and in-vivo measurements of dose exposure by image-guided radiotherapy (IGRT): MV portal images vs. kV portal images vs. cone-beam CT. Radiother Oncol. 2007 Dec; 85(3):418-423.
    38. Oh S, Kim S, Suh TS. How image quality affects determination of target displacement when using kilovoltage cone-beam computed tomography. J Appl Clin Med Phys. 2006 Nov 11; 8(1):101-107.
    39. Saw CB, Yang Y, Li F, et al. Performance characteristics and quality assurance aspects of kilovoltage cone-beam CT on medical linear accelerator. Med Dosim. 2007 Summer; 32(2):80-85.
    40. Godfrey DJ, Yin FF, Oldham M, et al. Digital tomosynthesis with an on-board kilovoltage imaging device. Int J Radiat Oncol Biol Phys. 2006, 65(1):8-15.
    41.尹勇,袁双虎,刘同海,等,加速器附加锥形束CT图像质量评价,中华放射肿瘤学杂志, 2007,16(3):225-228.
    42. Serban M, Heath E, Stroian G, et al. A deformable phantom for 4D radiotherapy verification: design and image registration evaluation. Med Phys. 2008, 35(3):1094-102.
    43. Kitamura K, Shirato H, Seppenwoolde Y, et al. Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions. Int J Radiat Oncol Biol Phys, 2002, 53:1117-1123.
    44. Nuyttens JJ, Robertson JM, Yan D, et al. The variability of the clinical targetvolume for rectal cancer due to internal organ motion during adjuvant treatment Int J Radiat Oncol Biol Phys, 2002, 53:497-503.
    45. Britton KR, Takai Y, Mitsuya M, et al. Evaluation of inter and intrafraction organ motion during intensity modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med, 2005, 23:14-24.
    46. Eleftheria A, Arjan B, Cornelis PJ, et al. Adequate margins for random setup uncertainties in head-and-neck IMRT. Int J Radiat Oncol Biol Phys, 2005, 61: 938-944.
    47. Hurkmans CW, Remeijer P, Lebesque JV, et al. Set-up verification using portal imaging: review of current clinical practice. Radiother Oncol, 2001, 58:105-120.
    48.于金明,二十一世纪的放射肿瘤学,中华肿瘤杂志, 2002 ,24:521-525.
    49. Kruse JJ, Herman MG, Hagness CR, et al. Electronic and film portal images: a comparison of landmark visibility and review accuracy. Int J Radiat Oncol Biol Phys, 2002, 54:584-591.
    50. Hans CJ, Marjolein JH, Peter PJ, et al. Appplication of the action level (nal) protocol to correct for prostate motion based on electronic portal imaging of implanted markers. Int J Radiat Oncol Biol Phys, 2005, 61:969-983.
    51. Jaffray DA, Chawla K, Yu C, et al. Dual-beam imaging for online verification of radiotherapy field placement. Int J Radiat Oncol Biol Phys,1995, 33:1273-1280.
    52. Takai Y, Mitsuya M, Nemoto K, et al. Development of real-time tumor tracking system with dMLC using dual X-ray fluoroscopy and amorphous silicon flat panel on the gantry of linear accelerator. Int J Radiat Oncol Biol Phys 2002, 54 (Supplement):193-194.
    53. Shirato H, Shimizu S, Shimizu T, et al. Real-time tumour-tracking radiotherapy. Lancet, 1999, 353:1331-1332.
    54. Shirato H, Shimizu S, Kunieda T, et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys, 2000, 48: 1187-1195.
    55. Shimizu S, Shirato H, Kitamura K, et al. Use of an implanted marker and real-time tracking of the marker for the positioning of prostate and bladder cancers. Int J Radiat Oncol Biol Phys, 2000, 48:1591-1597.
    56. Shimizu S, Shirato H, Ogura S, et al. Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 2001, 51:304-310.
    57. Fukumoto S, Shirato H, Shimzu S, et al. Small-volume image-guided radiotherapy using hypofractionated, coplanar, and noncoplanar multiple fields for patients with inoperable Stage I nonsmall cell lung carcinoma. Cancer, 2002, 95:1546-1553.
    58. Onimaru R, Shirato H, Shimizu S, et al. Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary andmetastatic lung cancers. Int J Radiat Oncol Biol Phys, 2003, 56:126-135.
    59. Yu C, Main W, Taylor D, et al. An anthropomorphic phantom study of the accuracy of Cyberknife spinal radiosurgery. Neurosurgery, 2004, 55:1138-1149.
    60. Chang SD, Main W, Martin DP, et al. An analysis of the accuracy of the Cyberknife: a robotic frameless stereotactic radiosurgical system. Neurosurgery, 2003, 52:140-147.
    61. Uematsu M. CT-guided stereotactic radiotherapy for early stage lung cancer. Nippon Rinsho, 2002, 60 Suppl: 408-410.
    62. Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys, 2002, 53:1337-1349.
    63. Jaffray DA, Siewerdsen JH. Cone-beam computed tomography with a flat-panel imager: initial performance characterization. Med Phys, 2000, 27:1311-1323.
    64. Pouliot J, Bani-Hashemi A, Chen J, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys, 2005, 61:552-560.
    65. Nakagawa K, Aoki Y, Tago M, et al. Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: original research in the treatment of thoracic neoplasms. Int J Radiat Oncol Biol Phys, 2000, 48:449-457.
    66. Groh BA, Siewerdsen JH, Drake DG, et al. A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys, 2002, 29:967-975.
    67. Allen R, Kamangar F, Stokely E. Laplacian and orthogonal wavelet pyramid decompositions in coarse-to-fine registration. IEEE Transactions on Signal Processing, 1993, 41(12), pp.3536–3541.
    68. Thévenaz P, Unser M. Optimization of mutual information for multiresolution image registration. IEEE Transactions Image Processing, 2000, 9(12),pp. 2083–2099.
    69. Woods RP, Grafton ST, Holmes CJ, et al. Automated image registration: A General methods and intrasubject,intramodality validation.J Comupter Assisted Tomography, 1998, 22(1):139-152.
    70. Maes F, Collignon A, Vandermeulen D. Multimodality image registration by maximization of mutual information. IEEE Trans On Medical Imaging, 1997, 16(2):187-198.
    71. Thévenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans On Image Processing, 1998, 7(1):27-41.
    72. Van den Elsen PA, Maintz JB, Pol ED, et al. Automatic registrationg of CT and MR Brain Images Using Correlation of Geometrical Features. IEEE Trans On Medical Imaging, 1995, 14(2):384-396.
    73. Maurer CR, Fitzpatrick JM, Wang MY, et al. Registration of Head Volume Images Using Implantable Fiducial Markers. IEEE Trans On Medical Imaging,1997, 16(4):447-462.
    74. Woods, RP, Grafton ST, Watson JDG, et al. Automated Image Registration:ⅡIntersubject Validation of Linear and Nonlinear Models. J of Computer Assisted Tomography, 1998, 22(1):153-165.
    75. J V Hajnal, D L G Hill, DJHawkes. Medical Image Registration [M]. Boca Raton, FL: CRC, 2001
    76. A Goshtasby. 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications [M]. New York: Wiley, 2005
    77. J P Pluim, J B Maintz, M A Viergever. Mutual-information-based registration of medical images: A survey [J]. IEEE Trans. Med Imag, 2003, 22(8): 986-1004.
    78. J P W Pluim, J B A Maintz, M A Viergever. Image registration by maximization of combined mutual information and gradient information [J]. IEEE Trans. Med Imag. 2000, 19(8): 809-814.
    79. H Lester, S Arridge. A survey of hierarchical nonlinear medical image registration [J]. Pattern Recogn. 1999, 32(1):129-149.
    80. J P W Pluim, J B A Maintz, M A Viergever. Mutual information matching in multiresolution contexts [J]. Image Vis. Computing. 2001(1-2), 19:45-52.
    81. Woods RP, Maxziolla JC, Cherry SR, et al. MRI-PET registration with automated algorithm [J]. Journal of Computer Assisted Tomography. 1993, 17(4):536-546.
    82. Van den E1sen PA. Automatic registration of CT and MR brain images using correlation of geometrical features [J]. IEEE Trans Med Imaging, 1995, 14(2):384-396.
    83. Collignon A, Vandermeulen D, Suetens P, et a1. 3-D multimodality image registration using features space clustering[C]. Leeham Notes in Computer Science. 1995, 905:195-204.
    84. Studholme C, Hil DLG, Hawkes DJ. Multire solution voxei similarity measure for MR-PET registration[C]. Yves Bizais, Christian Barillot. Robert Di Paola, eds. Information Processing in Medical Imaging (IPMI). The Netherlands: Kluwer Academic Publishers, 1995:287-298.
    85. Viola P, Wells I, William M, et al. Alignment by maximization of mutual informafion[C]. Proc Intl Confon Computer Vision. Cambridge. MA.1995.16-23.
    86. W M. Wells IIl, P Viola, et a1. Multimodal volume registration by maximization of mutual information [J]. Medical Image Analysis, 1996.1(1):35-51.
    87. F Maes, A Collignon, D Vandermelen, et al. Multimodality image registration by maximization of mutual information [J]. IEEE Transactions on Medical Imaging, 1997, 16(2):187-l98.
    88. C R Meyer, J L Boes, B Kim, et al. Demostratlon of accuracy and clinical versatility ot mulual information for automatic multimodality image fusion using afifine and thin-plate spline warped geometric deformations [J]. Medical image analysis, 1997, 1(3):195-206.
    89. Anand Rangamjan, Haili Chui. Rigid point feature registration using mutualinformation [J]. Medical image analysis, 1999, 3(4):425-440.
    90. B Likar, F Permus. A hierarchical approach to elastic registration based on mutual information [J]. Image and Vision Computing, 2001.19:33-34.
    91. C Studholme, D D G. Hill, D J Hawkes. A overlap invariant entropy measure of
    3D medical image alignment [J]. Pattern Reeognition, 1999,32(1):71-86.
    92. J Koenderink. The structure of images [J], Biol Cybern, 1984, 50(5) :363-370.
    93. Hummel RA. Representations Based on Zero-crossings in Scale-space [A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1986, 204-209.
    94. P Perona, J Malik. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans Pattern Analysis and Machine Intelligence. 1990, 12(7): 629-639.
    95. M Jenkinson, P Bannister, S Smith. Improved optimization for the robust and accurate linear registration and motion correction of brain images [J]. NeuroImage. 2002, 17(2): 825-841.
    96. Vinall AJ, Tomes J. Initial Experience of Acuity Cone Beam CT. Varian Users Meeting, Malaga, May 2004.
    97.于甬华,吴玉芬,郭守芳等,呼吸运动对周围型肺癌位置的影响及其数学模型的建立,中华放射肿瘤学杂志,2004,13(2):83-84
    98. Shimizu SS, Shirato H, Kagel K, et al. Impact of respiratory movement in the computed tomgraphic images of small lung tumors in three dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys, 2000, 46: 1127-33.
    99. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys, 2002, 53:822-834.
    100.Oelfke U, Tücking T, Nill S, et al. Linac-integrated kV-cone beam CT: technical features and first applications. Med Dosim, 2006, 31: 62-70.
    101.Letourneau D, Wong J, Oldham M, et al. Cone-beam-CT guided radiation therapy: Technical implementation. Radiother Oncol, 2005, 75: 279-286.
    102.Yoo S, Yin FF. Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys, 2006, 66: 1553-1561.
    103.Yang Y, Schreibmann E, Li T, et al. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Phys Med Biol, 2007, 52: 685-705.
    104.Ding GX, Duggan DM, Coffey CW, et al. A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol, 2007, 85: 116-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700