旋转磁场对血流中纳米铁核素定位作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤靶向定位治疗是目前医学界研究的热点和难点问题。靶向定位的载体目前主要有抗体载体、配体载体、活性多肽载体等,定位原理都是基于生物学特性进行组织的,每一种载体对药物定向带有很大的选择性,都只针对特定的肿瘤治疗有效。
     随着现代科学技术的发展,纳米科技和纳米材料的科学价值越来越重要,其应用前景已被人们广泛认识。纳米技术在医学上的应用,产生了一门新的学科——纳米医学。本文首次提出了一种新型的定位治疗系统。并对可被定位于肿瘤部位治疗肿瘤的药物载体——顺磁放射性纳米铁核素,及其制备方法,和纳米粒子在人体血流中的受力情况、在外磁场作用下的聚集情况进行了论述。
     纳米铁核素的制备是采用羰基法制备纳米铁,然后通过脉冲中子反应堆辐照纳米铁得到顺磁纳米铁核素。结果:放射性核素—纳米铁的平均粒径<100nm,具有超顺磁性、放射性活度和较好的磁导向功能,可有效定位于靶区
     当有外加磁场时,纳米铁粒子不仅受到血流中三种力的作用,还有磁场力的作用,而这个力在将纳米铁粒子聚集到病灶部位时起到关键作用,决定了纳米粒子的聚集状况。通过将血流动力、血液粘滞力、重力以及磁场力的矢量合成,分析出纳米粒子在血管中的运动状态,通过使用MathCAD和ANSYS软件的模拟实验,证明纳米铁粒子在血液中能有效的聚集到所需定位的病灶部位,达到有效的靶向治疗目的。
     将纳米铁有效地定位到病灶部位,关键是要在病灶部位形成一个强磁场区域,达到纳米铁汇集的条件。针对上述难点,本文作了以下几方面的工作:
     (1)介绍了电磁场的基本理论,分析了磁场定位靶向治疗肿瘤的可行性,并建立了三维旋转磁场定位治疗肿瘤的理论。
     (2)利用MathCAD软件计算各种条件下磁场的大小及其变化规律,应用ANSYS软件建立有限元模型进行磁场模拟。
     (3)纳米铁粒子在血流中(层流状态下)所受到的力主要是血流动力和血液粘滞力以及自身重力,通过分析血液的组成和性质、血液粘滞度、血管中的血流速度,推导出几种力的计算方法及计算模型。
     (4)计算三维旋转磁场所需参数,建立模型,通过实验验证理论所得结果。
     三维旋转磁场的模拟结果以及原理机的实际试验结果,均取得了良好的效果,为三维旋转磁场定位治疗仪投入工业化生产提供了理论依据。
Tumor targeted therapeutic is the hot and difficulty point in mordern scientific world. The carriers of medical include antibody carrier, conjugant and active amylase carrier teal. The theoretic model is based on biology characteristic. Each drug has specific target and effect in specific tumor tissue.
     With the development of modern science and technology, the scientific value of nano-technology and nano-materials is increasingly important. Its application prospect has been widely recognized. The application of nanotechnology in medicine, and it has created a new subject-medical nanotechnology. This paper discuss a novel, location of the tumor can be treated with drugs-preparation of magnetic nanoparticles radioactive nuclides, the pressure when nano-particles in the blood of human and the circumstances of conglomeration by the effect of external magnetic field.
     Preparation Methods:carbonyl method to make nanoiron is adopted. Paramagnetic iron nanoparticles nuclides are obtained by radiating nanoiron after pulsed neutron reactor. Results:The average size of radio nuclides—nanoiron is less than 100nm; it has super paramagnetic, radioactivity and better magnetic function and can be effectively in the target location.
     When in the external magnetic field, the nanoparticles do not only effect by three roles pressure of blood, but also the strength of the magnetic field which will be the key role when nano-particles gathered at the part of focus and decide the gathering condition of nanoparticles. By synthesizing the three magnetic vectors in blood, blood viscosity, gravity and magnetic field, analyzing the movement of nano-particles in the blood vessels and using the soft of MATHCAD and ANSYS, the simulation results can effectively prove the location of iron nanoparticles aggregation in the blood vessel which we need. Targeted therapy can achieve this purpose.
     In order to orientate the drug carrier to tumor focus, it need to form a strong magnetic field gradient and satisfies the condition of the nanometer-iron particles aggregation. In order to solve the problem this paper sets forth following study:
     (1) This paper introduces the principle in the electromagnetic field, analysis the feasibility of target therapeutic by magnetic field gradient, establish the theory of rotated 3D magnetic field for targeted therapeutic of tumor.
     (2) This paper calculates the magnetic field intensity and the variety in different conditions using the MathCAD soft, simulate the model of magnet field using the ANSYS soft.
     (3) The major forces of Nano-particles in blood (laminar flow conditions) are the dynamic of blood flow and viscous forces and their gravitational force. By analyzing the composition and nature of blood, blood viscosity and velocity of the blood vessels, several calculation methods and former are deduced above.
     (4) The parameters were calculated and the model was designed. Validate the result by experiment.
     The result is well both in simulation and theoretical equipment. Gain the data for the for industry production.
引文
[1]沈建苗.纳米技术—小将大有作为.世界科技,2001,(1):32-34
    [2]张志焜,崔作林纳米技术与纳米材料.北京:国防工业出版社,2000,1-22
    [3]Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunneling microscope. Nature,1990,344:524~526
    [4]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001.60-78
    [5]顾宁,付德刚.纳米技术与应用.北京:人民邮电出版社,2002.5-18
    [6]Binning G, Quate C F, Gerber Ch. Atomic force microscope. Phys. Rev. Lett. 1986,56 (9):930~933
    [7]曹茂盛,曹传宝,徐甲强.纳米材料学.哈尔滨:哈尔滨工程大学出版社.2002.32~39
    [8]Steytr UB, Pum D, Sara M. Advances in S-Layer nanotechnology and biomimetics. Adv biophs,1997,34:71
    [9]Andreas Stephan Lubbe, Chrcistain Bbergemann Winfried Huhnt et al. Preclinical Experiences with Magnetic Drug Targeting:Tolerance and Efficacy. Cancer Research, 1996,56(10):4694~4701
    [10]Mahtab R, Rogers J P, Murphy. CJ:Protein-size quantum dot luminescence can distinguish between "straight"," bent", and "kinked" digonucle otides. Am Chem Soc, 1995,117:9099~9100
    [11]U.O Hafeli. Magnetically modulated therapeutic systems. International Journal of Pharmaceutics 2004,277(1-2),:19-24
    [12]杜会强, 安鸿志,李红霞.抗肿瘤靶向给药系统的研究进展中国医院药学杂志2007 27(2)242-244
    [13]Senyei AE, Reich SD, Gonezy C, et al. In Vivo kinetics of magnetically targeted low dose doxorubicin. J Pharm Sci,1981,(70):389
    [14]秦润华.磁靶向放射性核素载体—聚多糖基磁性复合粒子的制备:[博士学位论文]南京:南京理工大学,2004
    [15]Drug targeting. Vladimir P.Torchilin. Journal of Pharmaceutical Sciences 2000 11(2)81-91
    [16]周永新,王永武,冯靖等肺癌治疗缓释化疗药栓塞装置的研究.同济大学学报(医学版)2006,27(3):74-76
    [17]甄永苏.中国科技信息-抗肿瘤单克隆抗体导向药物的研究进展.世界科技研究与发展.21(5)5-8
    [18]李云春,肖荣贵.放射性核素诊断和治疗肿瘤的新型载体Endostatin.同位素.2001 14(1)50-53
    [19]郭克泰.趋化因子及其受体的研究新进展.国外医学免疫学分册.2002,25(1):27-30
    [20]孟宪瑛,王广义,吕国悦.超顺磁性纳米粒子在肿瘤诊断与治疗中的应用.吉林大学学报(医学版)2007,33(1):180-182.
    [21]赵春玲,宋咏梅,樊飞跃等.细胞周期蛋白cyslinB1与肿瘤.肿瘤.2007,27(4):322-326
    [22]于敏,张学.周期蛋白G家族----细胞周期的负调节因子.国外医学遗传学分册.2005,28(3):138-142
    [23]《真核基因表达调控》p151,高等教育出版社-斯普林格出版社,1999,北京
    [24]李强,卫增泉.重离子束用于肿瘤放射治疗的基础理论.原子核物理评论.1999,16(4):262-266
    [25]朱壬葆,刘永,罗祖玉主编.辐射生物学.北京:科学出版社,1987,588-602
    [26]刘建庭,熊平,景娜等.纳米铁核素靶向治疗肿瘤的辐射效应研究.中国医学物理学杂志.2007,24(2):79-82
    [27]王嫔,陈辉磁性流体组成及其应用前景.化学与生物工程,2003,6:43-44
    [28]邹继斌,陆永平.磁性流体密封原理与设计.北京:国防工业出版社,2000.1-3.
    [29]李学慧,安宏等.磁流体及其应用.大连大学学报,1996,6(2):159-164
    [30]Pulfer S K, Ciccotto S L, Gallo J M, et al. Distribution of small magnetic particles in brain tumor bearing rats. Neurooncol,1999,41(2):99.
    [31]袁淑霞,樊玉光等纳米磁性流体的制备及应用技术.西安石油学院学报(自然科学版,2002.17(6):76-80
    [32]Hai Y, Pai V,Chen C J. Development of magnetic device for cell separation. Magn Mater,1999,194(1-3):254~261
    [33]Hamad-schifferh K, Schwartz J J, Santos A T, et al Remote electronic control of DNA hybridization through inductive couphug to an attached metal nanocrystal antenna. Nsture,2002,415(6868):152~155
    [34]傅伟,熊平,彭飞武,等.磁性纳米铁微粒的制备方法研究.金属功能材料,2007,14(1):33-36
    [35]傅伟,熊平,刘晓明,等.磁控纳米铁治疗肿瘤的研究.实用肿瘤杂志,2006,21(5):479-481
    [36]颜世峰.纳米磁性材料的制备及磁性能研究:[博士学位论文].长春:中国 科学院长春应用化学研究所,2005
    [37]熊平,郭萍,袁亚莉等.顺磁纳米铁核素的研制及性能分析.中国生物医学工程学报.2005,24(2):154-156
    [38]匡安仁,谭天秋.放射性核素治疗的发展与思考.中华核医学杂志,2003,23(6): 325~327
    [39]Wagner HN. Highlights 2003 lecture:from proof of principle to proof'of value. J Nuel Med,2003,44:11N-36N.
    [40]马栩泉.核能的开发与利用.北京:化学工业出版社,2005.259~263
    [41]黄昌泰,何亚明,魏连生.涅斯米扬诺夫.放射化学实验教程.北京:原子能出版社,1989.1~9
    [42]孙宪文,姜军,朱松.核裂变与核聚变发电综述.东北电力技术.2002(5):29-34
    [43]Shi K Y, Li C X, He B L, MagneticDrug Delivery System Adriamycin Carboxymethy Dextran Magnetic Nanoparticles. Biomed Eng,2000,17(1):21~24
    [44]Suman Dandamudi and Robert B. Campbell et al. The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting' Biomaterials 2007,28(31) 4673-4683
    [45]陈江,江纪修,李炜坪.抗癌药物载体—磁流体的制备及其性质研究.中国医院药学杂志,1997,17(4):163~165
    [46]朱传征,沈锓,徐超等.钇铁氧体磁流体的制备及表征.华东师范大学学报(自然科学版),2000,(1):68~73
    [47]任欢鱼,刘蕾,刘勇健.磁流体的制备与性质研究.中国粉体技术,2003,9(1):21~23
    [48]Safonenko O K, Reks A G, Volkova N E. Specific features of temperature of thermal conductivity of water base magnetic fluids. Magnetism and Magnetic Materials,1993,122:19~23
    [49]Berger P, Adelman N B, Beckman K J, et al. Preparation and properties of an aqueous ferrofluid. J Chem Educ,1999,76(7):943-94
    [50]蒋秉植,杨健美.磁性材料制备应用及其稳定性的解析.化学进展,1997,(9):75~76
    [51]Paolo Blasi, Stefano Giovagnoli, Aurelie Schoubben, et al. Solid lipid nanoparticles for targeted brain drug delivery[J].Advanced Drug Delivery Reviews.2007,59(6):454-477
    [52]日本医学放射线学会.放射诊断中医生和病人的辐射防护.原子能出版社,1987.132~158
    [53]杨宪章.电磁场原理.北京:高等教育出版社.1985,298-299.
    [54]夏玉珍,李帮军.对麦克斯韦电磁场理论的研究与实验探讨.中国科技术信息,2006,(3):142-143.
    [55]汪昭义.平面电磁波传播的物理分析.黄山学院学报,2005,7(6):24-26.
    [56]李翔,曾宪林.理想介质中均匀平面波方程.广西轻工业,2006,(5):86-88.
    [57]刘万强,王艳萍.电路基本定律的分析研究.山东理工大学学报(自然科学版),2005,19(1):92-95.
    [58]梅延玲.麦克斯韦方程组的一种推导方法.武汉科技学院学报,2005,18(10):54-58.
    [59]郭欣,宋立军.利用贝塞尔函数的级数形式进行数值计算的误差分析.长春大学学报,2004,14(2):57-59.
    [60]张爽,王少夫,朱义胜.基于贝塞尔带通滤波器精确设计和仿真.大连海事大学学报,2005,31(1):81-83
    [61]李勇英,雏向东.对勒让德多项式母函数的研究.河西学院学报,2003,2(2):4-5.
    [62]胡先权,廖海洋,王万录.导体球壳内的电偶极子的电荷禁闭.江西师范大学学报(自然科学版),2005,29(1):47-50.
    [63]关海爽,马文阁.电磁场数值计算新方法的研究.辽宁工学院学报,2006,26(4):230-233.
    [64]邵志强.关于拉普拉斯算子的第一、第二特征值的空隙的估计.福州大学学报(自然科学版),2002,30(2):153-156.
    [65]谢金,傅克祥,麻健勇,等.求解电磁场边界问题时逆规则的物理意义.激光杂志,2004,25(6):34-36.
    [66]Rodrigo Fernandez-Pacheco, Clara Marquina, J. Gabriel Valdivia et al.Magnetic nanoparticles for local drug delivery using magnetic implants Journal of Magnetism and Magnetic Materials April 2007,311(1):318-322
    [67]Christian Seligera, Roland Jurgonsa, Frank Wiekhorstb,et al. In vitro investigation of the behaviour of magnetic particles by a circulating artery model. Journal of Magnetism and Magnetic Materials.2007,311(1):358-362
    [68]Y. Yoshida,S. Fukui, S. Fujimoto,et al.Ex vivo investigation of magnetically targeted drug delivery system. Journal of Magnetism and Magnetic Materials 2007,310(2):2880-2882
    [69]纪哲锐.Mathcad 2001详解.北京:清华大学出版社.2002.5-9
    [70]曹江陵,杨波.载流圆形线圈的磁场.重庆教育学院学报2006,19(3): 10-12.
    [71]王晓颖,李武军.载流圆环空间磁场分布的研究.西安工业学院学报,2004,24(3):292-295.
    [72]孟祥国,李丽华,史强.圆形载流导线的磁场.物理与工程,2004,14(4):16-17.
    [73]王琴.导电线圈磁场计算理论及方法研究.太原师范学院学报(自然科学版),2006,5(2):83-85.
    [74]朱平.圆电流空间磁场分布.大学物理.2005,24(9):13-17.
    [75]李春明,刘承师,张俊峰.计算载流圆线圈空间磁场分布的方法.辽宁工学院学报,1999,19(1):62-65.
    [76]罗兴垅.圆环电流及亥姆霍兹线圈磁场的一种数值解法.赣南师范学院学报,2006,3(3):91-93.
    [77]张昌莘,席伟,何颖君.圆电流和亥姆霍兹线圈磁场的研究.安徽师范大学学报(自然科学版),2004,27(1):41-45.
    [78]张榴晨,徐松.有限元法在电磁计算中的应用.北京:中国铁道出版社,1996
    [79]金建铭等.电磁场有限元方法,西安:西安电子科技大学出版社,1998.
    [80]杨显清.电磁场与电磁波.北京:国防工业出版社,2003.
    [81]叶先磊,史亚杰.ANSYS工程分析软件应用实例.北京:清华大学出版社,2003.1-5.
    [82]邓凡平.ANSYS 10.0有限元分析自学手册.北京:人民邮电出版社,2007.1-10.
    [83]王永新.ANSYS软件中耦合场分析方法及应用.云南水力发电,2006,22(4):32-34.
    [84]王江涛,刘海琴.利用ANSYS软件计算开关磁阻电动机电磁场.电气技术与自动化,2006,168-172.
    [85]姚泰,吴博威,等.生理学.北京:人民卫生出版社,2005.466~103
    [86]陈矛章.粘性流体动力学基础.北京:高等教育出版社,1993.39~59
    [87]D.O.库尼.生物医学工程学原理-流体、热和质量传递过程引论.北京:科学出版社,1982,59~70
    [88]阮晓声,谢小平,王奇等.流动渠道中血流动力学问题研究.中国医学物理学杂志,1999(16):169~177
    [89]刘普和,邝华俊等.医学物理学.北京:人民卫生出版社,1983.93-100
    [90]陈文杰.血液流变学.天津:天津科学技术出版社,1987.10~70
    [91]何瑞荣.心血管生理学.北京:人民卫生出版社,1987.1~25
    [92]黄华.血液电流变学研究:[博士学位论文].成都:四川大学,1999
    [93]Misael O. Aviles, Armin D. Ebner, Haitao Chen et al. Theoretical analysis of a transferal ferromagnetic implant for retention of magnetic drug carrier particles. Journal of Magnetism and Magnetic Materials,2005.293(1):605~615
    [94]Haitao Chen, Armin D. Ebner, Axel J. Rosengart et al Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent:1. Parametric study with single wire correlation. Journal of Magnetism and Magnetic Materials,2004. 284(12):181~194
    [95]Haitao Chen, Armin D. Ebner, Michael D et al. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2:Parametric study with multi-wire two-dimensional model. Journal of Magnetism and Magnetic Materials,2005.293(1):616~632
    [96]Misael O. Avilesa, Armin D. Ebner et al. Ferromagnetic seeding for the magnetic targeting of drugs and radiation in capillary beds. Journal of Magnetism and Magnetic Materials,2007.310(1):131~144
    [97]熊平,熊融融.三维旋转磁场定位治疗仪.中国专利,ZL02276944.7
    [98]陈贺中.微循环毛细血管迂回通路四种功能状态假说.医学理论与实践,2005,18(6):621-622.
    [99]柏树令.人体皮肤微血管网络.中国微循环,2004,8(5):265-266.
    [100]Schaper W, Piek JJ, Munoz-Chap uli R,et al. Ito W:Collateral circulation of the heart. In:Ware JA, Simons, M, editors angiogenesis and cardiovascular disease New York [M]. NY:oxford University Press.1999,159-198.
    [101]U.O Hafeli Magnetically modulated therapeutic systems. International Journal of Pharmaceutics 2004,277(1-2):19-24
    [102]F. Mishima,S. Fujimoto, S. Takeda, et al. Development of control system for magnetically targeted drug delivery. Journal of Magnetism and Magnetic Materials. 2007,310(2)2883-2885
    [103]熊平,郭萍,向东,何继善.引导磁场下磁性药物靶向治疗的理论分析.物理学报,2006,55(8)4383-4387

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700