微囊藻毒素LR对PC12细胞的毒性及作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体环境中的藻类大量繁殖已成为世界性的生态问题,除了引发水华造成水体富营养化污染外,还释放大量的藻类毒素对人类和其它生物的健康构成威胁。在蓝绿藻属产生的毒素中,微囊藻毒素(Microcystin, MC)是人类日常生活中接触最多的一类由80多种同类物组成的单环七肽毒素,其中毒性最强的、研究最多的是微囊藻毒素-LR (Microcystin-LR, MC-LR)。MC-LR一般被认为是一种肝毒素,因为MC-LR主要靶向富集于肝脏并引起严重的肝脏毒性效应,包括急性肝出血、肝坏死和并与人类原发性肝癌相关。最近的研究发现,除了肝组织,MC-LR还可以透过血脑屏障和血液-脑脊液屏障而出现于脑组织中,由此推断微囊藻毒素可能还具有神经毒性。越来越多的研究提出微囊藻毒素的潜在神经毒性,然而MC-LR如何发挥神经毒性作用及其内在分子机制尚待揭示。
     为探索MC-LR的神经毒性作用,我们选用了常被作为神经元细胞模型的高分化型的PC12细胞,首先研究MC-LR对PC12细胞的一系列细胞学效应,包括MC-LR对细胞存活率、细胞凋亡、细胞骨架和氧化应激状态的影响;探讨MC-LR在PC12细胞中如何影响其特异作用靶蛋白PP2A的酶活性、构成PP2A全酶的各亚基的蛋白表达水平;进一步研究了与细胞骨架相关的蛋白tau和HSP27的磷酸化状态,并从信号转导的角度探索该过程中可能的分子机制,从而为进一步阐明MC-LR神经毒性的机制以及提出有效的预防和治疗措施提供新的依据和思路。
     主要结果:
     1.在本实验条件下,MC-LR不影响PC12细胞的存活率。
     2.在本实验条件下,MC-LR不引起PC12细胞发生凋亡。
     3.在本实验条件下,MC-LR不影响PC12细胞的形态。
     4. MC-LR对细胞骨架的影响具体表现为微管和微丝结构的紊乱,以及微管的稳定性下降。此外,MC-LR还使PP2A-Ba亚基与微管的结合下降。
     5. MC-LR可诱导PC12细胞氧化应激水平的升高。
     6. MC-LR进入PC12细胞后与PP2A-C亚基结合,抑制了PP2A酶活性,并且影响了PP2A各亚基的表达及PP2A-C的翻译后修饰水平。
     7. MC-LR诱导了微管相关蛋白tau的过度磷酸化并导致tau与细胞骨架的结合下降,还诱导了微丝相关的调控蛋白HSP27的过度磷酸化。
     8. MC-LR诱导细胞骨架相关蛋白的过度磷酸化的潜在机制可能包括PP2A活性被抑制和p38-MAPK通路的激活。
     9.抑制p38-MAPK的激活能抑制MC-LR所诱导的细胞骨架相关蛋白的过度磷酸化和细胞骨架的重构。
     主要结论:
     1. MC-LR对PC12细胞的PP2A酶活性的影响可能是多重因素综合作用的结果,包括PP2A的不同组成亚基表达的改变以及PP2A-C亚基的翻译后修饰水平的改变。由此本研究在拓展了文献报道的基础上,进一步揭示了MC-LR对其特异靶蛋白PP2A的复杂的作用方式。
     2.在本研究条件下MC-LR对PC12细胞产生的毒性主要为诱导氧化应激水平的升高和细胞骨架结构的改变。
     3. MC-LR诱导了调控细胞骨架结构的组装和功能的细胞骨架相关蛋白tau和HSP27的过度磷酸化,这可能导致了细胞骨架的重构。
     4. MC-LR诱导的细胞骨架相关蛋白tau和HSP27的过度磷酸化的机制可能是因为PP2A活性受到抑制后其介导的脱磷酸化作用减弱,而激活的p38-MAPK介导的磷酸化作用增强。
     5. p38-MAPK通路的抑制剂能在抑制tau和HSP27的过度磷酸化的同时,对抗MC-LR对PC12细胞骨架产生的毒性效应,由此本研究还为探索有效对抗MC-LR神经毒性的预防和治疗措施提供了新思路。
Contamination of freshwater and marine environments by cyanobacterial blooms has been a worldwide ecological issue, triggering both water eutrophication and health threats to livestock and humans. Among the various cyanobacteria (blue-green algae), Microcystis aeruginosa is the most common genera producing microcystins (MCs), a family of over80structurally monocyclic heptapeptide toxins, with microcystin-LR (MC-LR) considered to be the most toxic and most commonly encountered variant. MC-LR is thought to act as a hepatotoxin, because it preferentially accumulates in the vertebrate liver, and its presence in contaminated drinking water has been frequently reported to cause acute liver hemorrhage, liver necrosis and primary liver cancer. Recent evidence has demonstrated that MC-LR is also brain-permeable as MC-LR is present in the brain, raising the possibility that MC-LR could exert neurotoxicity. Although the potential neurotoxicity of MC-LR has been proposed, little is known about its molecular basis.
     The neuroendocrine PC12cell line has been widely utilized as a model system for studying various aspects of neuronal function and neurotoxins. The current study was designed to elucidate the neurological toxicity of the cyanobacterial toxin MC-LR on the PC12cell line and to determine its underlying mechanisms. Studies were undertaken with the objective of evaluating (a) the cellular effects including cell viability, apoptotic rate, cytoskeleton morphology including MT and F-actin architectures, and the level of ROS,(b) protein phosphatase2A activity, the protein profile of PP2A composition subunits including A subunit, C subunit, as well as the regulatory B family subunits, Bpand By, and methylation and phosphorylation modification of PP2A-C,(c) the phosphorylation status of cytoskeletal-associated proteins including tau and HSP27, and the roles of PP2A and p38MAPK signaling in MC-LR-induced cytoskeletal structure remodeling. Our work may further our knowledge of MC-LR-induced neurotoxicity and provide some new theoretical bases and ways for the inhibition of MC-LR-induced neurotoxicity.
     Results:
     1.In the present study, MC-LR had no effect on the cell viability of PC12cells.
     2. In the present study, MC-LR had no effect on neither the apoptotic rate of PC12cells, nor the activation of caspase-3
     3. In the present study, MC-LR had no effect on the cell morphology of PC12cells.
     4. MC-LR triggered microtubule (MT) and actin cytoskeleton rearrangement, as well as MT destabilization. Additionally, MC-LR induced disruption of PP2A Bcc-MT interaction.
     5. MC-LR induced the elevation of the ROS level.
     6. MC-LR directly targeted the PP2A catalytic subunit which was followed by a strongly dose-dependent inhibition of PP2A activity, as well as altered composition subunits levels and post-translational modifications of PP2A.
     7. MC-LR induced hyperphosphorylation of the neural microtubule-associated protein tau, which correlated with a decrease in cytoskeleton-associated tau. Besides, the phosphorylation of the actin-associated protein HSP27was also increased in MC-LR-treated cells.
     8. Direct inhibition of protein phosphatase2A (PP2A) activity and indirect activation of the p38mitogen-activated protein kinase (MAPK) could be the mechanisms underlying MC-LR induced hyperphosphorylation of tau and HSP27.
     9. Pretreatment with the p38MAPK inhibitor SB203580effectively abolished hyperphosphorylation of tau and HSP27, and blocked MC-LR-triggered cytoskeletal alterations.
     Conclusions:
     1. PP2A inhibition induced by MC-LR may be the result of the combined effects of alterations of various composition subunits levels that suggesting changes in holoenzyme assembly and PP2A-C post-translational modifications,which provides a new insight into the effect pattern of MC-LR on PP2A.
     2. Our data showed that the level of ROS as well as the cytoskeleton structure responded relatively sensitively to MC-LR in the neuroendocrine PC12cell line.
     3. MC-LR induced hyperphosphorylation of the neural microtubule-associated protein tau and the actin-associated protein HSP27, which may be a likely mechanistic link to MC-LR-induced cytoskeletal alterations.
     4. MC-LR-caused hyperphosphorylation of HSP27and tau may be mediated directly by reduced dephosphorylation from PP2A activity impairment and indirectly by elevated phosphorylation via subsequent p38MAPK activation.
     5. The protective effect of SB203580on MC-LR-induced cytoskeleton remodeling might be via the conversion of the phosphorylation levels of HSP27and tau, which are involved in cytoskeletal structure maintenance. Thus, a therapeutic strategy based on p38MAPK inhibitors may be effective in counteracting the neurotoxicity of MC-LR.
引文
Bergwerk, A. J., Shi, X., Ford, A. C., Kanai, N., Jacquemin, E., Burk, R. D., Bai, S., Novikoff, P. M., Stieger, B., Meier, P. J. et al. (1996). Immunologic distribution of an organic anion transport protein in rat liver and kidney. Am J Physiol 271, G231-8.
    Biernat, J., Mandelkow, E. M., Schroter, C., Lichtenberg-Kraag, B., Steiner, B., Berling, B., Meyer, H., Mercken, M., Vandermeeren, A. and Goedert, M. (1992). The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J 11,1593-7.
    Bischoff, K. (2001). The toxicology of microcystin-LR:occurrence, toxicokinetics, toxicodynamics, diagnosis and treatment. Vet Hum Toxicol 43,294-7.
    Cairns, J., Qin, S., Philp, R., Tan, Y. H. and Guy, G. R. (1994). Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem 269,9176-83.
    Carmichael, W. W., Azevedo, S. M., An, J. S., Molica, R. J., Jochimsen, E. M., Lau, S., Rinehart, K. L., Shaw, G. R. and Eaglesham, G. K. (2001). Human fatalities from cyanobacteria:chemical and biological evidence for cyanotoxins. Environ Health Perspect 109,663-8.
    Carmichael, W. W., Beasley, V., Bunner, D. L., Eloff, J. N., Falconer, I., Gorham, P., Harada, K., Krishnamurthy, T., Yu, M. J. and Moore, R. E. (1988). Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon 26,971-3.
    Chen, C. L., Lin, C. F., Chiang, C. W., Jan, M. S. and Lin, Y. S. (2006). Lithium inhibits ceramide-and etoposide-induced protein phosphatase 2A methylation, Bcl-2 dephosphorylation, caspase-2 activation, and apoptosis. Molecular Pharmacology 70, 510-517.
    Chen, J., Martin, B. L. and Brautigan, D. L. (1992). Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257, 1261-4.
    Chen, S., Li, B., Grundke-Iqbal, I. and Iqbal, K. (2008). I1PP2A affects tau phosphorylation via association with the catalytic subunit of protein phosphatase 2A. J Biol Chem 283,10513-21.
    Cho, U. and Xu, W. (2007). Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445,53-7.
    Clodfelder-Miller, B. J., Zmijewska, A. A., Johnson, G. V. and Jope, R. S. (2006). Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55,3320-5.
    Cohen, P. (1989). The structure and regulation of protein phosphatases. Annu Rev Biochem 58,453-508.
    Dawson, R. M. (1998). The toxicology of microcystins. Toxicon 36,953-962.
    Dietrich, D. and Hoeger, S. (2005). Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements):a reasonable or misguided approach? Toxicol Appl Pharmacol 203,273-89.
    Ding, W. X. and Ong, C. N. (2003). Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. Fems Microbiology Letters 220,1-7.
    Ding, W. X., Shen, H. M. and Ong, C. N. (2000). Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. Environ Health Perspect 108,605-9.
    Ding, W. X., Shen, H. M. and Ong, C. N. (2001). Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. J Toxicol Environ Health A 64,507-19.
    Falconer, I. R. and Yeung, D. S. (1992). Cytoskeletal changes in hepatocytes induced by Microcystis toxins and their relation to hyperphosphorylation of cell proteins. Chem Biol Interact 81,181-96.
    Feijoo, C., Campbell, D. G., Jakes, R., Goedert, M. and Cuenda, A. (2005). Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38delta at Thr50 promotes microtubule assembly. J Cell Sci 118,397-408.
    Ferrer, I., Gomez-Isla, T., Puig, B., Freixes, M., Ribe, E., Dalfo, E. and Avila, J. (2005). Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Curr Alzheimer Res 2,3-18.
    Feurstein, D., Holst, K., Fischer, A. and Dietrich, D. (2009). Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells. Toxicol Appl Pharmacol 234,247-55.
    Feurstein, D., Kleinteich, J., Heussner, A., Stemmer, K. and Dietrich, D. (2010). Investigation Of Microcystin Congener Dependent Uptake Into Primary Murine Neurons. Environ Health Perspect.
    Feurstein, D., Stemmer, K., Kleinteich, J., Speicher, T. and Dietrich, D. R. (2011). Microcystin congener- and concentration-dependent induction of murine neuron apoptosis and neurite degeneration. Toxicol Sci.
    Fischer, W., Altheimer, S., Cattori, V., Meier, P., Dietrich, D. and Hagenbuch, B. (2005). Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203,257-63.
    Fischer, W. J. and Dietrich, D. R. (2000). Pathological and biochemical characterization of microcystin-induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicol Appl Pharmacol 164,73-81.
    Fladmark, K. E., Brustugun, O. T., Hovland, R., Boe, R., Gjertsen, B. T., Zhivotovsky, B. and Doskeland, S. O. (1999). Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death and Differentiation 6, 1099-1108.
    Fladmark, K. E., Brustugun, O. T., Mellgren, G., Krakstad, C., Boe, R., Vintermyr, O. K., Schulman, H. and Doskeland, S. O. (2002). Ca2+/calmodulin-dependent protein kinase II is required for microcystin-induced apoptosis. Journal of Biological Chemistry 277,2804-2811.
    Fu, W., Chen, J., Wang, X. and Xu, L. (2005a). Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro. Toxicon 46,171-7.
    Fu W Y, C. J. P., Xu L H. (2004a). The role of Caspase-3 in the apoptosis induced by microcystin. China Environ Sci 24,6-8.
    Fu W Y, L. M., Xu L H. (2004b). Detection of apoptosis of renal cells of mice induced by microcystin-LR. Acta Hydrobiologica Sinica 28,101-102.
    Fu, W., Yu, Y. and Xu, L. (2009). Identification of temporal differentially expressed protein responses to microcystin in human amniotic epithelial cells. Chem Res Toxicol 22,41-51.
    Fu, W. Y., Xu, L. H. and Yu, Y. N. (2005b). Proteomic analysis of cellular response to microcystin in human amnion FL cells. JProteome Res 4,2207-15.
    Gentry, M. S., Li, Y., Wei, H., Syed, F. F., Patel, S. H., Hallberg, R. L. and Pallas, D. C. (2005). A novel assay for protein phosphatase 2A (PP2A) complexes in vivo reveals differential effects of covalent modifications on different Saccharomyces cerevisiae PP2A heterotrimers. Eukaryot Cell 4,1029-40.
    Gong, C. X. and Iqbal, K. (2008). Hyperphosphorylation of microtubule-associated protein tau:a promising therapeutic target for Alzheimer disease. Curr Med Chem 15, 2321-8.
    Greene, L. A. and Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73,2424-8.
    Guay, J., Lambert, H., Gingras-Breton, G., Lavoie, J. N., Huot, J. and Landry, J. (1997). Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110 (Pt 3),357-68.
    Gacsi, M., Antal, O., Vasas, G., Mathe, C., Borbely, G., Saker, M., Gyori, J., Farkas, A., Vehovszky, A. and Banfalvi, G. (2009). Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells. Toxicol In Vitro.
    Hagenbuch, B. and Meier, P. J. (2003). The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 1609,1-18.
    Heinze, R. (1996). A biotest for hepatotoxins using primary rat hepatocytes., vol. 35 (Supplement), pp.89-93:Phycologia.
    Honkanen, R. E., Zwiller, J., Moore, R. E., Daily, S. L., Khatra, B. S., Dukelow, M. and Boynton, A. L. (1990). Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem 265,19401-4.
    Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S. and Malinow, R. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52,831-43.
    Huang, P., Zheng, Y. F. and Xu, L. H. (2008). Oral administration of cyanobacterial bloom extract induced the altered expression of the PP2A, Bax, and Bcl-2 in mice. Environ Toxicol 23,688-93.
    Jenkins, S. M., Zinnerman, M., Garner, C. and Johnson, G. V. (2000). Modulation of tau phosphorylation and intracellular localization by cellular stress. Biochem J 345 Pt 2,263-70.
    Kar, S., Fan, J., Smith, M. J., Goedert, M. and Amos, L. A. (2003). Repeat motifs of tau bind to the insides of micro tubules in the absence of taxol. EMBO J 22,10-7.
    Kins, S., Kurosinski, P., Nitsch, R. M. and Gotz, J. (2003). Activation of the ERK and JNK signaling pathways caused by neuron-specific inhibition of PP2A in transgenic mice. Am J Pathol 163,833-43.
    Komatsu, M., Furukawa, T., Ikeda, R., Takumi, S., Nong, Q., Aoyama, K., Akiyama, S. I., Keppler, D. and Takeuchi, T. (2007). Involvement of mitogen-activated protein kinase signaling pathways in microcystin-LR-induced apoptosis after its selective uptake mediated by OATP1B1 and OATP1B3. Toxicological Sciences 97, 407-416.
    Kostenko, S., Johannessen, M. and Moens, U. (2009). PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cell (?)gnal 21,712-8.
    Kreitzer, G., Liao, G. and Gundersen, G. G. (1999). Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a (?)esin-dependent mechanism. Mol Biol Cell 10,1105-18.
    Lankoff, A., Banasik, A., Obe, G., Deperas, M., Kuzminski, K., Tarczynska, M., (?)czak, T. and Wojcik, A. (2003). Effect of microcystin-LR and cyanobacterial extract m Polish reservoir of drinking water on cell cycle progression, mitotic spindle, and poptosis in CHO-K1 cells. Toxicol Appl Pharmacol 189,204-13.
    Lee, H., Perry, G., Moreira, P., Garrett, M., Liu, Q., Zhu, X., Takeda, A., Nunomura, A. and Smith, M. (2005). Tau phosphorylation in Alzheimer's disease: pathogen or protector? Trends Mol Med 11,164-9.
    Lee, T., Kim, S. J. and Sumpio, B. E. (2003). Role of PP2A in the regulation of p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. J Cell Physiol 194,349-55.
    Li, M. and Damuni, Z. (1994). Okadaic acid and microcystin-LR directly inhibit the methylation of protein phosphatase 2A by its specific methyltransferase. Biochem Biophys Res Commun 202,1023-30.
    Li, Y., Liu, L., Barger, S. W. and Griffin, W. S. (2003). Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. JNeurosci 23,1605-11.
    Liang, J., Li, T., Zhang, Y., Guo, z. and Xu,1. (2011). The effect of microcystin-LR on PP2A and its function in human amniotic epithelial cells.
    Liang, Z., Liu, F., Iqbal, K., Grundke-Iqbal, I., Wegiel, J. and Gong, C. (2008). Decrease of protein phosphatase 2A and its association with accumulation and hyperphosphorylation of tau in Down syndrome. J Alzheimers Dis 13,295-302.
    Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C. X. (2005). Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22,1942-50.
    Liu, R. and Wang, J. Z. (2009). Protein phosphatase 2A in Alzheimer's disease. Pathophysiology 16,273-7.
    Liu, R., Zhou, X., Tanila, H., Bjorkdahl, C., Wang, J., Guan, Z., Cao, Y. Gustafsson, J., Winblad, B. and Pei, J. (2008). Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J Cell Mol Med 12,241-57.
    Mezhoud, K., Praseuth, D., Puiseux-Dao, S., Francois, J. C., Bernard, C. and Edery, M. (2008). Global quantitative analysis of protein expression and phosphorylation status in the liver of the medaka fish (Oryzias latipes) exposed to microcystin-LR I. Balneation study. Aquat Toxicol 86,166-75.
    Mumby, M. (2007). The 3D structure of protein phosphatase 2A:new insights into a ubiquitous regulator of cell signaling. ACS Chem Biol 2,99-103.
    Nunbhakdi-Craig, V., Schuechner, S., Sontag, J., Montgomery, L., Pallas, D., Juno, C, Mudrak, I., Ogris, E. and Sontag, E. (2007). Expression of protein phosphatase 2A mutants and silencing of the regulatory B alpha subunit induce a selective loss of acetylated and detyrosinated microtubules. JNeurochem 101,959-71.
    Palazzo, A., Ackerman, B. and Gundersen, G. G. (2003). Cell biology:Tubulin acetylation and cell motility. Nature 421,230.
    Patocka, J. (2001). The toxins of Cyanobacteria. Acta Medica (Hradec Kralove) 44, 69-75.
    Pei, J. J., Gong, C. X., An, W. L., Winblad, B., Cowburn, R. F., Grundke-Iqbal, I. and Iqbal, K. (2003). Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer's disease. Am JPathol 163,845-58.
    Piao, C. S., Kim, J. B., Han, P. L. and Lee, J. K. (2003). Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. JNeurosci Res 73,537-44.
    Pinho, G. L. L., da Rosa, C. M., Maciel, F. E., Bianchini, A., Yunes, J. S., Proenca, L. A. O. and Monserrat, J. M. (2005). Antioxidant responses after microcystin exposure in gills of an estuarine crab species pre-treated with vitamin E. Ecotoxicology and Environmental Safety 61,361-365.
    Reynolds, C. H., Nebreda, A. R., Gibb, G. M., Utton, M. A. and Anderton, B. H. (1997). Reactivating kinase/p38 phosphorylates tau protein in vitro. J Neurochem 69, 191-8.
    Runnegar, M. T., Andrews, J., Gerdes, R. G. and Falconer, I. R. (1987). Injury to hepatocytes induced by a peptide toxin from the cyanobacterium Microcystis aeruginosa. Toxicon 25,1235-9.
    Saminathan, R., Pachiappan, A., Feng, L., Rowan, E. G. and Gopalakrishnakone, P. (2009). Transcriptome profiling of neuronal model cell PC 12 from rat pheochromocytoma. Cell Mol Neurobiol 29,533-48.
    Schwab, C., DeMaggio, A. J., Ghoshal, N., Binder, L. I., Kuret, J. and McGeer, P. L. (2000). Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases. Neurobiol Aging 21,503-10.
    Solstad, T. and Fladmark, K. E. (2006). Algal toxins as guidance to identify phosphoproteins with key roles in apoptotic cell death. Current Pharmaceutical Biotechnology 7,209-215.
    Sontag, E. (2001). Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cellular Signalling 13, 7-16.
    Sontag, E., Hladik, C., Montgomery, L., Luangpirom, A., Mudrak, I., Ogris, E. and White, C. r. (2004a). Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol 63, 1080-91.
    Sontag, E., Luangpirom, A., Hladik, C., Mudrak, I., Ogris, E., Speciale, S. and White, C. L. (2004b). Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J Neuropathol Exp Neurol 63, 287-301.
    Sontag, E., Nunbhakdi-Craig, V., Lee, G., Bloom, G. S. and Mumby, M. C. (1996). Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 17, 1201-7.
    Tar, K., Birukova, A. A., Csortos, C., Bako, E., Garcia, J. G. N. and Verin, A. D. (2004). Phosphatase 2A is involved in endothelial cell microtubule remodeling and barrier regulation. Journal of Cellular Biochemistry 92, 534-546.
    Tar, K., Csortos, C., Czikora, I., Olah, G., Ma, S. F., Wadgaonkar, R., Gergely, P., Garcia, J. G. N. and Verin, A. D. (2006). Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. Journal of Cellular Biochemistry 98,931-953.
    Toivola, D. M., Eriksson, J. E. and Brautigan, D. L. (1994). Identification of protein phosphatase 2A as the primary target for microcystin-LR in rat liver homogenates. FEBS Lett 344, 175-80.
    Toivola, D. M., Goldman, R. D., Garrod, D. R. and Eriksson, J. E. (1997). Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. Journal of Cell Science 110, 23-33.
    Turowski, P., Favre, B., Campbell, K. S., Lamb, N. J. and Hemmings, B. A. (1997). Modulation of the enzymatic properties of protein phosphatase 2A catalytic subunit by the recombinant 65-kDa regulatory subunit PR65alpha. Eur J Biochem 248,200-8.
    Wang, M., Wang, D., Lin, L. and Hong, H. (2010). Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR. Chemosphere 81,716-24.
    Wei, Y., Weng, D., Li, F., Zou, X., Young, D. O., Ji, J. and Shen, P. (2008). Involvement of JNK regulation in oxidative stress-mediated murine liver injury by microcystin-LR. Apoptosis 13,1031-42.
    Westermann, S. and Weber, K. (2003). Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4,938-47.
    Wickstrom, M. L., Khan, S. A., Haschek, W. M., Wyman, J. F., Eriksson, J. E., Schaeffer, D. J. and Beasley, V. R. (1995). Alterations in microtubules, intermediate filaments, and microfilaments induced by microcystin-LR in cultured cells. Toxicol Pathol 23,326-37.
    Xing, M., Wang, X. and Xu, L. (2008a). Alteration of proteins expression in apoptotic FL cells induced by MCLR. Environ Toxicol 23,451-8.
    Xing, M. L., Wang, X. F. and Xu, L. H. (2008b). Alteration of proteins expression in apoptotic FL cells induced by MCLR. Environ Toxicol 23,451-8.
    Xing, Y., Li, Z., Chen, Y., Stock, J., Jeffrey, P. and Shi, Y. (2008c). Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell 133, 154-63.
    Xing, Y., Xu, Y., Chen, Y., Jeffrey, P. D., Chao, Y., Lin, Z., Li, Z., Strack, S., Stock, J. B. and Shi, Y. (2006). Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127,341-53.
    Xu, Y., Chen, Y., Zhang, P., Jeffrey, P. and Shi, Y. (2008). Structure of a protein phosphatase 2A holoenzyme:insights into B55-mediated Tau dephosphorylation. Mol Cell 31,873-85.
    Zhou, X. W., Gustafsson, J. A., Tanila, H., Bjorkdahl, C., Liu, R., Winblad, B. and Pei, J. J. (2008). Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A. Neurobiol Dis 31,386-94.
    Atencio, L., Moreno, I., Jos, A., Prieto, A. I., Moyano, R., Blanco, A. and Camean, A. M. (2009). Effects of dietary selenium on the oxidative stress and pathological changes in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Toxicon 53,269-82.
    Bononi, A., Agnoletto, C., De Marchi, E., Marchi, S., Patergnani, S., Bonora, M., Giorgi, C., Missiroli, S., Poletti, F., Rimessi, A. et al. (2011). Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011,329098.
    Bouaicha, N., Maatouk, I., Plessis, M. J. and Perin, F. (2005). Genotoxic potential of microcystin-LR and nodularin in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Environmental Toxicology 20,341-347.
    Buratti, F. M., Scardala, S., Funari, E. and Testai, E. (2011). Human glutathione transferases catalyzing the conjugation of the hepatoxin microcystin-LR. Chem Res Toxicol 24,926-33.
    Campos, A. and Vasconcelos, V. (2010). Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11,268-87.
    Chen, C. L., Lin, C. F., Chiang, C. W., Jan, M. S. and Lin, Y. S. (2006). Lithium inhibits ceramide- and etoposide-induced protein phosphatase 2A methylation, Bcl-2 dephosphorylation, caspase-2 activation, and apoptosis. Mol Pharmacol 70,510-7.
    Chen, L., Liu, L. and Huang, S. (2008). Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 45,1035-44.
    Chen, L., Liu, L., Yin, J., Luo, Y. and Huang, S. (2009). Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol 41,1284-95.
    Chowdhury, D., Keogh, M. C., Ishii, H., Peterson, C. L., Buratowski, S. and Lieberman, J. (2005). gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Molecular Cell 20,801-809.
    Cicchillitti, L., Fasanaro, P., Biglioli, P., Capogrossi, M. C. and Martelli, F. (2003). Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130. Journal of Biological Chemistry 278, 19509-19517.
    Douglas, P., Moorhead, G. B. G, Ye, R. Q. and Lees-Miller, S. P. (2001). Protein phosphatases regulate DNA-dependent protein kinase activity. Journal of Biological Chemistry 276,18992-18998.
    Feurstein, D., Stemmer, K., Kleinteich, J., Speicher, T. and Dietrich, D. R. (2011). Microcystin congener- and concentration-dependent induction of murine neuron apoptosis and neurite degeneration. Toxicol Sci.
    Fladmark, K. E., Brustugun, O. T., Hovland, R., Boe, R., Gjertsen, B. T., Zhivotovsky, B. and Doskeland, S. O. (1999). Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death and Differentiation 6, 1099-1108.
    Fladmark, K. E., Brustugun, O. T., Mellgren, G, Krakstad, C., Boe, R., Vintermyr, O. K., Schulman, H. and Doskeland, S. O. (2002). Ca2+/calmodulin-dependent protein kinase Ⅱ is required for microcystin-induced apoptosis. Journal of Biological Chemistry 277,2804-2811.
    Fu, W., Chen, J., Wang, X. and Xu, L. (2005). Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro. Toxicon 46,171-7.
    Gaudin, J., Huet, S., Jarry, G. and Fessard, V. (2008). In vivo DNA damage induced by the cyanotoxin microcystin-LR:comparison of intra-peritoneal and oral administrations by use of the comet assay. Mutat Res 652,65-71.
    Gong, C. X. and Iqbal, K. (2008). Hyperphosphorylation of microtubule-associated protein tau:a promising therapeutic target for Alzheimer disease. Curr Med Chem 15, 2321-8.
    Goodarzi, A. A., Douglas, P., Moorhead, G. B. and Lees-Miller, S. P. (2007). Utilizing protein phosphatase inhibitors to define PP2A as a regulator of ataxia-telangiectasia mutated. Methods Mol Biol 365,47-59.
    Gacsi, M., Antal, O., Vasas, G., Mathe, C., Borbely, G, Saker, M., Gyori, J., Farkas, A., Vehovszky, A. and Banfalvi, G. (2009). Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells. Toxicol In Vitro.
    Howe, C. J., LaHair, M. M., McCubrey, J. A. and Franklin, R. A. (2004). Redox regulation of the calcium/calmodulin-dependent protein kinases. Journal of Biological Chemistry 279,44573-44581.
    Ji, Y., Lu, G, Chen, G, Huang, B., Zhang, X., Shen, K. and Wu, S. (2011). Microcystin-LR Induces Apoptosis via NF-κB/iNOS Pathway in INS-1 Cells. Int J Mol Sci 12,4722-34.
    Jiang, J., Gu, X., Song, R., Zhang, Q., Geng, J., Wang, X. and Yang, L. (2011). Time-dependent oxidative stress and histopathological changes in Cyprinus carpio L. exposed to microcystin-LR. Ecotoxicology 20,1000-9.
    Komatsu, M., Furukawa, T., Ikeda, R., Takumi, S., Nong, Q., Aoyama, K., Akiyama, S. I., Keppler, D. and Takeuchi, T. (2007). Involvement of mitogen-activated protein kinase signaling pathways in microcystin-LR-induced apoptosis after its selective uptake mediated by OATP1B1 and OATP1B3. Toxicological Sciences 97,407-416.
    Krakstad, C., Herfindal, L., Gjertsen, B. T., Boe, R., Vintermyr, O. K., Fladmark, K. E. and Doskeland, S. O. (2006). CaM-kinasell-dependent commitment to microcystin-induced apoptosis is coupled to cell budding, but not to shrinkage or chromatin hypercondensation. Cell Death and Differentiation 13,1191-1202.
    Landrieu, I., Smet-Nocca, C., Amniai, L., Louis, J. V., Wieruszeski, J. M., Goris, J., Janssens, V. and Lippens, G. (2011). Molecular implication of PP2A and Pinl in the Alzheimer's disease specific hyperphosphorylation of Tau. PLoS One 6, e21521.
    Lankoff, A., Bialczyk, J., Dziga, D., Carmichael, W. W., Gradzka, I., Lisowska, H., Kuszewski, T., Gozdz, S., Piorun, I. and Wojcik, A. (2006). The repair of gamma-radiation-induced DNA damage is inhibited by microcystin-LR, the PP1 and PP2A phosphatase inhibitor. Mutagenesis 21,83-90.
    Lankoff, A., Krzowski, L., Glab, J., Banasik, A., Lisowska, H., Kuszewski, T., Gozdz, S. and Wojcik, A. (2004). DNA damage and repair in human peripheral blood lymphocytes following treatment with microcystin-LR. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 559,131-142.
    Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G. and Liu, X. A. (2007). A specific PP2A regulatory subunit, B56 gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. Embo Journal 26,402-411.
    Li, L., Xie, P. and Guo, L. (2010). Antioxidant response in liver of the phytoplanktivorous bighead carp (Aristichthys nobilis) intraperitoneally-injected with extracted microcystins. Fish Physiol Biochem 36,165-72.
    Lin, S. S., Bassik, M. C., Suh, H., Nishino, M., Arroyo, J. D., Hahn, W. C., Korsmeyer, S. J. and Roberts, T. M. (2006). PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum. Journal of Biological Chemistry 281,23003-23012.
    Liu, R. and Wang, J. Z. (2009). Protein phosphatase 2A in Alzheimer's disease. Pathophysiology 16,273-1.
    Maalouf, M. and Rho, J. M. (2008). Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J Neurosci Res 86,3322-30.
    Mezhoud, K., Praseuth, D., Puiseux-Dao, S., Francois, J. C., Bernard, C. and Edery, M. (2008). Global quantitative analysis of protein expression and phosphorylation status in the liver of the medaka fish (Oryzias latipes) exposed to microcystin-LR I. Balneation study. Aquat Toxicol 86,166-75.
    Mi, J., Bolesta, E., Brautigan, D. L. and Larner, J. M. (2009). PP2A regulates ionizing radiation-induced apoptosis through Ser46 phosphorylation of p53. Mol Cancer Ther 8,135-40.
    Nunbhakdi-Craig, V., Craig, L., Machleidt, T. and Sontag, E. (2003). Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. Journal of Virology 77,2807-2818.
    Prieto, A. I., Pichardo, S., Jos, A., Moreno, I. and Camean, A. M. (2007). Time-dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions. Aquat Toxicol 84,337-45.
    Qian, W., Shi, J., Yin, X., Iqbal, K., Grundke-Iqbal, I., Gong, C. X. and Liu, F. (2010). PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J Alzheimers Dis 19,1221-9.
    Rudrabhatla, P. and Pant, H. C. (2011). Role of Protein Phosphatase 2A in Alzheimer's Disease. Curr Alzheimer Res.
    Shi, Y. (2009). Assembly and structure of protein phosphatase 2A. Sci China C Life Sci 52,135-46.
    Simizu, S., Tamura, Y. and Osada, H. (2004). Dephosphorylation of Bcl-2 by protein phosphatase 2A results in apoptosis resistance. Cancer Science 95,266-270.
    Solstad, T. and Fladmark, K. E. (2006). Algal toxins as guidance to identify phosphoproteins with key roles in apoptotic cell death. Current Pharmaceutical Biotechnology 7,209-215.
    Sontag, E. (2001). Protein phosphatase 2A:the Trojan Horse of cellular signaling. Cellular Signalling 13,7-16.
    Su, B., Wang, X., Lee, H., Tabaton, M., Perry, G., Smith, M. and Zhu, X. (2010). Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 468,267-71.
    Sun, X., Mi, L., Liu, J., Song, L., Chung, F. L. and Gan, N. (2011). Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice. Toxicol Appl Pharmacol 255,9-17.
    Svircev, Z., Baltic, V., Gantar, M., Jukovic, M., Stojanovic, D. and Baltic, M. (2010). Molecular aspects of microcystin-induced hepatotoxicity and hepatocarcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 28, 39-59.
    Swingle, M., Ni, L. and Honkanen, R. E. (2007). Small-molecule inhibitors of ser/thr protein phosphatases:specificity, use and common forms of abuse. Methods Mol Biol 365,23-38.
    Tar, K., Birukova, A. A., Csortos, C., Bako, E., Garcia, J. G. N. and Verin, A. D. (2004). Phosphatase 2A is involved in endothelial cell microtubule remodeling and barrier regulation. Journal of Cellular Biochemistry 92,534-546.
    Tar, K., Csortos, C., Czikora, I., Olah, G, Ma, S. F., Wadgaonkar, R., Gergely, P., Garcia, J. G. N. and Verin, A. D. (2006). Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. Journal of Cellular Biochemistry 98,931-953.
    Toivola, D. M. and Eriksson, J. E. (1999). Toxins affecting cell signalling and alteration of cytoskeletal structure. Toxicology in Vitro 13,521-530.
    Toivola, D. M., Goldman, R. D., Garrod, D. R. and Eriksson, J. E. (1997). Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. Journal of Cell Science 110,23-33.
    Wei, Y., Weng, D., Li, F., Zou, X., Young, D. O., Ji, J. and Shen, P. (2008). Involvement of JNK regulation in oxidative stress-mediated murine liver injury by microcystin-LR. Apoptosis 13,1031-42.
    Xin, M. and Deng, X. (2006). Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. J Biol Chem 281,18859-67.
    Xing, M., Wang, X. and Xu, L. (2008). Alteration of proteins expression in apoptotic FL cells induced by MCLR. Environ Toxicol 23,451-8.
    Xing, Y., Xu, Y., Chen, Y., Jeffrey, P. D., Chao, Y, Lin, Z., Li, Z., Strack, S., Stock, J. B. and Shi, Y. (2006). Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127,341-53.
    Zhang, H. Z., Zhang, F. Q., Li, C. F., Yi, D., Fu, X. L. and Cui, L. X. (2011). A eyanobacterial toxin, microcystin-LR, induces apoptosis of sertoli cells by changing the expression levels of apoptosis-related proteins. Tohoku J Exp Med 224,235-42.
    陈加平,翁登坡,傅文宇,等。(2004).微囊藻毒素LR对大鼠淋巴细胞DNA的损伤效应,水生生物学报,28,677-678.
    傅文宇,李敏伟,陈加平,等。(2004).一种检测微囊藻毒素LR诱导大鼠肾细胞凋亡的办法,水生生物学报,28,101-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700