顺磁纳米铁核素(PNINs)的物理靶向富集特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研制既可用作肿瘤靶向放疗的放射源,又可作为靶向化疗药物载体的新型材料——顺磁纳米铁核素(PNINs);设计体外旋转磁场系统作为引导磁场将PNINs定位于靶区,对引导磁场作用下PNINs的输运特性和靶向聚集特征进行理论研究与数值模拟,探索可适用于实体肿瘤靶向治疗的PNINs药物物理靶向定位系统,为临床应用提供理论依据和技术参数。
     方法:(1)采用化学羰基法制备纳米铁微粒,然后通过脉冲中子反应堆辐照纳米铁制备顺磁纳米铁核素(PNINs);(2)在比较圆形电流磁场、亥姆霍兹线圈磁场、圆柱形永磁场、圆电流磁场和旋转磁场中添加导磁材料后的磁场强度和磁场梯度的分布特点后,对顺磁纳米铁核素(PNINs)在稳恒磁场(靶区)和旋转磁场(体外)引导下的物理靶向定位系统进行理论建模并采用ANSYS软件进行数值计算;(3)根据PNINs在体内的受力情况,建立其在靶向定位系统中的理论模型,利用MATHCAD程序对PNINs磁性药物颗粒在旋转磁场作用下的运行轨迹进行数值模拟;(4)对微血管中单个的顺磁纳米铁核素(PNINs)粒子和包裹有药物的顺磁纳米铁核素(PNINs)微粒在引导磁场作用下的输运特性、富集特征及动力学运动行为进行描述、建模和数值计算。
     结果:(1)制得平均粒径<100nm的放射性核素-纳米铁,具有超顺磁性、放射性活度和较好的磁导向功能,可有效定位于靶区;(2)在三种引导磁场中,圆柱形永磁体的磁场分布具有相对较大的磁场强度和梯度,添加导磁材料后,能提高靶区的磁场梯度,促使PNINs局效地聚集靶区,这对靶向治疗至关重要;(3)体外旋转磁场物理靶向定位PNINs,可避免有创伤性的体内靶区稳恒磁场靶向定位;(4)获得了磁性药物的粒径大小、PNINs含量、肿瘤深度、血流速度和血管直径等因素对药物收集率的影响关系。
     结论:PNINs及其载药微粒在物理靶向定位系统包括体内恒磁场和体外旋转磁场作用下,能够在靶区高效聚集,具有优异的靶向性;其靶向聚集效果可以通过计算PNINs药物的收集率和俘获截面系数进行定量评价。
Objectives:To develop a new type of material-the paramagnetic nanometer-iron nuclides (PNINs) that can be used as both a source for targeted radiotherapy, and a carrier for targeted chemotherapy; to design an in-vitro system of rotating magnetic field as the guiding magnetic field to concentrate PNINs on the target area; to study theoretically and simulate numerically the transport properties and the targeting aggregation characteristics of the PNINs under the guiding magnetic field; to explore the physical target positioning system for targeted therapies of solid tumors with PNINs drugs, which could provide theoretical basis and technical parameters for clinical tumor therapy using PNINs.
     Methods:(1) The iron nanoparticles are prepared by chemical carbonyl method, and the paramagnetic nanometer-iron nuclides (PNINs) are produced by irradiating the prepared iron nanoparticles with the pulsed-neutron reactor. (2)The intensities and gradient distributions are compared among the circular current magnetic field, the Helmholtz coil magnetic field, the cylindrical permanent magnetic field, the circular current magnetic field and the rotating magnetic field after adding magnetic materials. Theoretical models for the physical target positioning system of the PNINs in the static magnetic field (target) and in the rotating magnetic field (in vitro) are established and simulated numerically by using ANSYS software; (3) Based on the force distribution on PNINs in the body, a theoretical model for PNINs in the target positioning system is established. Numerical simulation are carried out with MATHCAD procedure for the trajectory of PNINs carrying magnetic drugs in the rotating magnetic field; (4) The transport properties, accumulation characteristics and dynamic behavior of PNINs and drug-loaded PNIPs in the microvasculature under the guiding magnetic field are described, modelled and calculated.
     Results:(1) The radioactive nanometer-iron nuclides with average diameter less than 100nm are produced. The nanoparticles exhibite strong paramagnetism, radioactivity intensity and good magnetic delivery function and can be effectively positioned to the target area. (2) The magnetic field of the cylindrical permanent-magnet has the largest magnetic intensity and gradient among the three guiding magnetic fields. Addition of magnetic material into the cylindrical permanent-magnet can raise the magnetic field gradient and the aggregation of the PNINs within the target area, which is essential to targeted therapies. (3) The physical targeting system guided by the rotating magnetic field (in vitro) for the positioning of PNINs can avoid the injuries resulted from the establishment of the static magnetic field (target area). (4) The effects of the size of the magnetic drug particle, the PNINs content, the tumor depth, the blood flow rate, the vessel diameter and other factors on the drug collection rate are obtained.
     Conclusions:PNINs and drug-loaded particles in target positioning system, including the in-vivo constant magnetic field and the in-vitro rotating magnetic field, can gather efficiently in the target area with excellent targeting ability. The effect of targeting aggregation can be evaluated quantitatively by calculating the collection rate of PNINs drugs and the coefficient of the capture cross section.
引文
[1]Devita V T. Do sevesponse in alive and well. J Clint O ncol,1986,4(8): 1157-1159
    [2]Widder K J, Senyei A E, Scarpeui D G. Megnetic microsphere:A model system for site specific drug delivery in vivo. Pro Soc Exp Biol Med.1978,158(1): 141-146
    [3]Gallo J M, Gupta P K, Hung C T, et al. Evaluation of drug delivery following the administration of magnetic album in micro spheres containing adriamycin to the rat. J Pham Sci,1998,78 (3):190-194
    [4]Elmi M M, Sarbiouki M N. A simple method for preparation of immune-magnetic liposome. Int J Pham,2001,215(122):45-55
    [5]Shi K, Li C, He B. Magnetic drug delivery system adramycin-carboxymathyl detrain magnetic nanoparticles. J Biomed Eng,2000,17 (1):21-24
    [6]Kohori F, Yokoyama M, Sakai K, et al. Process design for efficient and controlled drug incorporation into polymericm icelle carrier systems. J Controlled Release, 2002,78(1):155-163
    [7]熊平,郭萍,向东,等.旋转磁场引导下顺磁纳米铁核素靶向治疗的数学模型.中国医学物理学杂志,2006,23(2):81-84
    [8]陆彬.药物新剂型与新技术.北京:人民卫生出版社,1998.
    [9]Thomas F Budinger, Paul C. Lauterbur nuclear magnetic resonance technology for medical studies. Science,1984,226(4672):228-298
    [10]Ehrlich P. Collected Studies on Immunity. New York:Wiley,1906
    [11]Rosengart A J, Kaminski M D, Chen H T, Caviness P L, Ebner A D, Ritter J A. Magnetizable implants and functionalized magnetic carriers:a novel approach for noninvasive yet targeted drug delivery. J Magn Magn Mater,2005,293 (1): 633-638
    [12]Chen H T, Ebnerc A D, Rosengarta A J, et al. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent:1. Parametric study with single wire correlation. J Magn Magn Mater,2004,284:181-194
    [13]熊平,郭萍,向东,等.引导磁场下磁性药物靶向治疗的理论分析.物理学报,2006,55(8):4383-4387
    [14]Hafeli U O. Magnetically modulated therapeutic systems. International Journal of Pharmaceutics,2004,277(1-2):19-24
    [15]徐华,宋涛.磁性药物靶向治疗的进展.国外医学:生物医学工程分册,2004,(1):61-64
    [16]陈璟,吴华,熊伟.载药磁性纳米微粒靶向治疗肿瘤研究进展.中华核医学杂志,2003,(6):381-382
    [17]李贵平,汪勇先.磁性纳米微粒的制备及其在磁性靶向药物转运中的应用.核技术,2006,(9):685-689
    [18]Labhasetwar V, Song C. Nanoparticle drug delivery system for restenosis. Advanced Drug Delivery Reviews,1997,24:63-86
    [19]常津.医用磁性纳米材料的制备-制备条件对有效粒径的影响.中国生物医学工程学报,1996,15(4):378
    [20]Lubbe A S, Alexion C, Bergemann C. Clinical application of magnetic drug targeting. Surg Res,2001,95:200-206
    [21]Hafeli U, Pauer G, Failing S. et al. Radiolabeling of magnetic particles with rhenium-188 for cancer therapy. Magnetism and Magnetic Materials,2001, (225):73
    [22]Ritter J A, Ebner A D, Daniel K D, et al. Application of high gradient magnetic separation principles to magnetic drug targeting. J Magn Magn Mate,2004, 280(2-3):184-201
    [23]Chen H T, Ebner A D, Kaminski M D, et al. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent:2. Parametric study with multi-wire two-dimensional model. Magnetism and Magnetic Materials,2005, (293):616-632
    [24]郭萍,熊平,向东,等.引导磁场下顺磁纳米铁核素靶向治疗的理论研究.中国医学物理学杂志,2006,23(3):194-197
    [25]Rosengart A J, Kaminski M D, CHEN H, et al. Magnetizable implants and functionalized magnetic carriers:a novel approach for noninvasive yet targeted drug delivery. J Magn Magn Mater,2005,293 (1):633-638
    [26]Freeman M W, Arrott A, Watson J H L. Magnetism in medicine. Application Physics,1960,31 (Supplement):404-405
    [27]Hafeli U O, Sweeney S M, Beresford B S, et al. Biodegradable magnetically directed 90Y-microspheres:Novel agents for targeted intracavitary radiotherapy. Biomed Mat Res,1994,28:901-908
    [28]Misael O. Aviles, Armin D. Ebner, Haitao Chen, et al. Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles. J Magn Magn Mater,2005,293(1):605-615
    [29]Aviles M O, Ebner A D, Ritter J A. Ferromagnetic seeding for the magnetic targeting of drugs and radiation in capillary beds. J Magn Magn Mater,2007, 310(1):131-144
    [30]Schmidt R F, Thews G. Physiologie des Menschen. Springer, Berlin:26th ed., 1995
    [31]Kreuter J. Factors influencing the body distribution of polyacrylic nanoparticles. in:Drug Targeting. Elsevier, Amsterdam:1985
    [32]Saltzman W M. Drug Delivery-Engineering Principles for Drug Delivery. New York:Oxford University Press,2001
    [33]Aviles M O, Chen H T, Ebner AD, et al. In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting. Journal of Magnetism and Magnetic Materials.2007,311:306-311
    [34]周平红,姚礼庆,秦新裕,等.磁性阿霉素脂质体靶向治疗裸鼠大肠癌的实验研究.中华医学杂志,2003,83(23):2073
    [35]张景勃,张志荣,谭群友.紫杉醇磁靶向脂质体的研制及其抗肿瘤作用的研究,中国医院药学杂志,2002,22(9):523
    [36]Ekapop V, Masaharu U H S. Preparation and characterization of destran magnetite incorporated thermosensitive liposomes:an onlion flow system for guentifying magnetic responsiveness. Pharmaceutical Research,1995,12(8): 1176
    [37]Viroonchatapan E, Sato H, Ueno M. Magnetic Targeting of thermosensitive magnetoliposomes to Mouse lives in situ on-line perfusion system. Life Sciences,1996,58(24):2251-2261
    [38]Kiwada H, Sato J, Yamada S, et al. Feasibility of magnetic liposomes as a targeting device for drugs. Chem Pharm Bull,1986,34(10):4253-4258
    [39]Gangulya R, Gaind A P, Sen S, et al. Analyzing ferrofluid transport for magnetic drug targeting. Magnetism and Magnetic Materials,2005,289:331-334
    [40]Neuberger V, Schopf B, Hofmann H, et al. Superparamagnetic nanoparticles for biomedical applications:Possibilities and limitations of a new drug delivery system. Magnetism and Magnetic Materials,2005,293:483-496
    [41]Gangulya R Gainda A P, Senb S, et al. Analyzing ferro fluid transport for magnetic drug targeting. Magnetism and Magnetic Materials,2005,289: 331-334
    [42]Takeda S, Mishima F, Fujimoto S, et al. Development of magnetically targeted drug delivery system using superconducting magnet. J Magn Magn Mater,2007, 311:367-372
    [43]Ally J, Martin B, Khamesee M B, et al. Magnetic Targeting of Aerosol Particles for Cancer Therapy. Magn. Magn. Mater,2005,293:442-449
    [44]Grief A D, Richardson G. Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 292 (2005) 455-463
    [45]Asmatulu R, Zalich M A, Claus R O, et al. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J Magn Magn Mater,2005,292:108-119
    [46]张景勃,张志荣,谭群友.磁靶向给药系统的研究进展.中国医药工业杂志,2001,32(12):564-567
    [47]徐华,宋涛.磁性药物靶向治疗中磁流体的体外动力学研究.北京生物医学工程,2005,3:204-208
    [48]周洲,徐华,宋涛,等.靶向治疗中铁磁流体聚集及其动力学研究.北京生物医学工程,2006,6:619-622
    [49]杜会强,安鸿志,李红霞.抗肿瘤靶向给药系统的研究进展.中国医院药学杂志,2007,27(2):242-244
    [50]Senyei A E, Reich S D, Gonezy C, et al. In Vivo kinetics of magnetically targeted low dose doxorubicin. J Pharm Sci,1981, (70):389
    [51]秦润华.磁靶向放射性核素载体-聚多糖基磁性复合粒子的制备:[博士学位论文].南京:南京理工大学,2004
    [52]张阳德,毛先海,龚连生,等.给药途径对磁性白蛋白纳米粒靶向分布的影响.中国现代医学杂志,2001,11(3):11-13
    [53]Fricker J. Drugswith a magnetic attraction to tumors. Drug Discov Today,2001, 6 (8):387-389
    [54]龚连生,张阳德,周少波.磁性化疗纳米治疗大鼠移植性肝癌.中国现代医学,2001,11(3):14-16
    [55]Grel R, Minamitake Y, Peracchia M T, et al. Biodegradable long-circulating polymeric nanos-pheres. Science,1994,263(5153):1600-1603
    [56]贾秀鹏.磁流体在肿瘤学治疗领域的应用进展.国外医学(肿瘤学分册),2002,29(3):187-190
    [57]张阳德,张洋,潘一峰.磁性纳米颗粒靶向性肿瘤热疗的研究进展.中国医学工程,2006,14(2):148-152
    [58]孙晓莉,王仁生.肿瘤热放疗研究进展.国际肿瘤学杂志,2006,33(2):112-115
    [59]王煦漫,古宏晨,杨正强,等.磁流体在交变磁场中的热效应研究.功能材料,2005,36(4):507-508
    [60]Garret t Q, Chatelier C, Griesser H J, et al. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA)hydrogels. Biomaterials,1998,19 (23):2175-2186
    [61]Calo J M, Gupat P K, Hung C T, et al. Evaluation of drug delivery follwing the administration of magnetic albumin microspheres containing adriamycin to the rat. J Pharm Sci,1989,78(30):190
    [62]Fundaro A, Cavalli R, Bargoni A, et al. Nonstealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin:pharmacokinetics and tissue distribution afer i. v. administration to rats. Pharmacol Res,2000,42(4):337
    [63]Kneuer C., Sameti M., Bakowsdy U., et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem,2000,11 (6):926-932
    [64]Islamgaliev R K, Chmelik F, Gibadullin I F, et al. The nanocrystalline structure formation in germanium subjected to severe plastic deformation. Nanostructured Materials.1994,4(4):387-395
    [65]Fernandez-Pacheco R, Marquina C, Valdivia J G, et al. Magnetic nanoparticles for local drug delivery using magnetic implants. Journal of Magnetism and Magnetic Materials April 2007,311(1):318-322
    [66]卢玉楷.放射性核素概论.北京:科学出版社,1987.65-77
    [67]卢希庭,江栋兴,叶沿林.原子核物理.北京:原子能出版社,2000.22-26,32-35
    [68]刘小红,严肖慈,李伟.纳米铁微粒制备新进展.金属功能材料,2002,9(2):8-11
    [69]严东生.纳米材料的合成与制备.无机材料学报,1995,10(1):1-6
    [70]Islamgaliev R K, Chemeliek F, Gibadulin I F, et al. The nanocrystalline structure formation in germanium subjected to severe plastic deformation. Nanostructured Materials,1994,4(4):387-390
    [71]柳学全,徐教仁,刘思林,等.纳米级金属铁颗粒的制取.粉末冶金技术,1996,14(1):26-29
    [72]高晓云,陈伟雄,王伟杰,等.激光热解制备链状纯铁磁粉的成核机理和工 艺参量优化.中国激光,1993,20(10):766-772
    [73]Zhao X Q, Zheng F, Liang Y, et al. Mater Lett,1994,21(3-4):285-286
    [74]Suslick K S, Choe S B, Cichowlas A A et al. Sonochemical synthesis of amorphous iron. Nature,1991,353(6343):414-416
    [75]林金谷,邹炳锁,王菊等.科学通报,1995,40(15):1370-1373
    [76]Cao X, Koltypin Y, Kataby Q et al. J Mater Res,1995,10(11):2952-2957
    [77]Daroczi L, Beck M T, Beke D L, et al. Production of Fe and Cu nanocrystalline particles by thermal decomposition of ferro-and copper-cyanides Mater Sci Forum,1998,269-272:319-324
    [78]Qu X J, Zhang N. The advance in research of the metal materials of nanometers. The Chinese information net periodical,2000,11:38 (引自:中国咨询网刊)
    [79]Kiwada H, Sato J, Yamada S. Feasibility of magnetic tiposomes as a targeting device for drugs. Chem. Pharm Bull,1986,34 (10):4253
    [80]孙宪文,姜军,朱松.核裂变与核聚变发电综述.东北电力技术,2002,(5):29-34
    [81]Shi K Y, Li C X, He B L. Magetic Drug Delivery System-Adriamycin-Carboxymethyl Dextran Magnetic Nanoparticles. J Biomed Eng,2000,17(1):21-24(引自:生物医学工程学杂志)
    [82]Anon. Table de radionucleides (Fe59). France:Bureau National de Metrologie, 1984:1-3
    [83]陈丽妹.估算临床应用放射性核素吸收剂量的方法.北京:中国计量出版社,1986.66-68
    [84]汪建清,陈细林,贾雪文,等.59Fe的活度测量及国际比对.原子能科学技术,2000,34(2):173-177
    [85]熊平,熊融融.三维旋转磁场定位治疗仪.实用新型专利,2003,专利号:ZL02276944.7
    [86]杨宪章.电磁场原理.北京:高等教育出版社,1985.298-299
    [87]夏玉珍,李帮军.对麦克斯韦电磁场理论的研究与实验探讨.中国科技术信息,2006,(3):142-143
    [88]汪昭义.平面电磁波传播的物理分析.黄山学院学报,2005,7(6):24-26
    [89]李翔,曾宪林.理想介质中均匀平面波方程.广西轻工业,2006,(5):86-88
    [90]刘万强,王艳萍.电路基本定律的分析研究.山东理工大学学报(自然科学版),2005,19(1):92-95
    [91]梅延玲.麦克斯韦方程组的一种推导方法.武汉科技学院学报,2005,18(10): 54-58
    [92]郭欣,宋立军.利用贝塞尔函数的级数形式进行数值计算的误差分析.长春大学学报,2004,14(2):57-59
    [93]张爽,王少夫,朱义胜.基于贝塞尔带通滤波器精确设计和仿真.大连海事大学学报,2005,31(1):81-83
    [94]李勇英,雏向东.对勒让德多项式母函数的研究.河西学院学报,2003,2(2):4-5
    [95]胡先权,廖海洋,王万录.导体球壳内的电偶极子的电荷禁闭.江西师范大学学报(自然科学版),2005,29(1):47-50
    [96]关海爽,马文阁.电磁场数值计算新方法的研究.辽宁工学院学报,2006,26(4):230-233
    [97]邵志强.关于拉普拉斯算子的第一、第二特征值的空隙的估计.福州大学学报(自然科学版),2002,30(2):153-156
    [98]谢金,傅克祥,麻健勇,等.求解电磁场边界问题时逆规则的物理意义.激光杂志,2004,25(6):34-36
    [99]刘雅洁,朱宁.圆线圈及亥姆霍兹线圈的磁场分布.嘉兴学院学报,2004,16(3):47-50
    [100]Xiao J J, Sun C, Xue D S, Li F S. Study on magnetic properties of Fe-nanowires by micromagnetic simulation. Acta Phys Sin,2001,50(8): 1605-1609
    [101]Yu Y Y, Li A M, Zhang X, et al. Study of targeting distribution of FM-HAS-MTX in brain under magnetic field. Chin J Exp Surg,2000,17(3): 257-258
    [102]Jones T P. Electromechanics of Particles. Cambridge, UK:Cambridge University Press,1995
    [103]郭硕宏.电动力学.北京:高等教育出版社,1979
    [104]邓凡平.ANSYS10.0有限元分析自学手册.北京:人民邮电出版社,2007
    [105]Furlani E P, Ng K C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev E,2006,73:061919

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700