基于嵌段共聚物的纳米荧光探针的制备及生物成像性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,嵌段共聚物超分子自组装形成的纳米微观结构引起了广泛的关注。其中,具有球形形貌的两亲性嵌段共聚物胶束的粒子尺寸在几十到几百纳米之间,其特殊的纳米尺寸效应和稳定性被广泛地应用在化学、催化、光电学、生物医药等众多领域。
     本论文从两亲性嵌段共聚物聚苯乙烯-b-聚丙烯酸(PS-b-PAA)的球形纳米胶束出发,利用有机硅烷偶联剂((3-巯基丙基)三甲氧基硅烷以及3-氨丙基三甲氧基硅氧烷)的水解缩聚性能,对多种具有不同分子结构的疏水性荧光有机小分子进行包裹,合成了一系列具有良好水溶性的硅交联外壳的纳米荧光复合颗粒;将具有靶向功能的生物活性分子对其表面进行修饰,构建出一类新型的纳米荧光成像材料,并在细胞水平上研究了该类材料的细胞成像能力。
     1)利用两亲性嵌段共聚物PS-b-PAA疏水自组装原理,将疏水的萘酰亚胺绿色荧光分子(DPN)包裹进胶束核内,结合溶胶凝胶工艺制备出一类具有表面巯基功能化的硅交联外壳的纳米荧光复合颗粒(DPN@NHs)。该纳米复合颗粒的平均尺寸控制在50nm左右,尺寸分布狭窄,在水溶液中高度稳定分散。硅交联壳层不但没有影响胶束的发光效果,而且大大提高了复合颗粒的分散稳定性,荧光分子包埋量大且不易泄漏及良好的物理和化学稳定性。研究了荧光分子包裹量对纳米颗粒形貌及荧光特性的影响;荧光成像实验中材料对MCF-7细胞具有良好的荧光标识信号。
     2)荧光分子不仅可以引入到纳米胶束的疏水内核,同时还可以引入富硅壳层的骨架中。本文利用氨基硅烷偶联剂的自缩聚作用以及在氨催化下与荧光分子(4-哌啶-1,8萘酐)间的键合作用,一步法制备出一类具有表面氨基功能化的绿色荧光硅交联外壳的纳米复合粒子NAPI-NHx-NPS。通过改变硅烷的交联量,不仅可以有效地对纳米复合粒子的粒径尺寸进行调控,而且能够有效提高荧光分子的荧光效率和荧光寿命。通过TEM及DLS的表征表明,该纳米复合粒子的平均尺寸可控制在50-80nm以内,具有尺寸分布狭窄,在水溶液中高度稳定分散的优良特性。与纯染料相比,在水溶液中其荧光效率可提高约25倍,并维持较长的荧光寿命。这一类荧光复合粒子在体外生物实验中无明显细胞毒性,激光共聚焦显微镜的观测表明,该材料在短时间内可以被细胞大量吞噬。此外,利用胶束内部特殊的空腔结构,还可以将疏水性的磁性四氧化三铁粒子包裹在NAPI-NHx-NPs的胶束疏水核内部,形成了一类具有磁性、荧光多功能的纳米粒子。
     3)利用嵌段共聚物的球形胶束和荧光分子本身的识别或响应能力,合成出一类具有环境响应/识别能力的智能荧光纳米探针NDI@HNPs。通过对pH响应型荧光探针分子NDI的原位包埋,制备出一类具有薄交联壳层的小尺寸荧光纳米探针。所合成的纳米探针具有良好的球形形貌和均一的粒径(46nm),并保持对环境pH响应的能力,在pH值为4到6之间具有极高的响应灵敏度,响应时间短(5s),具有很好的抗疲劳能力。进一步的细胞成像实验表明,该材料可以被癌细胞MCF-7大量吞噬,并且成功地标记出细胞内酸性环境的分布区域。同时,首次利用流式细胞术对该材料的分时段pH响应信号进行了定量测试。
     4)在前面工作的基础上,制备了一系列具有近红外发射波长的纳米荧光探针。所选用的三个近红外荧光有机分子均可被包裹在嵌段共聚物胶束的疏水核内部,从而成功地由憎水转变为亲水。该类近红外纳米荧光探针的动力学直径在35nm左右。光物理性能测试表明,三种纳米荧光探针在水溶液中的荧光效率较纯的荧光分子都有显著的提高,光漂泊性大幅降低,并且斯托克斯位移也有明显的增大。通过在荧光纳米探针表面嫁接具有靶向识别效果的靶向分子—叶酸或乳糖酸,合成了具有特定细胞靶向识别能力的近红外纳米探针。在体外细胞毒性的评估中,三种探针均未显示出明显的细胞毒性。在较短的时间内,这种功能化的纳米探针可以对特定的细胞有靶向识别效果。
     综上,本文发展出了一种具有通用性和较强操作性的制备可用于生物化学研究以及癌症追踪诊断的高效新型成像剂的新方法。这种方法不仅是对传统纳米材料的拓展,而且对进一步的生物研究和医疗研究也有良好的推进作用。
In recent years, the synthesis and application of amphiphilic block copolymer supramolecular self-assembled nano-microstructure have attracted extensive attention. These block copolymer micelles are featured with spherical morphology of tens to hundreds of nanometers in particle diameter, various special nano-size effect and stability, and are therefore being widely used in chemical catalysis, optical, biological medicine and many other fields. In this thesis, we focused on following four aspects:
     1) We employed the spherical micelles of amphiphilic block copolymer (PS-b-PAA) as a template to prepare a new kind of core-shell structured fluorescent nanospheres (DPN@NHs). The hydrophobic dyes were encapsulated into the core of the hybrid nanospheres based on the self-assembly of amphiphilic block copolymers followed by shell cross-linking using3-mercaptopropyltrimethoxy-silane (MPTMS) as a cross-linking agent. The as-synthesized DPN@NHs were very uniform in size (50nm) and spherical morphology, and could be highly monodispersed in water. The fluorescent performances of the as-synthesized water-soluble DPN@NHs were greatly enhanced. The nanospheres exhibited no cytotoxicity and negligible cell apoptosis. By co-cultivating with MCF-7cells, DPN@NHs showed the successful cell uptake in cytoplasm regions in a large quantity.
     2) An organic-inorganic fluorescent nanohybrids with extraordinarily enhanced fluorescent performance was synthesized based on the self-assembly of amphiphilic block copolymers. The thiol-functional group and a fluorescent dye,4-piperidyl-l,8-naphthalic anhydride, could be introduced into the system by a one step method based on the hydrolysis of APTMS and the binding interaction between APTMS and naphthalic anhydride under the presence of NH3. By adjusting the consumption amount of MPTMS, the diameters of the nanohybrids could be easily tuned from50nm to80nm, while the fluorescent yields could be also enhanced. The as-synthesized fluorescent nanocomposites are water-soluble and well-monodispersed in aqueous solution with a remarkably enhanced quantum yield by25times. The in-vitro experiments demonstrated that the nanocomposites exhibited good biocompatibility, large quantity and quick cell uptake, and accurate cell labeling capability.
     3)The super-hydrophobic pH-responsive fluorophores (NDI) were encapsulted into the self-assembled micelles of amphiphilic diblock copolymer PS-6-PAA for recognizing and mapping the route of cell phagocytosis. With the subsequent shell cross-linking with3-mercaptopropyltrimethoxy-silane (MPTMS),the as-synthesized NDI@HNPs showed a typical spherical morphology with an average diameter of46nm and excellent monodispersity in aqueous solution. The fluorescent quantum yield of NDI@HNPs in acidic medium (pH=4.4) is55times larger than that in neutral medium, showing a real-time pH-sensitive fluorescent indication feature with fast response and large stokes shift. The encapsulation of NDI leads to a large stokes shift of~60nm in aqueous solution, which enables the nanoprobes to be a high quality imaging contrast agent. Its characteristic fluorescence response to pH is beneficial to the intracellular cancer cell labeling and organelle targeting, and can be employed to reveal the processes of its effective entry into the cancer cells, and the subsequent accumulation into the endolysosome and the further escape. This smart high quality contrast agent offers an easy and direct protocol to response the micro-environmental pH change and traces the phagocytosis pathway of nano-objects.
     4) To test the versatility of our synthetic process, we prepared a series of NIR (Near-Infrared) nanoprobes. Three representative NIR dyes could be successfully converted from hydrophobicity to hydrophilicity by entrapping them into the core region of the block copolymer micelles. All three samples showed small and uniform size distribution at35nm and good solubility in water. The fluorescent properties of the three fluorescent molecules in aqueous solution were therefore dramatically improved through the encapsulation, and their Stokes shifts were also enlarged. Finally, by grafting targeting molecules (Folic acid and Lactobionic acid) on the surface of the fluorescent nanoprobes, the NIR nanoprobes were synthesized with specific cell targeting capability. The in vitro cytotoxicity tests showed insignificant cytotoxicity, and in the functionalized nanoprobes were found capable of effectively targeting toward MCF-7and HepG2cells during a few hours as revealed by confocal laser scanning imaging.
     The present approach presents a general synthetic strategy for obtaining fluorescent nanoparticles with high and stable fluorescent efficiency, and promising application potentials for future biomedical applications.
引文
[1]Weissleder R, Brian D, Rehemtulla A, Gambhir SS, Molecular Imaging, Principles and Practice, PMPH-USA,2010,1357
    [2]Seisenberger G, Ried MU, Brauchle C, Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus, Science 2001,294,5548:1929-1932
    [3]Weissleder R, Pittet MJ, Imaging in the Era of Molecular Oncology, Nature 2008, 452:580-589.
    [4]张龙江,祁吉,分子影像学探针的研究与进展,国外医学,2006,29(5)1674-1897
    [5]Townsend DW, Beyer T, Blodgett TM, PET/CT Scanners:A Hardware Approach to Image Fusion, Nucl. Med.2003,33:193.
    [6]Pomper M, Gelovani J, Molecular Imaging in Oncology,1 st ed., Informa Healthcare: New York,2008.
    [7]Ell PJ, the Contribution of PET/CT to Improved Patient Manegement, Br. J. Radiol. 2006,79:32.
    [8]Tsukamoto E, Ochi S, PET/CT Today:System and Its Impact on Cancer Diagnosis, Ann. Nucl. Med.2006,20:255.
    [9]Cherry SR, Louie AY, Jacobs RE, The Integration of Positron Emission Tomography with Magnetic Resonance Imaging, Proc. IEEE 2008,96:416.
    [10]Schlemmer H, Pichler B, Wienhard K, Schmand M, Nahamias C, Townsend D, Heiss W, Claussen C, Simultaneous MR/PET for Brain Imaging:First Patient Scans, J. Nucl. Med. 2007,48:45.
    [11]Richards A, Exploring the Electromagnetic Spectrum with Imaging Technology, SPIE Press:2001.
    [12]唐孝威,分子影像学导论,浙江大学出版社,2005
    [13]龚英,汪登斌,分子影像学对比剂的研究进展,国外医学,2006,29(5)1674-1897
    [14]Ntziachristos V, Yodh AG, Schnall M, Chance B, Current MRI and Diffuse Optical Tomography of Breast after Indocyanine Green Enhancement, Proc. Natl. Acad. Sci. U.S.A. 2000,97:2767.
    [15]Corlu A, Choe R, Durduran T, Rosen MA, Schweiger M, Arridge SR, Schnall MD, Yodh AG, Three-dimensional in vivo Fluorescence Diffuse Optical Tomography of Breast Cancer in Humans, Opt. Express 2007,15:6696.
    [16]Hawrysz DJ, Sevick-Muraca EM, Developments Toward Diagnostic Breast Cancer Imaging Using Near-Infrared Optical Measurements and Fluorescent Contrast Agents, Neoplasia 2000,2:388.
    [17]Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CA, Urano Y, Choyke PL, Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Quantum Dots, Nano Lett.,2007,7:1711.
    [18]Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi HJ, In est. Dermatol.,2007, 127:2351.
    [19]Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Phain T, Svaasand L, Butler J., Non-invasive in vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy, Neoplasia.,2000,2:26-40.
    [20]Hoffman RM, The Multiple Uses of Fluorescent Proteins to Visualize Cancer in vivo, Nat. Re. Cancer 2005,5:796.
    [21]Hoffman RM, Moossa AR, Real-time in vivo Dual-color Imaging of Intracapillary Cancer Cell and Nucleas Deformation and Migration, Cancer Res.,2005,65:4246-4249.
    [22]Hoffman RM, Yang M, Whole-body Imaging With Fluorescent Proteins, Nat. Protoc. 2006,1:1429.
    [23]Fercher AF, Leitgeb R, Performance of Fourier Domain vs Time Domain Optical Coherence Tomography, Opt. Express,2003,8
    [24]Bouna BE, Tearney GJ, Improved Signal-to-noise Ratio in Spectral-domian Compared with Time-domain Optical Coherence Tomography, Opt. Lett.,2003, 28(21):2067-2069.
    [25]Webb SED, Gu Y, et al., A Wide-field Time-domain Fluorescence Lifetime Imaging Microscopy with Optical Sectioning, Rev. Sci. Instrum.2002,73:1898-1908
    [26]Pierce MC, Javier D, Richards-Kortum R, Optical Contrast Agents and Imaging System for Detection and Diagnosis of Cancer, Inter. J. Cancer,2008,123,9:1979-1990.
    [27]Weissleder R, Ntziachristos V, Shedding Light onto Live Moleculat Targets, Nat. Med.,2003,9:123-128
    [28]Demos SG, Radousky HB, Deep Subsurface Imaging in Tissue Using Spectral and Polarization Filtering, R. R. Opt. Expr.,2000,7(1):23-28.
    [29]Medintz IL, Uyeda HT, Goldman ER, Mattoussi H, Quantum Dot Bioconjugates for Imaging, Labelling and Sensing, Nat. Mater.2005,4:435-446.
    [30]Smith AM, Duan H, Mohs AM, Nie S, Bioconjugated Quantum Dots for in Vivo Molecular and Cellular Imaging, Adv. Drug. Deliver. Rev.,2008,60:1226-1240.
    [31]Billinton N, Seeing the Wood through the Trees:A Review of Techniques for Distinguishing Green Fluorescent Protein from Endogenous Auto fluorescence, Anal. Biochem.2001,291(2):175-197.
    [32]Monici M, Cell and Tissue Autofluorescence Research and Diagnostic Applications, Biotechnol. Annu. Rev.,2005,11:227-256.
    [33]Boulnois JL, Photophysical Processes in Recent Medical Laser Development:a Review, Lasers in Medical Science,1986,1 (1):47-66
    [34]Kobayashi H, Ogawa M, New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging, Chem. Rev.,2010,110:2620-2640.
    [35]From website:http://www.licor.com/bio/products/imaging_systems/pearl
    [36]Hori K, Matsumura Y, Sawa T, Wu J, Maeda H, Tumor Vascular Permeability and the EPR effect in Macromolecular Therapeutics:a review, J. Control. Release,2000,65,1:271-284
    [37]Jeong SY, Park CR, Seo SB, et al., Biodistribution and Anti-tumor Efficacy of Doxorubicin Loaded Glycol-Chitosan Nanoaggregates by EPR Effect, J. Contrl. Release, 2003,91,1-2:135-145
    [38]Maeda H, Tumor-selective Delivery of Macromelecular Drugs via the EPR Effect: Background and Future Prospects, Biocomjugate Chem.,2010,21(5):797-802
    [39]Chen J, Gao XL, Chen HZ, Activable Cell Penetrating Peptide-Conjugated Nanoparticles with Enhanced Permeability for Site-Specific Targeting Delivery of Anticancer Drug, Bioconjugate Chem.,2013,24 (3):419-430
    [40]江明等,大分子自组装[M],2006:科学出版社
    [41]Ryoo R, Ko CH, Kruk M, Antochshuk V, Jaroniec M, Block-Copolymer-Templated Ordered Mesoporous Silica:□Array of Uniform Mesopores or Mesopore-Micropore Network, J. Phys. Chem. B.2000,104(48):11465-11471
    [42]Forster S, Plantenberg T, From Self-organizing Polymers to Nanohybrid and Biomaterials, Angew. Chem. Int. Edit.,2002,41(5):689-714
    [43]Forster S, Konrad M, From Self-organizing Polymers to Nano-and Biomaterials, J. Mater. Chem.,2003,13(11):2671-2688
    [44]Soler-Illia GA, Crepaldi EL, Grosso D, Sanchez C, Block Copolymer-templated Mesoporous Oxides, Curr. Opin. Colloid Int.,2003,8(1):109-126
    [45]Zhang L, Eisenberg A, Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions, J. Am. Chem. Soc.,1996,118(13):3168-3181
    [46]Gohy JF, Block copolymer micelles, Adv. Polym. Sci.,2005,190:65-136
    [47]Forster S, Antonietti M, Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids, Adv. Mater.,1998,10,3:195-217
    [48]Zhang L, Yu K, Eisenberg A, Ion-Induced Morphological Changes in Crew-Cut Aggregates of Amphiphilic Block Copolymers, Science,1996,272(21):1777-1779
    [49]Zhang L, Eisenberg A, Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers, Science,1995,268(23):1728-1731
    [50]Yu Y, Eisenberg A, Control of Morphology through Polymer-Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers, J. Am. Chem. Soc.,1997,119(35): 8383-8384
    [51]Zhang LF, Eisenberg A, Thermodynamic vs Kinetic Aspects in the Formation and Morphological Transitions of Crew-cut Aggregates Produced by Self-assembly of Polystyrene-b-poly(acrylic acid) Block Copolymers in Dilute Solution, Macromolecules, 1999,32(7):2239-2249
    [52]Butun V, Armes SP, Billingham NC, Tuzar Z, Rankin A, Eastoe J, Heenan RK, The Remarkable "Flip-flop" Self-assembly of A Diblock Copolymer in Aqueous Solution, Macromolecules,2001,34(5):1503-1511
    [53]Fu J, Luan B, Yu X, Cong Y, Li J, Pan CY, Han YC, Yang YM, Li BY, Self-assembly of Crystalline-coil Diblock Copolymer in Solvents with Varying Selectivity:From Spinodal-like Aggregates to Spheres, Cylinders, and Lamellae, Macromolecules,2004, 37(3):976-986
    [54]Lei LC, Gohy JF, Willet N, Zhang JX, Varshney S, Jerome R, Tuning of the Morphology of Core-shell-corona Micelles in Water. I. Transition from Sphere to Cylinder. Macromolecules,2004,37(3):1089-1094
    [55]Minatti E, Viville P, Borsali R, Schappacher M, Deffieux A, Lazzaroni R, Micellar Morphological Changes Promoted by Cyclization of PS-b-PAA Copolymer:DLS and AFM Experiments, Macromolecules,2003,36(11):4125-4133
    [56]Miao X, Xiong C, Wang C, Ling C, Shuai X, Dynamic Light Scattering-based Sequence Specific Recognition of Double Stranded DNA with Oligonucleotide Functionalized Gold Nanoparticles, Chem-Eur. J.,2011,17:11230-11236.
    [57]Miao X, Ling L, Shuai X, Ultrasensitive Detection of Lead (II) with DNAzyme and Gold Nanoparticles Probes by Using Dynamic Light Scattering Technique, Chem. Commun. 2011,47:4192-4194.
    [58]Cao N, Cheng D, Zou S, Ai H, Gao J, Shuai X, The Synergistic Effect of Hierarchical Assemblies of SiRNA and Chemotherapeutic Drugs Co-delivered into Hepatic Cancer Cells, Biomaterials,2011,32:2222-2232.
    [59]Dai J, Zou S, Pei Y, Cheng D, Ai H, Shuai X, Polyethylenimine-grafted Copolymer of Poly(L-lysine) and Poly(ethylene glycol) for Gene Delivery, Biomaterials,2011,32
    [60]Chen G, Chen W, Wu Z, Yuan R, Shuai X, MRI-visible Polymeric Vector Bearing CD3 Single Chain Antibody for Gene Delivery to T-cells for Immunosuppression, Biomaterials 2009,30:1962-1970.
    [61]Zhu XY, Zhu BS, Zhu Q, Hyperbrached Polymers for Bioimaging, RSC Adv.,2013,3: 2071-2083.
    [62]Patten M K, Horpel G, Ringstoff H, Makronmol Chem.,1985,186:725-733
    [63]Jeong B, Bae YH, Lee DS, Kim SW, Biodegradable Block Copolymers as Injectable Drug-delivery Systems. Nature,1997,388:860-862.
    [64]Kwon GS, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K, Physical Entrapment of Adriamycin in AB Block Copolymer Micelles, Pharm. Res.,1995,12:192-195.
    [65]Lee J, Cho EC, Cho K, Incorporation and Release Behavior of Hydrophobic Drug in Functionalized Poly(d,l-lactide)-block-poly(ethyleneoxide) Micelles, J. Control. Release 2004,94:323-335.
    [66]Gong SQ, Steeber DA, Pilla S, Amphiphilic Multi-arm-block Copolymer Conjugated with Doxorubicin via pH-sensitive Hydrazone Bond for Tumor-targeted Drug Delivery, Biomaterials,2009,30,29:5757-5766.
    [67]Yin T, Wang P, Li J, Zheng R, Zheng B, Cheng D, Shuai X, Ultrasound-sensitive SiRNA-loaded Nanobubbles Formed by Hetero-assembly of Polymeric Micelles and Liposomes and Their Therapeutic Effect in Gliomas, Biomaterials,2013,34:4532-4543.
    [68]Guo Y, Chen W, Wang W, Shen J, Guo R, Gong F, Lin S, Cheng D, Chen G, Shuai X, Simultaneous Diagnosis and Gene Therapy of Immuno-Rejection in Rat Allogeneic Heart Transplantation Model Using a T-Cell-Targeted Theranostic, ACS Nano,2012,6 (12): 10646-10657
    [69]Wang W, Shuai X, Design of Multifunctional Micelle for Tumor-targeted Intracellular Drug Release and Fluorescent Imaging, Adv. Mat.,2012,24,1:115-120
    [70]Cheng D, Cao N, Chen J, Shuai X, Multifunctional Nanocarrier Mediated Co-delivery of Doxorubicin and SiRNA for Synergistic Enhancement of Glioma Apoptosis in Rat, Biomaterials 2012,33,1170-1179.
    [71]Dai J, Lin S, Cheng D, Zou S, Shuai X, Interlayer Crosslinked Micelle with Partially Hydrated Core Showing Reduction and pH Dual Sensitivity for Pinpointed Intracellular Drug Release, Angew. Chem. Int. Ed.,2011,50:9404-9408.
    [72]Wu W, Shen J, Zhou SQ, Chitosan-based Responsive Hybrid Nanogels for Integration of Optical pH-sensing:Tumor Cell Imaging and controlled drug delivery, Biomaterials,2010,83,71:8381
    [73]刘晓亚,王益华,易成林,冯艳,江金强,崔正刚,陈明清,探索光敏性共聚物P(St/CS-alt-MA)的自组装及其乳化行为,化学学报,2009,67,5:447-452
    [74]李晓芳,马艳结,张晓,陈钢,包载荧光探针香豆素的PLGA纳米粒的制备,中国现代应用药学,2011,8:740-744
    [75]江金强,冯艳,王红梅,刘晓亚,张胜文,陈明清,光敏感双亲性梳状SMA聚合物的合成及其胶束化,物理化学学报,2008,24(11):2089-2095
    [76]Buffie J, The Key Role of Environmental Colloids/Nanoparticles for Sustainability of Life, Environ. Chem.,2006,3:155-158
    [77]Hunter RJ, Zeta Potential in Colloid Science:Principles and Appliocations. Academic press, London,1981
    [78]Quesada-perez M, Gonzalez-tovar E, Matin-Molina A, Lozada-Cassou M, Hidalgo-Alvarez R, Chem. Phys. Chem.,2003,4:234-238.
    [79]Everett DH, Basic Principles of Colloid Science, Roy. Soc. Chem., London,1988.
    [80]Riess G, Micellation of Block Copolymers, Prog. Polym. Sci.,2003,28:1107-1170.
    [81]Discher DE, Ahmed F, Polymersomes. Annu. Rev. Biomed.Eng.,2006,8:323-341.
    [82]Roca M, Haes AJ, Silica-Void-Gold Nanoparticles:Temporally Stable Surface-Enhanced Raman Scattering Substrates, J. Am. Chem. Soc,2008,130:14273-14279.
    [83]Giersig M, Ung T, Liz-Marzan LM, Mulvaney P, Direct Observation of Chemical Reactions in Silica-Coated Gold and Silver Nanoparticles, Adv. Mater.,1997,9:570-575.
    [84]Zhu YF, Kockrick E, Ikoma T, Hanagata N, Kaskel S, An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates, Chem. Mater.2009,21:2547-2553.
    [85]Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H, Kinetics of Metal-Affinity Driven Self-Assembly Between Proteins or Peptides and CdSe-ZnS Quantum Dots, J. Phys. Chem. C,2007,111:11528-11538.
    [86]Chan WCW, Nie S, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science 1998,281:2016-2018.
    [87]Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science 1998,281:2013-2016.
    [88]Baker M, Nanotechnology Imaging Probes:Smaller and More Stable, Nat. Methods 2010,7:957-961.
    [89]Pinaud F, Clarke S, Sittner A, Dahan M, Probing Cellular Events, One Quantum Dot at a Time, Nat. Methods,2010,7:275-285.
    [90]Panhel L, Haase M, Weller H, Henglein A, Photochemistry of colloidal semiconductors:Surface Modification and Stability of Strong Luminescing CdS Particles, J. Am. Chem. Soc.,1987,109:5649.
    [91]Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y, Quantum Dots as Photosensivizers, Nat. Biotechn.,2004,22:1360.
    [92]Samia ACS, Chen XB, Burda C, Semiconductor Quantum Dots for Photodynamic Therapy, J. Am. Chem. Soc.,2003,125:15736.
    [93]Genin E, Carion O, Mahler B, Dubertret B, Arhel N, Charneau P, Doris E, Mioskowski C, CrAsH-Quantum Dot Nanohybrids for Smart Targeting of Proteins, J. Am. Chem. Soc.,2008,130:8596-8597.
    [94]Derfus AM, Chan WCW, Bhatia SN, Probing the Cytotoxicity of Semiconductor Quantum Dots, Nano Lett.,2004,4:11.
    [95]Klostranec JM, Chan WCW, Quantum Dots in Biological and Biomedical Research: Recent Progress and PresentChallenges, Adv. Mater.2006,18:1953-1964.
    [96]Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL, The Controlled Display of Biomoleculeson Nanoparticles:A Challenge Suited to Bioorthogonal Chemistry, Bioconjugate Chem.2011,22:825-858.
    [97]Geissler D, Charbonniere LJ, Ziessel RF, Butlin NG, Lohmannsroben HG, Hildebrandt N, Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics, Angew. Chem.Int. Ed.,2010,49:1396-1401.
    [98]Jennings TL, Becker-Catania SG, Triulzi RC, Tao G, Scott B, Sapsford KE, Spindel S, Oh E, Jain V, Delehanty JB, et al., Reactive Semiconductor Nanocrystals for Chemoselective Biolabeling and Multiplexed Analysis, ACS Nano,2011
    [99]Aubin-Tam ME, Hamad-Schifferli K, Structure and Function of Nanoparticle-Protein Conjugates, Biomed. Mater.,2008,3:4001.
    [100]Algar WR, Prasuhn DE, Stewart M, Jennings TL, Blanco-Canosa JB, Dawson P, Medintz IL, The Controlled Display of Biomolecules on Nanoparticles:A Challenge Suited to Bioorthogonal Chemistry, Bioconj. Chem.2011,22:825-858.
    [101]Parak WJ, Gerion D, Zanchet D, Woerz AS, Pellegrino T, Micheel CM, Williams SC, Seitz M, Bruehl RE, Bryant Z, et al., Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots, Chem.Mater.2002,14:2113-2119.
    [102]Murcia MJ, Minner DE, Mustata GM, Ritchie K, Naumann CA, Design of Quantum Dot-Conjugated Lipids for Long-Term, High-Speed Tracking Experiments on Cell Surfaces. J. Am. Chem. Soc.2008,130:15054-15062.
    [103]Dennis AM, Rhee WJ, Sotto D, Bao G, Dublin SN, Quatum Dot-Fluorescent Protein FRET Probes for Sensing Intracellular pH, ACS Nano,2012,6 (4):2917-2924
    [104]Li LL, Chen D, Zhang YQ, Deng ZT, Ren XL, Meng XW, Tang FQ, Ren J, Zhang L, Magnetic and Fluorescent Multifunctional Chitosan Nanoparticles as A Smart Drug Delivery System, Nanotechnology 2007,18,405
    [105]He R, You XG, Shao J, Gao F, Pan BF, Cui DX, Hydrophilic High-Luminescent Magnetic Nanocomposites, Nanotechnology 2007,18,315601
    [106]Ballard JL, Peeva VK, Silva CJ, Lynch JL, Swanson NR, Comparison of Alexa Fluor and CyDye for Practical DNA Microarray Use, Mol. Biotechnol.,2007,36(3):175-183
    [107]Altinoglu El, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH, Near-infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for in Vivo Imaging of Human Breast Cancer, ACS Nano,2008,2:2075-2084.
    [108]Barth BM, Sharma R, Altinoglu El, Morgan TT, Shanmugavelandy SS, Kaiser JM, McGovern C, Matters GL, Smith JP, Kester M, et al. Bioconjugation of Calcium Phosphosilicate Composite Nanoparticles for Selective Targeting of Human Breast and Pancreatic Cancers In Vivo, ACS Nano 2010,4:1279-1287.
    [109]Lee ES, Na K, Bae YH, Doxorubicin Loaded pH-sensitive Polymeric Micelles for Reversal of Resistant MCF-7 Tumor., J Control Release,2005,103,2:405-418
    [110]Pagliaro M, Schrijver A, Alonzo G, et al., From Molecules to Systems:Sol-Gel Microencapsulation in Silica-Based Materials, Chem. Rev.,2011,111:765-789
    [111]Bergna HE, Roberts WO, Colloidal Silica:Fundamentals and Applications, CRC: Boca Raton,2006,131.
    [112]Iler RK, The Chemistry of Silica:Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica.Wiley:New York,1979.
    [113]Stober W, Fink A, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J Colloid. Inter. Sci.,1968,26,1:62-69.
    [114]Kievsky YY, Kaszpurenko JM, Sokolov I, Self-Assembly of Ultrabright Fluorescent Silica Particles, Small 2007,3,3:419-423
    [115]Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI, Silica Sol as A Nanoglue:Flexible Synthesis of Composite Aerogels, Chem. Mater.,1999,11:2837-2845
    [116]Suratwala T, Gardlund Z, Davidson K, Uhlmann DR, Watson J, Peyghambarian N, Silylated Coumarin Dyes in Sol-gel Hosts. Photostability and Sol-gel Processing, Chem. Mater.1998,10:190-198.
    [117]Frantz R, Carbonneau C, Granier M, Durand JO, Lanneau GF, Corriu RJP, Studies of Organic-inorganic Solids Possessing Sensitive Oligoarylene-vinylene Chromophore-terminated Phosphonates, Tetrahedron Lett.,2002,43:6569-6572.
    [118]Goring GLG, Brennan JD, Fluorescence and Physical Characterization of Sol-gel-derived Nanocomposite Films Suitable for the Entrapment of Biomolecules, J. Mater. Chem.,2002,12:3400-3406
    [119]Lin YS, Tsai CP, Huang HY, Kuo CT, Hung Y, Huang DM, Chen YC, Mou CY, Weil-Ordered Mesoporous Silica Nanoparticles as Cell Markers, Chem. Mater.2005,17:4570-4573.
    [120]Win KY, Feng SS, Effects of Particle Size and Surface Coating on Cellular Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs, Biomaterials,2005,26: 2713.
    [121]Bagwe RP, Yang C, Hilliard LR, Tan W, Optimization of Dye-doped Silica Nanoparticles Prepared Using Reverse Microemulsion Method, Langmuir,2004,20:8336.
    [122]Zhao X, Bagwe RP, Tan W, Development of Organic-Dye-Doped Silica Nanoparticles in a Reverse Microemulsion, Adv. Mater.,2004,16:173.
    [123]Tan W, Wang K, He X, He X, Zhao XJ, Drake T, Wang L, Bagwe RP, Bionanotechnology Based on Silica Nanoparticles, Med. Res. Rev.,2004,24:621.
    [124]Kim HK, Kang SJ, Choi SK, Min YH, Yoon CS, Highly Efficient Organic/Inorganic Hybrid Nonlinear Optic Materials via Sol-Gel Process:Synthesis, Optical Properties, and Photobleaching Waveguides, Chem. Mater.,1999,11:779
    [125]Jain TK, Roy I, De TK, Maitra AN, Nanometer Silica Particles Encapsulating Active Compounds:A Novel Ceramic Drug Carrier, J. Am. Chem. Soc,1998,120:11092.
    [126]Tan WH, et al, Multicolor FRET Silica Nanoparticles by Single Wavelength Excitation, Nano Lett., Vol.6, No.1,2006
    [127]Chen SY, He XX, Fluorescence Resonance Energy Transfer Mediated Large StokesShifting Near-Infrared Fluorescent Silica Nanoparticles for in Vivo Small Animal Imaging, Anal. Chem.2012,84:9056-9064
    [128]Moeller M, Wang HL, Pich A, Schaefer K, Synthesis of Silica Encapsulated Perylenetetracarboxylic Diimide Core-Shell Nanoellipsoids, Chem. Mater.,2011,23:4748-4755
    [129]Tang BZ, et al., Biocompatible Nanoparticles with Aggregation-Induced Emission Characteristics as Far-Red/Near-Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications, Adv. Funct. Mater.2012,22,771-779
    [130]Chithrani BD, Ghazani AA, Chan WCW, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letter,2006,6(4): 662.
    [131]Murray CB, Kagan CR, Bawendi MG, Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci.,2000,30:545.
    [132]Tian Y, Newton T, Kotov NA, Guldi D, Fendler JH, Coupled Composite CdS-CdSe and Core-Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles., J. Phys. Chem.,1996, 100:8927.
    [133]Chithrani BD, Ghazani AA, Chan WCW, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Lett.,2006,6:662.
    [134]Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M, Minko T, Discher DE, Shape Effects of Filaments versus Spherical Particles in Flow and Drug Delivery, Nat. Nanotechn.,2007, 2:249.
    [135]Pham TTH, Cao C, Sim SJ, Application of Citrate-stabilized Gold-coated Ferric Oxide Composite Nanoparticles for Biological Separations, J. Mag. and Mag. Mater.,2008, 320:2049.
    [136]Pan J, Feng S, Targeted Delivery of Paclitaxel Using Folate-decorated Poly(1 actide)-vitamin ETPGS Nanoparticles, Bio. Mater.,2008,29:2663.
    [137]Win KY, Feng SS., Effects of Particle Size and Surface Coating on Cellular Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs, Bio. Mater.,2005,26: 2713-2722
    [138]Geng Y, Dalhaimer P, Cai SS, Tsai R, et al., Shape Effects of Filaments versus Spherical Particles in Flow and Drug Delivery, Nat. Nanotechn.,2007,2:249-255
    [139]Chithrani BD, Ghazani AA, Chan WCW, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Lett.,2006,6:662-668
    [140]Thomas M, Cyrille R, Johanne S, Nicolas W, Michel B, Daniel S, Effect of Core Diameter, Surface Coatingand PEG Chain Length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice, ACS Nano,2011,5,2:854-862
    [141]Lu F, Wu SH, Hung Y, Mou CY, Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles, Small 2009,5,12:1408-1413
    [142]Ariano P, Pollyanna Z, Gilardino A, Lovisolo D, et al., Interaction of Spherical Silica Nanoparticles with Neuronal Cells:Size-Dependent Toxicity and Perturbation of Calcium Homeostasis, Small 2011,7, No.6,766-77'4
    [143]Zhou YY, Shi LX, Wang XM, et al., Imaging and Inhibition of Multi-drug Resistance in Cancer Cells via Specific Association with Negatively Charged CdTe Quantum Dots, Biomaterials 2010,31,:4958-4963
    [144]Za AS, Davis CA, Pishko MV, Macrophage Uptake of Core-Shell Nanoparticles Surface Modified with Polyethylene glycol), Langmuir,2006,22:8178-8185
    [145]Moore MN, Do Nanoparticles Present Ecotoxicological Risks for the Health Of the Aquatic Environment, Environment Int.,2006:967-976
    [146]Park JH, Maltzahn G, Ruoslahti E, Sailor MJ, Micellar Hybrid Nanoparticles for Simultaneous Magnetofluorescent Imaging and Drug Delivery, Angew. Chem. Int. Ed.2008, 47,7284-7288
    [147]Kostura L, Kraitchman DL, Mackay AM, PiRenger MF, Feridex Labeling of Mesenchymal Stem Cells Inhibits Chon-drogenesis but Notadipogenesis or Osteogenesis, NMR Biomed.,2004,17:513-517
    [148]Yake AM, Zahr AS, Jerri HA, Pishko MV, Velegol D, Localized Functionalization of Individual Colloidal Carriers for Cell Targeting and Imaging, Biomacromolecules,2007,8: 1958-1965
    [149]Pan J, Feng S, Targeted Delivery of Paclitaxe:Using Folate-decorated Poly(lactide)-vitamin ETPGS Nanoparticles, Biomaterial,2008,29:2663-2672.
    [150]Li K, Pan J, Feng SS, Liu B, Generic Strategy of Preparing Fluorescent Conjugated-Polymer-Loaded Poly(DL-lactide-co-Glycolide)Nanoparticles for Targeted Cell Imaging, Adv. Funct. Mater.2009,19,3535-3542
    [151]Pham TTH, Cao C, Sim SJ, Application of Citrate-stabilized Gold-coatedferric Oxide Composite Nanoparticles for Biological Separations, J Mag. And Mag. Mater.,2008,320: 2049-2055
    [152]Holzapfel V, Musyanovych A, Landfester K, Lorenz ML, Mailoinder V, Preparation of Fluorescent Carboxyl and Amino Functionalized Polystyrene Particles by Miniemulsion Polymerization as Markers for Cells, Macrom. Chem. Phys.,2005,206:2440-2449
    [153]Liu L, Venkatraman SS, Yang YY, Guo K, Lu J, He B, Moochhala S, Kan L, Polymeric Micelles Anchored with TAT for Delivery of Antibiotics across the Blood-brain Barrier, Biopoly.,2008,90:617-623.
    [154]Liu HY, Chen D, Tang FQ, Multifunctional Gold Nanoshells on Silica Nanorattles:A Platform for the Combination of Photothermal Therapyand Chemotherapy with Low Systemic Toxicity. Angew.Chem.Int. Ed.2011,50:891-895.
    [155]Li LL, Tang FQ, Liu HY, Liu TL, Hao NJ, Chen D, Teng X, He JQ, In Vivo Delivery of Silica Nanorattle Encapsulated Docetaxel for Liver Cancer Therapy with Low Toxicity and High Efficacy. ACS Nano 2010,4:6874-6882.
    [156]De-Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE, Particle Size-Dependent Organ Distribution of Gold Nanoparticles after Intravenous Adminstration, Biomaterials 2008,29:1912-1919.
    [157]Vallhov H, Gabrielsson S, Stromme M, Scheynius A, Garcia-Bennett AE, Mesoporous Silica Particles Induce Size Dependent Effects on Human Dendritic Cells., Nano Lett.,2007,7:3576-3582.
    [158]Lee YE, Smith R, Kopelman R, Nanoparticle Pebbles Sensors in Live Cells and In Vivo, Annu. Rev. Anal. Chem.,2009,2:57-76.
    [159]Hynes J, Natoli EJr, Will Y, Fluorescent pH and Oxygen Probes of the Assessment of Mitochondrial Toxicity inlsolated Mitochondria and Whole Cells, Curr. Protoc. Toxicol. 2009,40,2:1612-1622.
    [160]Ji J, Rosenzweig N, Jones I, Rosenzweig Z, Molecular Oxygen-Sensitive Fluorescent Lipobeads for Intracellular Oxygen Measurements in Murine Macrophages, Anal. Chem., 2001,73:3521-3527.
    [161]Nasongkla N, Bey E, Ren JM, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao JM, Multifunctional Polymeric Micelles as Cancer-targeted, MRI-Ultrasensitive Drug Delivery Systems, Nano Lett.2006,6:2427.
    [162]Nehilla BJ, Allen PG, Desai TA, Surfactant-free, Drug-quantum-dot Coloaded Poly (lactide-co-glycolide) Nanoparticles:towards Multifunctional Nanoparticles, ACS Nano 2008,2,538.
    [163]Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T, Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery, Adv. Mater.2008,20,478.
    [164]Caplen NJ, Mousses S, Short Interfering RNA(siRNA)-Mediated RNA Interference (RNAi) in Human Cells, Ann. N.Y. Acad. Sci.2003,1002:56-62.
    [165]Dorsett Y, Tuschl T, SiRNAs:Applications in Functional Genomics and Potential as Therapeutics, Nat. Rev. Drug Discovery 2004,3,318-329.
    [166]Lu ZD, Yin YD, Formation Mechanism and Size Control in One-Pot Synthesis of Mercapto-Silica Colloidal Spheres, Langmuir,2011,27,3372-3380
    [167]Nooney RI, Kalyanaraman M, Kennedy G, Maginn EJ, Heavy Metal Remediation Using Functionalized Mesoporous Silicas with Controlled Macrostructure, Langmuir 2001, 17,528
    [168]Zhuang X, Zhao QF, WanY, Facile and Controllable Electro-chemical Reduction of Graphene Oxide and Its Applications, J. Mater. Chem.2010,20:4715.
    [169]Zhang LX, Zhang WH, Shi JL, Hua Z, Li YS, Yan J, A New Thioether Functionalized Organic-inorganic Mesoporous Composite as A Highly Selective and Capacious Hg2+Adsorbent, Chem. Commun.2003,210.
    [170]Beaudet L, Pitre R, Robillard L, Mercier L, Structural Perturbations in Mesoporous Silica Microspheres Prepared Using Cationic Organosilanes, Chem. Mater.,2009,21,5349.
    [171]Philipova GT, Synthesis of 1,8-Naphthalic Anhydride Derivatives for Use as Fluorescent Brightening Agents for Polymeric Materials, Dyes and Pigments,1995,27,4, 321-325
    [172]Grabtchev I, Konstantinov T, Photochemistry of Some 1,8-naphthalic Anhydride Derivatives, Dyes and Pigments,1997,35,4:361-366,
    [173]Hu Y, Xie JW, Tong YW, Wang CH, Effect of PEG Conformation and Particle Size on the Cellular Uptake Efficiency of Nanoparticles with the HepG2 Cells, J. Controlled Release,2007,118:7-17.
    [174]Chithrani BD, Ghazani AA, Chan WC, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian cells, Nano Lett.2006,6,662-668.
    [175]Lin YS, Haynes CL, Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity, J. Am. Chem. Soc.2010,132,4834-4842.
    [176]Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila LA, Li JQ, Rao JH, Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice. Small,2009,5,126-134.
    [177]Alexiou MS, Tychopoulos V, Ghorbanian S, Tyman JHP, The UV-Visible Absorption and Fluorescence of some Substituted 1,8-Naphthalimides and Naphthalic An hydrides, J. Chem. Soc. Perkin. Trans.,1990,2,837-842
    [178]Meervelt LV, Goethals M, Leroux N, Zeegers-Huyskens T, X-ray and Vibrational Studiesof 8-aminoquinoline:Evidence for a Three-center Hydrogen Bond, J. Phys. Org. Chem.1997,10,680-686.
    [179]Jiang P, Guo Z, Fluorescent Detection of Zinc in Biological Systems:Recent Development on the Design of Chemosensors and Biosensors, Coord. Chem. Rev.2004, 248:205-229.
    [180]Zhang Y, Qian XH, et al., Ratiometric and Water-Soluble Fluorescent Zinc Sensor of Carboxamidoquinoline with an Alkoxyethylamino Chain as Receptor, Org.Lett,2008,10,3, 473-476.
    [181]Rumsey WL, Vanderkooi JM, Wilson DF, Imaging of Phosphorescence:A Novel Method for Measuring Oxygen Distribution in Perfused Tissue. Science 1988,241,1649-1651.
    [182]Liu Y, Villamena FA, Sun J, Wang TY, Zweier JL, Esterified Trityl Radicals as Intracellular Oxygen Probes, Radical Biol. Med.2009,46,876-883.
    [183]Taylor-Pashow KML, Delia Rocca J, Huxford RC, Lin W, Hybrid Nanomaterials for Biomedical Applications, Chem. Commun.2010,46,5832.
    [184]Vollath D, Bifunctional Nanocomposites with Magnetic and Luminescence Properties, Adv. Mater.2010,22,4410.
    [185]Bardhan R, Lal S, Joshi A, Halas NJ, Theranostic Nanoshells:from Probe Design to Imaging and Treatment of Cancer, Acc. Chem. Res.2011,44,936.
    [186]Erathodiyil N, Ying JY, Functionalization of Inorganic Nanoparticles for Bioimaging Applications, Acc. Chem. Res.2011,44,925.
    [187]Lee JE, Lee N, Kim T, Kim J, Hyeo T, Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications, Acc. Chem. Res.2011,44,893.
    [188]Wen S, Li XH, Ma HM, A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells, Angew. Chem.2012,124,6538.
    [189]Peng HS, Stolwijk JA, Sun LN, Wegener J, Wolfbeis OS, A Nanogel for Ratiometric Fluorescent Sensing of Intracellular pH Values, Angew. Chem.2010,122,4342,
    [190]Albertazzi L, Storti B,Marchetti L, Beltram F, Delivery and Subcellular Targeting of Dendrimer-based Fluorescent pH Sensors in Living Cells, J. Am. Chem. Soc.2010,132, 18158
    [191]Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE, Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev.1997,97,1515-1566.
    [192]Valeur B, Leray I, Coordesign Principles of Fluorescent Molecular Sensors for Cation Recognition, Chem. Rev.2000,205,3:40.
    [193]Callan JF, de Silva AP, Magri DC, Luminescent Sensors and Switches in the Early 21st Century, Tetrahedron 2005,61:8551-8588.
    [194]Silva AP, Fox DB, Huxley AJM, Moody TS, Combining Luminescence, Coordination and Electron Transfer for Signaling Purposes, Coord. Chem. Rev.2000,205: 41-57.
    [195]Prodi L, Bolletta F, Montalti M, Zaccheroni N, Luminescent Chemosensors for Transition Metal Ions, Coord. Chem. Rev.2000,205,59:83.
    [196]Shen LQ, Lu XY, Tian H, Zhu WH, A Long Wavelength Fluorescent Hydrophilic Copolymer Based on Naphthalenediimide as pH Sensor with Broad Linear Response Range, Macromolecules,2011,44:5612-5618.
    [197]Suraru S, Zschieschang U, Klauk H, Wiirthner F, Diketopyrrolopyrrole as A p-channel Organic Semiconductor for High Performance OTFTs, Chem. Commun.,2011,47: 11504-11506
    [198]Lu X, Zhu W, Xie Y, Gao Y, Li F, Tian H, Near-IR Core-Substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions:Ligand Effectson PET and ICT Channels, Chem. Eur. J.,2010,16,8355-8364
    [199]王鹏,张海连,张林,新型红光材料——花四羧酸二酰亚胺化合物的合成及表征,化工进展,2008,第27卷第3期,460-463
    [200]He XR, Liu HB, Zhu DB, et al. A New Copolymer Containing Perylene Bisimide and Porphyrin Moieties Synthesis and Characterization, Macromol. Chem. Phys.,2005,206, 2199-2205.
    [201]Masaki MT, Wang MX, Kazumasa F., et al. Properties of Novel Perylene-3,4,9,10-tetracarboxidiimide-centred Dendrimers and Their Application as Emitters in Organic Electroluminescence Eevices, Dyes and Pigments,2007,74,1:169-175.
    [202]Fan LQ, Xu YP, Tian H,1-6-Disubstitued Perylene Bisilides:Concise Synthesis and Characterization as Near-infrared Fluorescent Dyes, Tetrahedton Lett.,2005,46:4443-4447
    [203]Dai ZF, Peng BX., Synthesis and Characterization of Indodicarbocyaines, Dyes and Pigments,1998,36(2):169
    [204]李军,陈萍,赵江等,近红外吸收菁染料分子链结构对其光氧化稳定性能的影响.感光科学与光化学,1997,15(4):349
    [205]Wu LQ, Peng XJ, Zhang R, et.al., Syntheses and Spectral Properties of Fluorescent Indocyanine Dyes, Dyes and Pigments,2002,54:107
    [206]吕荣文,张淑芬,杨锦宗,生化分析用荧光染料,染料工业,1999,36(6):14
    [207]杨松杰,田禾,菁染料光稳定性研究进展,感光科学与光化学,1999,17,3: 275-283
    [208]Li K, Pan J, Feng SS, Wu WQ, Pu KY, Liu B, Generic Strategy of Preparing Fluorescent Conjugated-Polymer-Loaded Poly(DL-lactide-co-Glycolide)Nanoparticles for Targeted Cell Imaging, Adv. Funct. Mater.,2009,19:3535-3542
    [209]Liang B, He M, Chan C, Chen Y, Li X, Li Y, Zheng D, Lin M, Kung H, Shuai X, Peng Y, The Use of Folate-PEG-grafted-hybranched-PEI Nonviral Vector for the Inhibition of Glioma Growth in the Rat, Biomaterials 2009,30:4014-4020.
    [210]Magde D, Rojas GE, Seybold P, Solvent Dependence of the Fluorescence Lifetimes of Xanthene Dyes, Photochem. Photobiol.,1999,70:737.
    [211]Lakowicz JR, Principles of Fluorescence Spectroscopy,2nd Ed., Kluwer Academic/Plenum Publishers, New York, London, Moscow, Dordrecht,1999.
    [212]Mujumdar RB, Ernst LA, Waggoner AS, Cyanine Dye Labeling Reagents: Sulfoindocyanine Succinimidyl Esters, Bioconj. Chem.,1993,4:105-111
    [213]Fan T, Kearns PDR, A Fluorescence Study of the Binding of Hoechst 33258 and DAPI to Halogenated DNAs, Photochem. Photobiol.1990,51:77-86.
    [214]Data from ISS
    [215]Liu X, Ni PH, He JL, Zhang MZ, Synthesis and Micellization of pH/Temperature-Responsive Double-Hydrophilic Diblock Copolymers Polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] Prepared via ROP and ATRP, Macromolecules,2010,43:4771-4781.
    [216]Li K, Sun T, Wang JY, et al., Synthesis of Amphiphic Chitosan Derivatives and Their Application in Encapsulation of QDs, Acta Poly. Sinica,2012,2:1105.
    [217]Wu XM, Chang S, Li YS, Zhu WH, Tian H, Shi JL, Constructing NIR Silica-ncyanine Hybrid Nanocomposite for Bioimaging in vivo:a Breakthrough in Photostability and Bright Fuorescence with Large Stokes Shift, Chem. Sci.,2013,4:1221
    [218]Liu XW, Fang Z, Zhang XJ, Zhang W, Wei XW, Geng BY, Preparation and Characterization of Fe3O4/CdS Nanocomposites and Their Use as Recyclable Photocatalysts, Cryst. Growth. Des,2009,9(1):197.
    [219]Wu PY, Wang J, He C, et al., Luminscent Metal-Organic Frameworks for Selectively Sensing Nitric Oxide in an Aqueous Solution and in Living Cells, Adv. Funct. Mater.2012,22,169
    [220]Ding Z, Chen JP, Gao SY, Zhang JF, Immobilization of Chitosan onto Poly-L-lactic Acid Film Surface by Plasma Polymerization to Control the Morphology of Fibroblast and Liver Cells, Biomaterials,25,6:1059
    [221]Peng JF, Wang KM, Tan WH, et al.,Indentification of Liver Cancer Cells in a Mixed Cell System Using Galactose-conjugated Fluorescent Nanoparticles, Talanta,2007,71,2: 833
    [222]Silva AP, Gunaratne HQN, Habib-Jiwan JL, McCoy CP, Rice TE, Soumillion JP, New Fluorescent Model Compounds for the Study of Photoinduced Electron Transfer:the Influrnce of a Molecular Electric Field in the Exited State, Angew. Chem., Int. Ed. Engl., 1995,34,1728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700