E6.BARF1p调控CD/UPRT.UL49的表达对鼻咽癌的靶向放射—基因治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌是一类以放射治疗为主的恶性肿瘤,如何提高肿瘤的局控率及生存率、减轻放射治疗对正常组织的损伤、提高患者的生存质量一直是该病的研究重点,本文将分章讨论E6.BARF1启动子(简称BARF1p)调控CD/UPRT.UL49的表达对鼻咽癌的靶向放射-基因研究。
     目的设计BARF1基因的启动子序列,验证该序列是否具有启动子活性,通过比较该启动子在人鼻咽正常上皮细胞NP69和人鼻咽癌细胞CNE-2中的启动子活性,验证所设计的BARF1基因的启动子是否具有肿瘤相对特异性。
     方法结合启动子预测软件结果(TRANSFAC和MATINSPECTOR)及引物设计软件(Primer premier5.0),设计BARF1基因的启动子序列,从B95-8细胞株中提取基因组DNA,PCR扩增所设计的BARF1基因的启动子,将扩增的启动子连接在荧光素酶报告基因载体上,通过脂质体介导,瞬时转染入NP69和CNE-2细胞细胞中,验证所设计的启动子是否具有启动子活性,同时比较该启动子在NP69细胞和CNE-2细胞中的的启动子活性的差异,验证该启动子是否具有肿瘤相对特异性,差异的比较采用SPSS10.0的t检验。
     结果所设计的BARF1基因的启动子在CNE-2细胞中具有启动子活性,但是活性较低,而在NP69细胞中不具备启动子活性,且该启动子在CNE-2细胞中的启动子活性远高于NP69细胞,差异有统计学意义(p<0.05)。
     结论本研究设计的BARF1基因的启动子具有启动子活性,且该启动子具有肿瘤相对特异性。
     目的建立稳定表达自杀基因CD/UPRT.UL49的CNE-2细胞自杀基因修饰细胞株。
     方法构建真核基因表达质粒pcDNA3.1 (-)E6.BARF1p.CD/UPRT.UL49,经脂质体法转染CNE-2细胞,G418筛选出阳性克隆细胞并扩大培养,抽提阳性克隆细胞的总蛋白质,通过Western-blotting检测目的基因表达。
     结果自杀基因CD/UPRT.UL49在CNE-2转染细胞内稳定表达。
     结论本组通过脂质体转染技术,成功地建立了稳定表达CD/UPRT.UL49基因的CNE-2细胞株。
     目的体外实验观察CD/UPRT.UL49/5-FC系统对鼻咽癌CNE-2细胞的杀伤效应。
     方法给予野生型CNE-2细胞和稳定转染CD/UPRT.UL49的CNE-2细胞株不同剂量的丫射线照射,同时联合不同剂量前体药物5-Fc作用48h后,用MTT法检测细胞的杀伤效应;再给予野生型CNE-2细胞和稳定转染CD/UPRT.UL49的CNE-2细胞株2Gy的γ射线照射,联合200μg/ml前体药物5-FC作用48h后,流式细胞仪检测前体药物对表达CD/UPRT.UL49基因的CNE-2细胞的杀伤作用,并检测CD/UPRT UL49基因对CNE-2细胞的旁杀效应。统计分析采用SPSS10.0软件进行t检验及方差分析。P<0.05表示有统计学意义。
     结果表达自杀基因CD/UPRT.UL49的CNE-2细胞的生长受到不同程度的抑制,当仅有10%的CNE-2细胞表达CD/UPRT基因时,可以杀死37.46%的细胞。
     结论CD/UPRT.UL49/5-FC自杀基因/前体药物系统对鼻咽癌CNE-2细胞具有直接杀伤和旁杀效应。
     目的通过建立裸鼠CNE-2动物模型,观察自杀基因表达载体pcDNA3.1(-)E6.BARF1p.CD/UPRT.UL49在前体药物干预下对鼻咽癌放射治疗的增敏效应。
     方法CNE-2细胞接种裸鼠皮下建立鼻咽癌动物模型,进行脂质体包裹质粒DNA瘤内注射的原位基因(in situ)治疗实验,待肿瘤长至0.8-1.0cm时,将裸鼠随机分组,记录肿瘤体积,比较不同处理组的抑瘤效应,病理切片证实肿快性质,抽提肿瘤组织RNA, RT-PCR反应,确定CD/UPRT.UL49基因在肿瘤组织中的表达。
     结果成功建立鼻咽癌动物模型,病理切片证实肿块为低分化鳞癌,通过原位基因治疗实验发现,各处理组均能抑制肿瘤生长,较对照组的抑瘤效应更明显(P<0.01)。
     结论E6.BARF1p.CD/UPRT.UL49自杀基因载体具有放射诱导和相对肿瘤特异性双重特性,对鼻咽癌CNE-2细胞的杀伤效应,为鼻咽癌的基因-放射治疗开辟了新思路。
Nasopharyngeal carcinoma is a kind of malignant tumor treated mainly by radiotherapy, how to improve regional control rate and survival rate, reduce the radiation damage to normal tissue and improve the quality of life of patients has always been the focus of this study, therefore, this article is going to discuss the research on targeting radio-gene therapy through the expression of CD/UPRT.UL49 mediated by E6.BARFlp(referred to as BARFlp) in nasopharyngeal carcinoma.
     Objective To design the of BARF1 gene promoter sequence, verify whether this sequence has promotive activity by comparing the promoter activity in human nasopharyngeal epithelial cells NP69 and that in normal human nasopharyngeal carcinoma cells CNE-2, and confirm whether the promoter of BARF1 gene has relative specificity of tumor.
     Methods Combining results of promoter prediction software (TRANSFAC and MATINSPECTOR) and primer design software (Primer premier 5.0), we designed the sequence of BARF1 gene promoter, extracted the genomic DNA from B95-8 cell lines, amplified the designed BARF1 gene promoter by PCR, connected the amplified promoter to the luciferase reporter gene vector, then transfected this vector into NP69 cells and CNE-2 cells transiently through liposome way, and verified its promoter activity, also compared the promoter activity in NP69 cells with that in CNE-2 cells, to verify whether this promoter has tumor relative specificity, t-test of SPSS 10.0 was used to detect the difference between them.
     Results BARF1 gene promoter showed promoter activity in CNE-2 cells, but the activity is low, yet there is no promoter activity detected in NP69 cells, and the promoter activity showed in CNE-2 cells is much higher than that in human nasopharyngeal epithelial cells NP69, difference is significant(p<0.05).
     Conclusion The promoter sequence of BARF1 gene has promotive activity, and also has tumor relative specificity.
     Objective To construct nasopharyngeal carcinoma CNE-2 cell lines expressing stable suicide gene.
     Methods The plasmids of pcDNA3.1 (-) E6.BARF1p. CD/UPRT.UL49 was transfected into CNE-2 cells through lipofectamine, and the transfected CNE-2 cells were selected by G418 to get the cells expressing CD/UPRT.UL49 gene. The protein produced by the suicide gene was tested by Western-blotting in CNE-2 cells.
     Results Suicide genes was expressed stably in CNE-2 cells.
     Conclusions We constructed CNE-2 cell lines expressing stable suicide gene through lipofectamin transfection.
     Objective To observe killing effect towards CNE-2 cells through the expression of suicide gene and prodrug system of CD/UPRT.UL49/5-FC in vitro gene therapy.
     Methods Given different quantity of Y radiation combined with different quantity of prodrug 5-Fc to wild CNE-2 cells and CNE-2 cells transfected with CD/UPRT.UL49 respectively, after 48h, the killing effects was tested by MTT method; again given 2Gy radiation and 200μg/ml prodrug 5-Fc to wild CNE-2 cells and CNE-2 cells transfected with CD/UPRT.UL49 respectively, after 48h, the killing and bystander effects on CNE-2 cells transfected with CD/UPRT.UL49 was tested by flow cytometry (FCM). T test and ANOVA were used to detect the differences. P<0.05 represents significant.
     Results The growth of CNE-2 cells expressing suicide genes was suppressed more or less, and such a suppression effect of CD/UPRT.UL49 was of dose dependence to the 5-FC. Though there were only 10 percent of the cells expressing CD/UPRT.UL49 gene, it was demonstrated that 37.46 percent of the cells were killed.
     Conclusion The suicide gene and prodrug system of CD/UPRT.UL49/5-FC has direct cytotoxic and bystander effects to CNE-2 cells.
     Objective To observe the enhancement of the sensitization of the NPC to radiation under the intervention of prodrugs by plasmid vector expressing CD/UPRT gene in situ and in vivo gene-radiotherapy.
     Method CNE-2 cells in log phase were inoculated subcutaneously in nude mice to construct a nude mouse model of NPC,and an in situ gene therapy was performed with plasmid packed by plasmid. When the size of tumors reaching 0.8-1.0cm, the nude mice were randomized to different grouped, the size of the tumor was recorded and the suppression of tumor was compared among different treating groups. Biopsy of the tumor were performed to find the difference between treatment groups.Then targeted RNA was isolated from tumor tissues and RT-PCR was performed to define the expression of suicide gene.
     Results In situ gene therapy experiment showed that compared with cotroll group,growth of transplant tumour of each treatment group was distinctly suppressed(P<0.01).
     Conclusions The suicide gene E6.BARF1p.CD/UPRT. UL49/prodrug system, is both radiosensitive and tumor specifically effective in anticancer therapy, and exert killing effect to CNE-2 cells under radiation. From this study, we established a new strategy for radio-gene therapy of NPC.
引文
[1]Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma[J]. Semin Cancer Biol 2002;12:421-9.
    [2]McDermott A L, Dutt S N, Watkinson JC. The aetiology of nasopharyngeal carcinoma [J]. Clin Otolaryngol Allied Sci,2001,26(2):82-92.
    [3]Zong YS, Zhong BL, Liang YJ, et al. Advancement of studying the biological characteristics of nasopharyngeal carcinogenesis[J]. Ai Zheng 2002;21:686-95 [in Chinese].
    [4]Li Zq, Chen JJ, Li WJ. Early detection of nasopharyngeal carcinoma (NPC) and nasopharyngeal mucosal hyperplastic lesions (NPHL) with its relationship to carcinomatous change. In:Prasad U, Ablashi DV, Levine pH, editors. Nasopharyngeal carcinoma-current concepts. Kuala Lumpur, Malaysia University of Malaysia Press; 1983. p.17-23.
    [5]Pathmanathan R, Prasad U, Sadler R, et al. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive-lesions related to nasopharyngeal carcinoma[J]. N Engl J Med 1995;333:693-8.
    [6]Chan AS, To KF, Lo KW, et al. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese[J]. Cancer Res 2000;60:5365-70.
    [7]Spano JP, Busson P; Atlan D, et al. Nasopharyngeal carcinomas:an update[J]. Eur J Cancer 2003;39:2121-35.
    [8]Pak MW, To KF, Lo YM, et al. Nasopharyngeal carcinoma in situ (NPCIS)-pathologic and clinical perspectives[J]. Head Neck 2002;24:989-95.
    [9]Lo KW, Teo PM, Hui AB, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma[J]. Cancer Res 2000; 60:3348-53.
    [10]Makitie AA, MacMillan C, Ho J, et al. Loss of p16 expression has prognostic significance in human nasopharyngeal carcinoma [J]. Clin Cancer Res 2003;9:2177-84.
    [11]Chan AS, To KF, Lo KW, et al. Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese[J]. Int J Cancer 2002;102:300-3.
    [12]Kwong J, Lo KW, To KF, et al. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma[J]. Clin Cancer Res 2002;8:131-7.
    [13]Huang DP, Lo KW. Aetiological factors and pathogenesis. In:van Hasselt GA, Gibb AG, editors. Nasopharyngeal carcinoma.2nd ed. Hong Kong. The Chinese University Press; 1999. p.31-60.
    [14]Li AA, Ng E, Shi W, et al. Potential efficacy of p16 gene therapy for EBV-positive nasopharyngeal carcinoma[J]. Int J Cancer 2004; 110:452-8.
    [15]Chan AT, Teo PM, Johnson PJ. Nasopharyngeal carcinoma[J]. Ann Oncol 2002;13:1007-15.
    [16]Yang HJ, Cho YJ, Kim HS, et al. Association of p53 and BCL-2 expression with Epstein-Barr virus infection in the cancers of head and neck[J]. Head Neck 2001;23:629-36.
    [17]Baba Y, Tsukuda M, Mochimatsu I, et al. Reduced expression of p16 and p27 proteins in nasopharyngeal carcinoma[J]. Cancer Detect Prev 2001;25:414-9.
    [18]Gleich LL, Salamone FN. Molecular genetics of head and neck cancer[J]. Cancer Control 2002;9:369-78.
    [19]Sheu LF, Chen A, Meng CL, et al. Analysis of bcl-2 expression in normal, inflamed, dysplastic nasopharyngeal epithelia, and nasopharyngeal carcinoma: association with p53 expression[J]. Hum Pathol 1997;28:556-62.
    [20]Sun Y, Hildesheim A, Lanier AE, et al. No point mutation but decreased expression of the p16/MTS1 tumor suppressor gene in nasopharyngeal carcinomas[J]. Oncogene 1995;10:785-8.
    [21]Hwang CF, Su CY, Huang SC, et al. Low expression levels of p27 correlate with loco-regional recurrence in nasopharyngeal carcinoma[J]. Cancer Lett 2003;189:231-6.
    [22]Coutinho CM, Bassini AS, Gutierrez LG, et al. Genetic alterations in Ki-ras and Ha-ras genes in juvenile nasopharyngeal angiofibromas and head and neck cancer[J]. Sao Paulo Med J 1999;117:113-20.
    [23]Ogino T, Moriai S, Ishida Y,et al. Association of immunoescape mechanisms with Epstein2Barr virus infection in nasopharyngeal carcinoma [J]. Int J Cancer, 2007,120(11):2401-2410.
    [24]Krishna S M, Kattoor J, Balaram P. Down regulation of adhesion protein E2cadherin in Epstein2Barr virus infected nasopharyngeal carcinomas [J]. Cancer Biomark,2005,1 (6):271-277.
    [25]Teramoto N, Maeda A, Kobeyashi K、et al. Epstein-Barr virus infection to Epstein-Barr virus negative nasopharyngeal carcinoma cell line TWO3 enhances its tumorigenicity[J]. Lab Invest,2000,80:303-312.
    [26]Weichselbaum R R, Hallahan D E, Beckett M A, et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. [J]. Cancer Res,1994,54 (16):4266-4269.
    [27]Wang X, Su C, Cao H, et al. A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers.[J]. Mol Cancer Ther,2008,7(6):1598-1603.
    [28]Qi J P, Shao S H, Xie J, et al. A mathematical model of P53 gene regulatory networks under radiotherapy.[J]. Biosystems,2007,90(3):698-706.
    [29]Koike H, Sekine Y, Kamiya M, et al. Gene expression of survivin and its spliced isoforms associated with proliferation and aggressive phenotypes of prostate cancer.[J].Urology,2008,72(6):1229-1233.
    [30]Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy.[J]. Expert Opin Ther Targets,2008,12(4):463-476.
    [31]Stout J T. Gene transfer for the treatment of neovascular ocular disease (an American Ophthalmological Society thesis).[J]. Trans Am Ophthalmol Soc,2006,104:530-560.
    [32]Kaliberov S A, Kaliberova L N, Buchsbaum D J. Combined ionizing radiation and sKDR gene delivery for treatment of prostate carcinomas.[J]. Gene Ther,2005,12(5):407-417.
    [33]Toivonen R, Suominen E, Grenman R, et al. Retargeting improves the efficacy of a telomerase-dependent oncolytic adenovirus for head and neck cancer.[J]. Oncol Rep,2009,21(1):165-171.
    [34]Fujiwara T, Urata Y, Tanaka N. Diagnostic and therapeutic application of telomerase-specific oncolytic adenoviral agents. [J]. Front Biosci,2008, 13:1881-1886.
    [35]Zheng F Q, Xu Y, Yang R J, et al. Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models.[J]. Acta Pharmacol Sin,2009.
    [36]Tahara I, Miyake K, Hanawa H, et al. Systemic cancer gene therapy using adeno-associated virus type 1 vector expressing MDA-7/IL24.[J]. Mol Ther,2007,15(10):1805-1811.
    [37]Liu S, Wang H, Yang Z, et al. Enhancement of cancer radiation therapy by use of adenovirus-mediated secretable glucose-regulated protein 94/gp96 expression.[J]. Cancer Res,2005,65(20):9126-9131.
    [38]Y, Ma H, Zhang J, et al. AAV-mediated TRAIL gene expression driven by hTERT promoter suppressed human hepatocellular carcinoma growth in mice.[J]. Life Sci,2008,82(23-24):1154-1161.
    [39]Wang Y, Huang F, Cai H, et al. Potent antitumor effect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma.[J]. J Gene Med,2008,10(5):518-526.
    [40]Zheng J N, Pei D S, Sun F H, et al. Potent antitumor efficacy of interleukin-18 delivered by conditionally replicative adenovirus vector in renal cell carcinoma-bearing nude mice via inhibition of angiogenesis.[J]. Cancer Biol Ther,2009,8(7).
    [41]Xia J, Xia K, Feng Y, et al. The combination of suicide gene therapy and radiation enhances the killing of nasopharyngeal carcinoma xenographs.[J]. J Radiat Res (Tokyo),2004,45(2):281-289.
    [42]Ma X J, Huang R, Kuang A R. AFP Promoter Enhancer Increased Specific Expression of the Human Sodium Iodide Symporter (hNIS) for Targeted Radioiodine Therapy of Hepatocellular Carcinoma.[J]. Cancer Invest,2009:1.
    [43]Gao P, Wang R, Shen J J, et al. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells.[J]. Cancer Sci,2008,99(11):2209-2217.
    [44]Willhauck M J, Sharif S B, Klutz K, et al. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma.[J]. Gene Ther,2008,15(3):214-223.
    [45]Scholz I V, Cengic N, Baker C H, et al. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer.[J]. Gene Ther,2005,12(3):272-280.
    [46]Okabe S, Arai T, Yamashita H, et al. Adenovirus-mediated prodrug-enzyme therapy for CEA-producing colorectal cancer cells.[J]. J Cancer Res Clin Oncol,2003,129(6):367-373.
    [47]Nyati M K, Sreekumar A, Li S, et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer.[J]. Cancer Res,2002,62(8):2337-2342.
    [48]唐瑶云,肖健云,赵素萍,等.靶向性质粒表达载体pcDNA3.1(-) CMV.Egr-1CDglyTK的构建及转染研究[J].中国耳鼻咽喉颅底外科杂志,2003,9(1):34-37.
    [49]Sanchez-perez L, Kottke T, Daniels G A, et al. Killing of normal melanocytes, combined with heat shock protein 70 and CD40L expression, cures large established melanomas.[J]. J Immunol,2006,177(6):4168-4177.
    [50]Bosenberg M, Muthusamy V, Curley D P, et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice.[J]. Genesis,2006,44(5):262-267.
    [51]Zhang L, Akbulut H, Tang Y, et al. Adenoviral vectors with E1A regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma.[J]. Mol Ther,2002,6(3):386-393.
    [52]Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, et al. Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies[J]. Cancer Res 2000,60(19):5584-5588.
    [53]Brink AA, Vervoort MB, Middeldorp JM,et al. Nucleic acid sequence-based amplification, a new method for analysis of spliced and umspliced Epstein-Barr virus latent transcripts, and its comparison with recerse transcriptase PCR[J]. J Clin Microbiol,1998,36(11):3164-3169.
    [54]Hayes DP, Brink AA, Vervort MB, et al. Expression of Epstein-Barr virus(EBV) transcripts encoding homologues to important human protein in diverse EBV associated diseases[J]. Mol Pathol,1999,52(2):97-103.
    [55]章华,赵素萍,蒋卫红等.实时荧光定量PCR法检测BARF1基因在鼻咽癌中的表达[J].中国耳鼻咽喉颅底外科杂志,2005,(5):300-304.
    [56]Jiang W, Liao Y, Zhao S, et al. Role of enhanced radiosensitivity and the tumor-specific suicide gene vector in gene therapy of nasopharyngeal carcinoma.[J]. J Radiat Res (Tokyo),2007,48(3):211-218.
    [57]Chadderton N, Cowen R L, Sheppard F C, et al. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells.[J]. Int J Radiat Oncol Biol Phys,2005,62(1):213-222.
    [58]Xiong F, Xiao S, Yu M, et al. Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport.[J]. BMC Neurosci,2007,8:50.
    [59]Ford K G, Souberbielle B E, Darling D, et al. Protein transduction:an alternative to genetic intervention?[J]. Gene Ther,2001,8(1):1-4.
    [60]Boenicke L, Chu K, Pauls R, et al. Efficient dose-dependent and time-dependent protein transduction of pancreatic carcinoma cells in vitro and in vivo using purified VP22-EGFP fusion protein.[J]. J Mol Med,2003,81(3):205-213.
    [61]Elliott G, O H P. Intercellular trafficking and protein delivery by a herpesvirus structural protein.[J]. Cell,1997,88(2):223-233.
    [62]Boenicke L, Chu K, Pauls R, et al. Efficient dose-dependent and time-dependent protein transduction of pancreatic carcinoma cells in vitro and in vivo using purified VP22-EGFP fusion protein.[J]. J Mol Med,2003,81(3):205-213.
    [63]Sugita T, Yoshikawa T, Mukai Y, et al. Comparative study on transduction and toxicity of protein transduction domains.[J]. Br J Pharmacol,2008,153(6): 1143-1152.
    [64]Ma X J, Huang R, Kuang A R. AFP Promoter Enhancer Increased Specific Expression of the Human Sodium Iodide Symporter (hNIS) for Targeted Radioiodine Therapy of Hepatocellular Carcinoma.[J]. Cancer Invest,2009:1.
    [65]Gao P, Wang R, Shen J J, et al. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells.[J]. Cancer Sci,2008,99(11):2209-2217.
    [66]Willhauck M J, Sharif S B, Klutz K, et al. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma.[J]. Gene Ther,2008,15(3):214-223.
    [67]Scholz I V, Cengic N, Baker C H, et al. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer.[J]. Gene Ther,2005,12(3):272-280.
    [68]Okabe S, Arai T, Yamashita H, et al. Adenovirus-mediated prodrug-enzyme therapy for CEA-producing colorectal cancer cells.[J]. J Cancer Res Clin Oncol,2003,129(6):367-373.
    [69]Nyati M K, Sreekumar A, Li S, et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer.[J]. Cancer Res,2002,62(8):2337-2342.
    [70]Sanchez-perez L, Kottke T, Daniels G A, et al. Killing of normal melanocytes, combined with heat shock protein 70 and CD40L expression, cures large established melanomas.[J]. J Immunol,2006,177(6):4168-4177.
    [71]Bosenberg M, Muthusamy V, Curley D P, et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice.[J]. Genesis,2006,44(5):262-267.
    [72]Zhang L, Akbulut H, Tang Y, et al. Adenoviral vectors with E1A regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma.[J]. Mol Ther,2002,6(3):386-393.
    [73]Wei MX, Ooka T. A transforming function of the BARF1 gene encoded by Epstein-Barr virus. EMBO J.1989,8:2897-2903.
    [74]Shall A, Caserta S, Jolicoeur P, et al. Mitogenic activity of Epstein-Barr virus-encoded BARF1 protein. Oncogene.2004,23:4938-4944.
    [75]Shibata D, Weiss LM. Epstein-Barr virus-associated gastric adenocarcinoma. Am. J. Pathol.1992,140:769-774.
    [76]Wang Q, Tsao SW, Ooka T, et al. Anti-apoptotic role of BARF1 in gastric cancer cells. Cancer Letters 238 (2006) 90-103.
    [77]George JA. Gene t herapy p r ogress a nd p rospects:adenoviral vectors [J]. Gene Ther,2003,10 (6):113521141.
    [78]J ames B, Wechuck, Ozuer A, et al. Ef f ect of temperature,medium comp osition, and cell passage on p roduction of herpes based vi ral vectors [J]. Biotech and Bioengin,2002,79 (1):112-119.
    [79]Mona ha n PE, Samulski RJ. Adeno2associated vi rus vectors f or gene t herapy:more p ros t ha n cons [J]. Mol Med Today,2000,6 (2):4332440.
    [80]Rot h JA, Cristia no RJ. Gene t herap y f or ca ncer:what have we done and where are we going [J]. J Natl Ca ncer Inst,1997,89 (1):21239.
    [81]Pierrefite-Carle V, Baque P et al. Regression of experimental liver tumor after distant intra-hepatic injection of cytosine deaminase-expressing tumor cells and 5-fluorocytosine treatment. Int J Mol Med 2000 Mar;5(3):275-8.
    [82]Burrows FJ, Gore M, Smiley WR et al. Purified herpes simplex virus thymidine kinase retro viral particles:Ⅲ. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther 2002 Jan;9(1):87-95.
    [83]Fogar P, Navaglia F, Basso D, et al. Suicide gene therapy with the yeast fusion gene cytosine deaminase/uracil phosphoribosyltransferase is not enough for pancreatic cancer.[J]. Pancreas,2007,35(3):224-231.
    [84]Kikuchi E, Menendez S, Ozu C, et al. Highly efficient gene delivery for bladder cancers by intravesically administered replication-competent retroviral vectors.[J]. Clin Cancer Res,2007,13(15 Pt 1):4511-4518.
    [85]Kucerova L, Altanerova V, Matuskova M, et al. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy.[J]. Cancer Res,2007,67(13):6304-6313.
    [86]Kanai F, Kawakami T, Hamada H, et al. Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil.[J]. Cancer Res,1998,58(9):1946-1951.
    [87]Heise C, Hermiston T, J ohnson L, et al. An adenovirus E1A mutant that demonst rates potent and selective systemic anti-tu-moral efficacy [J]. Nat Med,2000,6(5):113421139.
    [88]Chung-faye G A, Chen M J, Green N K, et al. In vivo gene therapy for colon cancer using adenovirus-mediated, transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase.[J]. Gene Ther,2001,8 (20):1547-1554.
    [89]Porosnicu M, Mian A, Barber G N. The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene.[J]. Cancer Res,2003,63(23):8366-8376.
    [90]Bourbeau D, Lavoie G, Nalbantoglu J, et al. Suicide gene therapy with an adenovirus expressing the fusion gene CD::UPRT in human glioblastomas: different sensitivities correlate with p53 status.[J]. J Gene Med,2004,6(12):1320-1332.
    [91]Kminiski JM, Huber MR, Summers JB, et al. Design of a nonviral vector for site2selective, ef f icient integration into t he human genome [J]. FASEB J, 2002,16(10):124221247.
    [92]Emery DW, Yannaki E, Tubb J, et al. A chromatin insulator protects ret rovirus vectors from chromosomal p osition effects[J]. Proc Natl Acad Sci USA,2000,97 (10):915029155.
    [93]Wu N, Wat kins SC, Schaf f er PA, et al. Prolonged gene expression and cell survival after infection by aherpes simplex vi rusmutant def ective in the immediate early genes encoding ICP4ICP27 a nd ICP22 [J]. J Vi rol,1996,70 (6):635826369.
    [94]Ma rconi P, Krisky D, Oligino T, et al. Replication2def ectiveherpes simplex vi rus vectors for gene t ra nsf er i n vivo [J]. ProcNatl Acad Sci USA,1996, 93:11319211320.
    [95]Fox ME, L emmon MJ, Mauchline ML, et al. Anaerobic bacteria as a delivery system f or ca ncer gene t herapy:in vit ro activation of 52 f luorocyt osine by genetically engineered clost ridia[J].Gene Ther,1996,3 (2):1732178.
    [96]Reba C, Michael ML, Cur ran A, et al. Prolonged liver specifict ransgene exp ression by a non2p rimate lentivi ral vector [J]. Biochem Biop hys Res Com, 2004,320 (4):99821006.
    [97]Tomalia DA. A new class of p olymers:starburst dendritic macro-molecules [J]. Polym J,1985,17 (1):1172132.
    [98]Chiu S, Ueno N, Lee R. Tumor2ta rgeted gene delivery via a ntiHER2 a ntibody (t ra nstuzumab, Herceptin) conjugated p olyet hlyenimine [J]. J Cont rRel,2004,97(2):3572369.
    [1]Young LS and Rickinson AB. Epstein-Barr virus:40 years on[J]. Nat Rev Cancer.2004,4:757-768.
    [2]Young LS, Murray PG. Epstein-Barr virus and oncogenesis:from latent genes to tumours[J]. Oncogene.2003,22:5108-5121.
    [3]Raab-Traub N. Epstein-Barr virus in the pathogenesis of NPC[J]. Semin Cancer Biol.2002,12:431-441.
    [4]Kieff E, Rickinson AB:Epstein-Barr Virus and its replication. In Fields Virology 5th edition..
    [5]G Miller, Epstein-Barr Virus:Biology, Pathogenesis and Medical Aspects, Reven press, New York,1990.
    [6]Shibata D, Weiss LM. Epstein-Barr virus-associated gastric adenocarcinoma[J]. Am. J. Pathol.1992,140:769-774.
    [7]zur HH, Schulte-Holthausen H, Klein G,et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx[J]. Nature.1970,228: 1056-1058.
    [8]Griffin BE, Karran L.Immortalization of monkey epithelial cells by specific fragments of Epstein-Barr virus DNA[J]. Nature.1984,309(5963):78-82.
    [9]Karran L, Teo CG, King D, Hitt MM, Gao YN, et, al. Establishment of immortalized primate epithelial cells with sub-genomic EBV DNA[J]. Int J Cancer.1990 Apr 15;45(4):763-72.
    [10]Strockbine LD, Cohen JI, Farrah T, et al. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor[J]. J Virol.1998 May;72(5):4015-21.
    [11]Wei MX, Moulin JC, Decaussin G, et al. Expression and tumorigeneicity of the Epstein-Barr virus BARF1 gene in humanLouckes B lymphocyte cell line [J]. Cancer Res,1994,54:1843-1848.
    [12]Sbih-Lammali F, Djennaoui D, Belaoui H, et al. Transcriptional expression of Epstein-Barr virus genes and proto-oncogenes in North African nasopharyngeal carcinoma[J]. J. Med. Virol.1996.49,7-14.
    [13]Danve C, Decaussin G, Busson P, et al. Growth transformation of primary epithelial cells with an NPC-derived Epstein-Barr virus strain[J]. Virology 2001. 288,223-235.
    [14]Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, et al. Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies[J]. Cancer Res.2000,60:5584-5588.
    [15]Fiorini S, Ooka T. Secretion of Epstein-Barr Virus-encoded BARF1 oncoprotein from latently infected B cells[J].Virology Journal.2008,5:70.
    [16]Tarbouriech N, Ruggiero F, de Turenne-Tessier M. Structure of the Epstein-Barr Virus Oncogene BARF1 [J]. J. Mol. Biol.2006,359,667-678.
    [17]Wang D, Liebowitz D, Kieff E:An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells[J]. Cell.1985, 43:831-840.
    [18]Wei MX, Ooka T. A transforming function of the BARF1 gene encoded by Epstein-Barr virus[J]. EMBO J.1989,8:2897-2903.
    [19]Wei MX, de Turenne-Tessier M, Decaussin G, et al. Establishment of a monkey kidney epithelial cell line with the BARF1 open reading frame from Epstein-Barr virus[J]. Oncogene.1997,14:3073-3081.
    [20]Sheng W. ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin a, Oncogene 22 (2003) 955-963.
    [21]Sheng W, Decaussin G, Sumner S, Ooka T:N-terminal domain of BARF1 gene encoded by Epstein-Barr virus is essential for malignant transformation of rodent fibroblasts and activation of Bcl2[J]. Oncogene 2001,20:1176-1185.
    [22]de Turenne-Tessier M, Jolicoeur P, Ooka T. Expression of the protein encoded by Epstein-Barr virus (EBV) BARF1 open reading frame from a recombinant adenovirus system[J]. Virus Res.1997,52:73-85.
    [23]Guo XCH, Sheng W, Zhang YL, et al. Malignant transformation of Monkey Kidney epithelial cells induced by EBV BARF1 gene and TPA[J]. Zhong Hua Shi Yan He Lin Chuang Bing Du Xue Za Zhi.2001,15(4):321-323.
    [24]Jiang R, Cabras G, Sheng W,et al. Synergism of BARF1 with Ras Induces Malignant Transformation in Primary Primate Epithelial cells and Human Nasopharyngeal Epithelial Cells[J]. Neoplasia.2009,11(9):964-973.
    [25]Wang Q, Tsao SW, Ooka T, et al. Anti-apoptotic role of BARF1 in gastric cancer cells[J]. Cancer Letters 238 (2006) 90-103.
    [26]Sall A, Caserta S, Jolicoeur P, et al. Mitogenic activity of Epstein-Barr virus-encoded BARF1 protein[J]. Oncogene.2004,23:4938-4944.
    [27]Wang X, Jin DY, Wong YC, et al. Correlation of defective mitotic checkpoint with aberrantly reduced expression of MAD2 protein in nasopharyngeal carcinoma cells[J]. Carcinogenesis.2000,21:2293-2297.
    [28]Strockbine LD, Cohen JI, Farrah T, et al. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor[J]. J. Virol.1998, 72:4015-4021.
    [29]Sapi E, Flick MB, Gilmore-Hebert M, et al. Transcriptional regulation of the c-fins (CSF-1R) proto-oncogene in human breast carcinoma cells by glucocorticoids[J]. Oncogene,1995,10:529-542.
    [30]Zur HA, Brink AA, Craanen ME, et al. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas:expression of the transforming BARF1 gene[J]. Cancer Res.2000,60:2745-2748.
    [31]Hayes DP, Brink AA, Vervoort MB, Middeldorp JM, Meijer CJ, Brule AJ van den:Expression of Epstein-Barr virus (EBV) transcripts encoding homologues to important human proteins in diverse EBV associated diseases[J]. Mol Pathol 1999,52:97-103.
    [32]Seto E, Yang L, Middeldorp J, Sheen TS, Chen JY, Fukayama M, Eizuru Y, Ooka T, Takada K:Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression[J]. J Med Virol 2005,76:82-88.
    [33]Zur HA, Brink AA, Craanen ME, et al. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas:expression of the transforming BARF1 gene[J]. Cancer Res.2000,60:2745-2748.
    [34]Xue SA, Labrecque LG, Lu QL, Ong SK, Lampert IA, Kazembe P, Molyneux E, Broadhead RL, Borgstein E, Griffin BE:Promiscuous expression of Epstein-Barr virus genes in Burkitt's lymphoma from the central African country Malawi[J]. Int J Cancer.2002,99:635-643.
    [35]Zhang Y, Ohyashiki JH, Takaku T, Shimizu N, Ohyashiki K:Transcriptional profiling of Epstin-Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronique active EBV infection[J]. British J Cancer. 2006,94:599-608.
    [36]Fiorini S, Ooka T. Secretion of Epstein-Barr Virus-encoded BARF1 oncoprotein from latently infected B cells[J]. Virology Journal,2008,5:71-74.
    [37]章华,赵素萍,蒋卫红等.实时荧光定量PCR法检测基因在鼻咽癌中的表达[J].中国耳鼻咽喉颅底外科杂志.2005,11(5):300-304.
    [1]Parkin DM, Whelan SL, Ferlay J, et al. Cancer incidence in five continents[M]IARC Scientific Publications Number 155, Vol.8. Lyon, France, IARC Press,2002:34-536.
    [2]Fandi A, Altun M, Azli N, et al. Nasopharyngeal cancer, epidemiology, staging and treatment [J. SeminOncol,1994,21:382-397.
    [3]Ho JHC. An epidemiological and clinical study of nasopharyngeal carcinoma [J]. Int J Radiat Oncol Biol Phys,1978,4:183-197.
    [4]Zhang EP,Liang PG, Cai KL,et al. Radiation therapy of nasopharyngeal carcinoma:Prognostic factors based on a 10-year follow-up of 1302 patients [J].Int J Radiat Oncol Biol Phys,1989,16:301-305.
    [5]Lee AWM, Poon YF,Foo W,et al. Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during1976-1985:Overall survival and patterns of failure [J].Int J Radiat Oncol Biol Phys,1992,23:261-270.
    [6]Levendag PC, Lagerwaard FJ,Noever I,et al. Role of endocavitary brachytherapy with orwithout chemotherapy in cancer of the nasopharynx[J]. Int J Radiat Oncol Biol Phys,2002,52 (3):755-768.
    [7]Jereczek-Fossa BA, Morn A,DeBraud F,et al. Hyperfractionated radiotherapy in locally advanced nasopharyngeal cancer:analysis of 43 consecutive patients[J]. StrahlentherOnkol,2004,180 (7):425-433.
    [8]Lee N,Xia P,Quivery JM,et al. Intensity-modulated radiotherapy in the
    treatment of nasopharyngeal carcinoma:an update of the UCSF experience[J]. Int J Radiat Oncol Biol Phys,2002,53 (1):12-22.
    [9]Kam MK,Chau RM,Suen J,et al. Intensity-modulated radiotherapy in nasopharyngeal carcinoma:Dosimetric advantage over conventional plans and feasibility of dose escalationJ]. Int J Radiat Oncol Biol Phys,2003,56:145-157.
    [10]Wu VW,Kwong DL,Sham JS. Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy [J]. Radiother Oncol,2004,71:201-206.
    [11]Sultanem K,Shu HK,Xia P,et al. Three-dimensional intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma:the University of California-San Francisco experience[J]. Int J Radiat Oncol Biol Phys,2000,48: 711-722.
    [12]Baujat B,Audry H,Bourhis J,et al. Chemotherapy in locally advanced nasopharyngeal carcinoma:an individual patient data meta-analysis of eight randomized trial and 1753 patients [J]. Int JRadiat Oncol Biol Phys,2006,64 (1):47-56.
    [13]Ma J,Mai HQ,HongMH,et al. Results of a prospective randomized trial comparing neoadjuvant chemotherapy p lus radiotherapy with radiotherapy alone in patientswith locoregionally advanced nasopharyngeal carcinoma [J]. J Clin Oncol,2001,19 (5):1350-1357.
    [14]Zhang L,Zhao C,Peng PJ,et al. Phase IH study comparing standard radiotherapy with or without weekly oxalip latin in treatment of locoregionally advanced nasopharyngeal carcinoma:p reliminary results[J]. J Clin Oncol,2005,23 (33):8461-8468.
    [15]王朝霞.中晚期鼻咽癌放化疗综合治疗临床观察[J].现代肿瘤医学,2008,16(12):2079-2081.
    [16]Garden AS. Is there still a role for induction chemothery for head and neck cancer[J]. J Clin Oncol,2005,23 (6):1059-1060.
    [17]Lee AW,Tung S,Chua D,et al. Prospective randomize study on therapeutic gain achieved by addition of chemotherapy for T1-4 N2-3M0 nasopharyngeal carcinoma (NPC) [J]. Proc Am Soc Clin Oncol,2004,23:487.
    [18]Tee J,TaiBC,Wong HB,et al. Phase Ⅲ randomized trial of radiotherapy versus concurrent chemo-radiotherapy followed by adjuvant chemotherapy in patients with AJCC/U ICC (1997) stage 3 and 4 nasopharyngeal cancer of the
    endemic variety[J]. Proc Am Soc Clin Oncol,2004,23:487.
    [19]Chua DT,Nicholls JM,Sham JS,et al. Prognosis value of ep ider mal growth factor recep tor exp ression in patients with advancedstage nasopharyngeal carcinoma treated with induction chemother apy and radiotherapy[J]. Jnt J Radiat Oncol Biol Phys,2004,59 (1):11-20.
    [20]Chua DT,Sham JS,Choy D,et al. Preliminary report of the asian-oceanian clinical oncology association randomized trial comparing cisplatin and epirubicin followed by radiotherapy versus radiotherapy alone in the treatment of patients with locoregionally advanced nasopharyngeal carcinoma [J. Cancer,1998,83(11):2255-2258.
    [21]Ma J,Mai HQ,Hong MH,et al. Results of a prospective randomized trial comparing neoadjuvant chemotherapy plus radiotherapy with radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma [J]. J Clin Oncol,2001,19(5):1350-1357.
    [22]Chua DT,Ma J,Sham JS,et al. Long-term survival after cisplatin-based induction chemotherapy and radiotherapyfor nasopharyngeal carcinoma:A pooled data analysis of two phase HI trials [J]. J Clin Oncol,2005,23(6):1118-1124.
    [23]Johnson FM,Garden A,Palmer JL,et al. A Phase Ⅱ study of docetaxel and carboplatin as neoadjuvant therapy for nasopharyngeal carcinoma with early T status and advanced N status [J]. Cancer,2004,100:991-998.
    [24]Chan AT,Ma BB,Lo YM,et al. Phase II study of neoadjuvant carboplatin and paclitaxel followed by radiotherapy and concurrent cisplatin in patients with locoregionally advanced nasopharyngeal carcinoma:therapeutic monitoring with plasma Epstein-Barr virus DNA [J]. J Clin Oncol,2004,22:3053-3060.
    [25]Rajhi NA,Amro AA,Sebaie ME,et al. Neoadjuvant chemotherapy followed by concurrent chemo-radiation therapy in locally advanced nasopharyngeal carcinoma:Single institute experience [J].Int J Radiat Oncol Biol Phys,2007,69:434.
    [26]高云生,应红梅,熊小鹏,等.局部晚期鼻咽癌放疗与化疗综合治疗的生存分析[J].中华放射肿瘤学杂志,2007,16(4):241-244.
    [27]Chi KH,Chang YC,Guo WY,et al. A phase Ⅲ study of adjuvant chemotherapy in advanced nasopharyngeal carcinoma patients [J]. Int J Radiat Oncol Biol Phys,2002,52:1238-1244.
    [28]Prasad U,Wahid MI,Jalaludin MA,et al. Long-term survival of nasopharyngeal carcinoma patients treated with adjuvant chemotherapy subsequent to conventional radical radiotherapy [J]. Int J Radiat Oncol Biol Phys,2002,53:648-655.
    [29]Wee J,Tai BC,Wong HB,et al. Phase Ⅲ randomized trial of radiotherapy versus concurrent chemo-radiotherapy followed by adjuvant chemotherapy in patients with AJCC/UICC (1997)stage 3 and 4 nasopharyngeal cancer of the endemic variety [J]. Proc Am Soc Clin Oncol,2004,23 [abst.5500]:487.
    [30]Lee AW,Lau WH,Tung SY,et al. Preliminary results of a randomized study on therapeutic gain by concurrent chemotherapy for regionally-advanced nasopharyngeal carcinoma:NPC-9901 Trial by the Hong Kong asopharyngeal Cancer Study Group [J]. J Clin Oncol,2005,23(28):6966-6975.
    [31]Lin JC,Jan JS,Hsu CY,et al. Phase Ⅲ study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma:Positive effect on overall and progression-free survival [J]. J Clin Oncol,2003,21:631-637.
    [32]郭灵,林焕新,邱枋,等.52Fu与DDP时间调节化疗治疗晚期鼻咽癌的初步临床观察[J].中国肿瘤临床,2004,31,(13):7212724.
    [33]杨兴龙,刘杰.一种晚期复发鼻咽癌(NPC)的时辰化疗方案疗效观察[J].中国肿瘤临床,2001,28,(1):42245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700