新疆草花提取物(GHE)对Aβ致痴呆大鼠模型的保护作用及其炎症机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer's disease,AD)是一种以老年斑(senile plaque,SP)形成、神经纤维缠结(neurofibrillary tangles,NFT)及神经元丢失为主要病理特征的神经系统退行性疾病,主要表现为进行性的认知功能下降。有关AD发病机制的研究虽然取得了一些成果,提出了一系列关于AD病理学的假说,但是这些假说尚未能完全解释AD的发病机制。大量研究表明AD是多病因相互作用的结果。其中,β-淀粉样蛋白(β-amyloid protein,Aβ)的生成、代谢及毒性作用是AD病理机制的中心环节。遗传(如基因缺陷)等病因引发淀粉样前体蛋白(amyloid precursor protein,APP)代谢异常导致Aβ蓄积,Aβ通过兴奋性毒性,线粒体功能障碍,能量代谢异常,钙离子稳态破坏,细胞凋亡,氧化应激反应及神经炎症反应等多个途径诱发神经损伤,导致神经元机能障碍或死亡。
     目前,对AD的治疗尚缺乏有效手段,而越来越多的研究将重点转移到中草药,原因是中草药是天然来源,比合成药物更安全。中草药的成分复杂,对于病理机制复杂的疾病,可能具有更好的疗效。此外,中草药的代谢谱对于药物活性成分筛选具有重要价值,为药物的研发及作用机制阐述提供了线索。新疆草花(Gossypiumherbaceam L.,GH)是新近开发的一种产于新疆、用于治疗记忆力减退的民间药物。该药物的治疗作用仅限于民间经验,对其改善学习记忆损伤的药效及确切机制尚无报道。在本研究中,我们将新疆草花提取物(Gossypium herbaceam L.extracts,GHE)用于治疗Aβ_(25-35)诱导的急性学习记忆损伤大鼠,同时使用多奈哌齐(donepezil)作为阳性对照药,观察GHE能否对抗Aβ诱导的损伤作用。在整体水平评价GHE的神经保护作用及抑制细胞凋亡效果,并对其抗Aβ诱导神经炎症的机制进行阐述,为开发安全有效的神经保护新药提供依据。
     随着对AD病理机制研究的深入,炎症反应已经受到越来越多的关注。大量研究证明,AD的发病及进展过程中都伴随着炎症反应的发生。其中,胶质细胞(小胶质细胞和星形胶质细胞)在AD的神经炎症机制中发挥了重要作用。Aβ的病理性聚积会激活胶质细胞(尤其是小胶质细胞),诱导炎症介质释放增加,继而将诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)激活,产生一氧化氮(nitricoxide,NO)及活性氧簇(reactive oxygen species,ROS),后者又可以与活性氮簇(reactive nitrogen species,RNS)作用,生成过氧化亚硝酸盐。这种过氧化物能对细胞产生很强的毒性,从而引发细胞凋亡。此外,小胶质细胞和星形胶质细胞的相互作用还会进一步增加炎症因子前体、补体以及氧化物的产生。这些炎症介质和氧化物的产生会导致Aβ的进一步聚积,从而将细胞内炎症因子介导的级联反应进一步扩大,使之进入恶性循环。另一方面,胶质细胞,尤其是星形胶质细胞,在神经退行性病变过程中还发挥了神经保护的作用。有研究证明,两种胶质细胞被激活后还可以通过释放神经营养因子(neurotrophic factors,NTFs)及抗炎细胞因子(如IL-4,IL-10等)对抗炎症反应,起到细胞保护的作用。这就是胶质细胞的“双刃剑”效应。基于上述理论,本文采用目前国际上公认的更接近于AD病理机制的长期侧脑室注射Aβ_(25-35)诱导的慢性学习记忆损伤模型,观察并比较在AD病理进程中胶质细胞发挥的炎症损伤和神经保护两方面的作用,阐述Aβ激活胶质细胞致学习记忆损伤的神经通路,为今后的药物靶点筛选及新药研发奠定了基础。
     第一部分新疆草花提取物(GHE)对Aβ致痴呆大鼠模型的保护作用
     1.GHE由很多成分组成,指纹图谱显示主要成分的保留时间分别为18.36,18.46,18.56,19.51,20.46,20.79,21.99,22.26及23.37。
     2.成年雄性SD大鼠随机分为6组:假手术对照组(Control),侧脑室单次注射生理盐水加灌胃给予蒸馏水14天;模型组(Model),侧脑室单次注射Aβ_(25-35)加灌胃给予蒸馏水14天;阳性药多奈哌齐组(Donepezil),侧脑室单次注射Aβ_(25-35)加灌胃给予多奈哌齐0.6 mg/kg 14天;GHE低剂量组(GHE-L),侧脑室单次注射Aβ_(25-35)加灌胃给予GHE 35 mg/kg 14天;GHE中剂量组(GHE-M),侧脑室单次注射Aβ_(25-35)加灌胃给予GHE 70 mg/kg 14天;GHE高剂量组(GHE-H),侧脑室单次注射Aβ_(25-35)加灌胃给予GHE 140 mg/kg 14天。
     3.水迷宫测试结果证明,与假手术对照组相比,模型组大鼠寻台潜伏期明显延长(P<0.01),而给药多奈哌齐(P<0.01)及GHE 35 mg/kg和GHE 70 mg/kg(P<0.05)后大鼠寻台潜伏期明显缩短,但结果不具有剂量依赖关系。
     4.避暗测试结果显示,多奈哌齐和GHE(70 mg/kg)给药能够显著改善Aβ诱导的恐惧记忆损伤,降低大鼠避暗实验的错误次数。此外,GHE给药在一定程度上延长了避暗实验的潜伏期,但是差异没有达到统计学意义。
     5.Nissl染色结果证明,与假手术对照组相比,Aβ_(25-35)侧脑室注射显著下调大鼠海马CA1区健康神经元密度,神经元活力明显降低(P<0.05),而GHE 70 mg/kg连续给药14天能够逆转Aβ诱导的损伤,且结果具有统计学意义(P<0.05)。
     6.TUNEL结果证实,模型组大鼠海马齿状回区出现较多的可以检测到的凋亡细胞,而给药各组大鼠海马齿状回区仅偶尔可见凋亡神经元。
     7.生化检测结果表明,与假手术对照组相比,模型组大鼠海马区GSH-Px和CAT的酶活力显著降低,给药GHE 35 mg/kg和GHE 70 mg/kg后,GSH-Px和CAT的酶活性显著增加。但GHE对SOD的活性和MDA的含量没有影响。
     8.ELISA和western blotting检测结果显示,侧脑室注射Aβ_(25-35)显著诱导大鼠海马区IL-1β含量升高(P<0.01),而IL-1RA的表达也有一定程度的升高,但IL-1RA/IL-1β的比率显著降低(P<0.01),说明IL-1炎症系统激活。而给药GHE70 mg/kg和140 mg/kg后,IL-1β含量显著降低,同时IL-1RA/IL-1β的比率显著升高,说明GHE能够有效对抗Aβ诱导的IL-1系统的炎症反应。
     9.本文分别采用western blotting和EMSA方法对炎症因子NF-κB的核转位及活性进行了检测。结果证明,GHE能够有效抑制Aβ_(25-35)诱导的NF-κB核转位及激活。机制是给药GHE 70和140 mg/kg后能够显著抑制Aβ_(25-35)诱导的IκB-α的降解(P<0.05)。免疫组化染色结果进一步证明,Aβ_(25-35)能够显著上调大鼠海马CA1和CA3区细胞核内NF-κB的表达(P<0.01)。GHE和多奈哌齐阳性药能够不同程度地抑制胞核内NF-κB的表达。
     第二部分长期侧脑室注射Aβ致痴呆模型的炎症机制探讨
     1.成年雄性Long Evans大鼠随机分为2组:假手术对照组(NS),侧脑室注射生理盐水,每天5μl,连续14天;Aβ模型组(Aβ),侧脑室注射Aβ_(25-35),每天300 pmol(5μl),连续14天。
     2.水迷宫测试结果显示,与假手术对照组组相比,长期侧脑室注射Aβ_(25-35)可导致大鼠的寻台潜伏期明显延长(P<0.01)。
     3.免疫组织化学结果证明,与假手术对照组相比,Aβ模型组大鼠海马CA1、CA3和DG区的GFAP染色较深且阳性细胞显著增多,说明GFAP的表达增加,星形胶质细胞大量激活,统计结果表明此差异具有统计学意义(P<0.01);而小胶质细胞标志物Iba1染色阳性细胞在海马CA1区显著增多(P<0.05),说明长期侧脑室注射Aβ_(25-35)也诱导海马区小胶质细胞激活。此外,real-time PCR结果进一步证实,星形胶质细胞(P<0.01)和小胶质细胞标记物(P<0.05)的基因转录水平在Aβ模型组大鼠海马区均呈现出显著增加的趋势。
     4.通过细胞因子检测技术Bio-plex对接受Aβ_(25-35)长期侧脑室注射的大鼠脑海马区9种细胞因子进行了检测,结果表明,IL-1α(P<0.01),IL-1β(P<0.01)和TNF-α(P<0.05)三种细胞因子受Aβ_(25-35)的诱导出现显著上调;抗炎因子IL-4出现明显下调,但由于其标准差较大,此差异没有达到统计学意义。
     5.采用western blotting和ELISA检测方法对大鼠海马区NTFs及其受体的表达进行检测,结果发现,长期侧脑室注射Aβ_(25-35)能够显著上调BDNF(P<0.01)和GDNF(P<0.05)的蛋白表达水平;同时,显著下调NGF(P<0.01)和p75~(NTR)(P<0.05)的蛋白表达。Real-time PCR结果证明,受Aβ_(25-35)的诱导,NTFs及其受体的基因转录水平呈下降的趋势,其中BDNF(P<0.05)和Trk B(P<0.05)的下调具有统计学意义。
     6.对大鼠血清中皮质酮水平的检测结果表明,长期侧脑室注射Aβ诱导血清中皮质酮浓度显著升高(P<0.05)。
     7.Western blotting和real-time PCR结果均显示,Aβ能够诱导大鼠海马区APP蛋白表达水平和基因转录水平出现一定程度的变化,但此差异没有统计学意义。
Alzheimer's disease(AD),one of the most prominent neurodegenerative diseases,is characterized by progressive loss of cognitive abilities.The neuropathological hallmarks of the disease are senile plaque(SP),neurofibrillary tangles(NFT) and loss of neurons. There have been a lot of studies providing some hypotheses on the pathophysiology of AD,but the mechanisms of AD remain unclear.Most of the studies suggested that AD was resulted from a lot of different etiopathogenisis and their interactions.And the formation,metabolism and toxicity ofβ-amyloid protein(Aβ) have been suggested to play a central role in the pathogenesis of AD.Some causes,such as gene defect,might induce abnormal metabolism of Aβprecursor protein(APP),which can contribute to Aβaccumulation.As a consequence,Aβwould induce the damage of neurons through several different pathways,including excitatory toxicity,dysfunctions of mitochondria, abnormal energy metabolism,disequilibrium of calcium homeostasis,apoptosis, oxidative stress,neuroinflammation process,and so on.
     At the present,there is no definitive treatment or cure for AD.A large segment of the public finds solace in herbs,in part believing that herbs are natural and hence safer than synthetic drugs,and that a complex mixture of herbs can effectively treat complex diseases.In addition,the metabolite profile of herbal medicine is important for screening its active constituents,thus providing a valuable contribution to the drug discovery process and elucidation of the underlying mechanism of action.Gossypium herbaceam L. extracts(GHE) is an active standardized extract obtained from Gossypium herbaceam L., an ethical herb used by Uygur people in Xinjiang,China,to treat mental retardation.In the present study,the neuroprotective effect of GHE against Aβ_(25-35) induced learning and memory impairment was observed in vivo.We used GHE to treat the rats injected with Aβ_(25-35),and used donepezil as the positive control.The results suggested GHE could be considered as a potential agent for preventing or retarding the development or progression of AD.
     Additionally,recent evidences showed that inflammatory disorders were involved in the onset and progression of AD.Glial cells(microglia and astrocytes) played a major role in the neuroinflammatory process in AD.The activation of microglia,in response to Aβaccumulation,leaded to enhancements in the production of inflammatory mediators. As a consequence,inducible nitric oxide synthase(iNOS) was activated,which produced nitric oxide(NO),and reactive nitrogen specie(RNS).Moreover,toxic reactive oxygen species(ROS) were produced,which could also react with RNS to form peroxynitrite that was highly toxic to cells and caused apoptosis.Additionally,interactions between microglia and astrocytes have been observed in the brain,which might further result in the increased production of pro-inflammatory cytokines,complement proteins,and oxidants.Both types of glial cells might contribute to neuronal damage and the accumulation of Aβ.Aβcould further induce a cascade of cellular mechanism,including activation of both glial cells to release inflammatory mediators.In contrast to the neurotoxic effects,neuroprotective effects of glial cells,especially astrocytes,in the process of neurodegeneration have been observed.Some investigations supported that both microglia and astrocytes,while responding to pro-inflammatory agents,could protect neuronal cells by producing neurotrophic factors(NTFs),and anti-inflammatory mediators(i.e.IL-4,IL-10).Thus,in the present study the chronic animal model of AD induced by Aβwas used to evaluate the relationship between neuroinflammatory process and neuroprotective effect resulted from glial cells activation.And it could provide some valuable evidences for the drug discovery process in the future.
     PartⅠ:The neuroprotective effects of Gossypium herbaceam L.extracts (GHE) on AD rat induced by Aβ
     1.There were many complex components in GHE.The retention times of main components were 18.36,18.46,18.56,19.51,20.46,20.79,21.99,22.26,and 23.37, respectively.
     2.SD rats were randomly divided into 6 groups:rats treated with i.c.v,normal saline and i.g.distilled water were used as control group;rats treated with i.c.v.Aβ_(25-35) and i.g. distilled water were used as model group;rats treated with i.c.v.Aβ_(25-35) and i.g. donepezil were used as positive control group;rats treated with i.c.v.Aβ_(25-35) and i.g. GHE 35 mg/kg were used as GHE low dose group;rats treated with i.c.v.Aβ_(25-35) and i.g.GHE 70 mg/kg were used as GHE medium dose group;rats treated with i.c.v. Aβ_(25-35) and i.g.GHE 140 mg/kg were used as GHE high dose group.
     3.Morris water maze data showed that Aβ_(25-35)-treated animals exhibited obviously longer escape latencies in probe test than that of the control(P<0.01).The GHE (70mg/kg and 140mg/kg) significantly shortened escape latencies(P<0.05),and ameliorated memory impairment due to Aβ_(25-35),as did donepezil(P<0.01).However, there was no dose dependence observed among each GHE treatment group.
     4.Step through test suggested that treatment with donepezil and GHE(70 mg/kg) effectively reduced Aβ-induced increase of numbers of errors in the passive performance test.GHE intragastricly administrated tended to increase the step-through latency,but the improvement did not achieve statistical significance.
     5.Nissl staining analysis indicated Aβ_(25-35) significantly decreased the healthy cell density in CA1 region of hippocampus in rats,as compared to that in the control group(P<0.05),and treatment with GHE-M(70 mg/kg) for following 14 days markedly reversed the Aβ_(25-35)-induced changes(P<0.05) in the CA1 region.
     6.TUNEL results suggested apoptotic neurons in dentate gyrus in model rats were markedly increased compared to those in control rats,and positive cells were occasionally seen in dentate gyrus of rats treated with donepezil and GHE.
     7.The activity of GSH-Px and CAT in the hippocampus tissues of rats treated by Aβ_(25-35) alone decreased in comparison with those in the control group.The most significant benefits exerted on improvement of GSH-Px and CAT activities in the hippocampus tissue were observed in GHE-L and GHE-M groups.Unfortunately,no significant differences existed in the activity of SOD and the level of MDA in hippocampus between the model group and each GHE group.
     8.ELISA and western blotting results showed that Aβ_(25-35) i.c.v,injection could significantly induce the enhancement of IL-Iβconcentration in hippocampus(P<0.01),while to some extent,the IL-1RA expression showed a trend of increase as well. However,the ratio of IL-1RA/IL-1βobviously increased in hippocampus of rats treated with Aβ_(25-35) alone(P<0.01).Which suggested the activity of IL-1 system in model group is higher than that in the control group.Besides,GHE(70 mg/kg and 140 mg/kg) could reverse the changes induced by Aβ,which indicated that GHE could play an important role against the inflammation induced by IL-1 system.
     9.The nuclear translocation and activation of NF-κB were analyzed by western blot and EMSA,respectively.Western blot analysis proved that GHE,especially at the dose of 70mg/kg administration(P<0.05),could effectively inhibit the Aβ_(25-35) induced translocation of NF-κB into cell nucleus in hippocampus of rats,and EMSA result indicated that treatment of GHE could prevent the activation of NF-κB due to Aβ_(25-35). Aβeffectively caused degradation of IκB-α(P<0.05),which could be significantly inhibited by treatment with GHE at the doses of 70 and 140 mg/kg(P<0.05). Immunohistochemistry assay data also showed that the levels of NF-κB in cell nucleus in CA1 and CA3 region of hippocampus were significantly increased in the presence of Aβ_(25-35) after two weeks(P<0.01).Interestingly,this increase in nucleus in CA1 region was prevented by treatment with donepezil,GHE-M and GHE-H(P<0.05). Meanwhile,donepezil,GHE-L,GHE-M and GHE-H could also reduce the level of NF-κB in nucleus in CA3 region of hippocampus in rats,respectively(P<0.01).
     PartⅡ:The study of inflammatory mechanisms involved in AD rat model induced by i.c.v,infusion of Aβ
     1.Long Evans rats were randomly divided into 2 groups:rats treated with i.c.v. continuous infusion of normal saline(NS) 5μl per day for 14 days were used as control group;rats treated with i.c.v,continuous infusion of Aβ_(25-35) 300 pmol per day for 14 days were used as model group.
     2.Morris water maze data showed that compared with the control group,the escape latency obviously prolonged due to Aβ_(25-35) i.c.v,infusion(P<0.01).
     3.Immunohistochemistry analysis results indicated that compared with the control group, the number of GFAP immunopositive cells was significantly increased in CA1,CA3 and DG regions in hippocampus of rats in Aβmodel group(P<0.01),which suggested that GFAP expression enhanced and astrocytes activated;While the number of Ibal (one of the markers of microglia) immunopostive cells were obviously increased only in CA1 region of hippocampus in rats in Aβmodel group compared with those in the control group,which suggested that microglia could be activated by Aβi.c.v,infusion. In addition,real-time PCR results provided further supports that the transcriptions level of markers for astrocytes and microglia were significantly increased in Aβmodel group compared with those in the control group.
     4.Bio-plex cytokine assay showed that among the 9 cytokines which were detected, IL-1α(P<0.01),IL-1β(P<0.01) and TNF-α(P<0.05) were obviously up-regulated by Aβi.c.v,infusion,while the anti-inflammatory cytokine IL-4 was down-regulated by Aβi.c.v,infusion.However the latter did not achieve significant change.
     5.Western blotting and ELISA data indicated that among some NTFs and their receptors, the BDNF(P<0.01) and GDNF(P<0.05) expressions were markedly higher in hippocampus of rats in Aβmodel group.While the NGF(P<0.01) and p75~(NTR)(P<0.05) expressions obviously decreased due to Aβi.c.v,infusion.Real-time PCR results showed that BDNF(P<0.05) and Trk B(P<0.05) transcription levels were significantly lower than those in the control group.
     6.The corticosterone levels in serum in rats were analyzed by EIA test.The data suggested that the corsticosterone level was obviously increased due to Aβi.c.v. infusion in this study(P<0.05).
     7.The protein expression and the transcription level of APP in hippocampus of rats were evaluated by western blotting and real-time PCR analysis respectively.The results showed that to some extent,both of the protein expression and transcription level altered due to Aβi.c.v,infusion in this study,but the differences did not achieve statistical significance.
引文
[1]Barnham KJ,Masters CL,Bush AI.Neurodegenerative diseases and oxidative stress.Nat Rev Drug Discov 2004;3 (3):205-14.
    [2]Sastre M,Walter J,Gentleman SM.Interactions between APP secretases and inflammatory mediators.J Neuroinflammation 2008;5:25.
    [3]LaFerla FM,Green KN,Oddo S.Intracellular amyloid-beta in Alzheimer's disease.Nat Rev Neurosci 2007;8 (7):499-509.
    [4]Pike CJ,Walencewicz-Wasserman AJ,Kosmoski J,Cribbs DH,Glabe CG Cotman CW.Structure-activity analyses of beta-amyloid peptides:contributions of the beta 25-35 region to aggregation and neurotoxicity.J Neurochem 1995;64 (1):253-65.
    [5]Laczko I,Holly S,Konya Z,Soos K,Varga JL,Hollosi M,Penke B.Conformational mapping of amyloid peptides from the putative neurotoxic 25-35 region.Biochem Biophys Res Commun 1994;205(1):120-6.
    [6]Forloni G,Chiesa R,Smiroldo S,Verga L,Salmona M,Tagliavini F,Angeretti N.Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25-35.Neuroreport 1993;4 (5):523-6.
    [7]Biswas SC,Shi Y,Vonsattel JP,Leung CL,Troy CM,Greene LA.Bim is elevated in Alzheimer's disease neurons and is required for beta-amyloid-induced neuronal apoptosis.J Neurosci 2007;27(4):893-900.
    [8]Patel JR,Brewer GJ.Age-related differences in NFkappaB translocation and Bcl-2/Bax ratio caused by TNFalpha and Abeta42 promote survival in middle-age neurons and death in old neurons.Exp Neurol 2008;213 (I):93-100.
    [9]Girard S,Kadhim H,Larouche A,Roy M,Gobeil F,Sebire G.Pro-inflammatory disequilibrium of the IL-1 beta/IL-lra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia.Cytokine 2008;43 (1):54-62.
    [10]Rafii MS,Aisen PS.Recent developments in Alzheimer's disease therapeutics.BMC Med 2009;7:7.
    [11]Geng P,Zhang R,Aisa HA,He J,Qu K,Zhu H,Abliz Z.Fast profiling of the integral metabolism of flavonols in the active fraction of Gossypium herbaceam L.using liquid chromatography/multi-stage tandem mass spectrometry.Rapid Commun Mass Spectrom 2007;21(12):1877-88.
    [12]Ramos EM,Lin MT,Larson EB,Maezawa I,Tseng LH,Edwards KL,Schellenberg GD,Hansen JA,Kukull WA,Jin LW.Tumor necrosis factor alpha and interleukin 10 promoter region polymorphisms and risk of late-onset Alzheimer disease.Arch Neurol 2006;63 (8):1165-9.
    [13]Gu F,Zhu M,Shi J,Hu Y,Zhao Z.Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice.Neurosci Lett2008;440(1):44-8.
    [14]Pratico D,Trojanowski JQ.Inflammatory hypotheses:novel mechanisms of Alzheimer's neurodegeneration and new therapeutic targets? Neurobiol Aging 2000;21 (3):441-5;discussion 51-3.
    [15]Akiyama H,Barger S,Barnum S,Bradt B,Bauer J,Cole GM,Cooper NR,Eikelenboom P,Emmerling M,Fiebich BL,Finch CE,Frautschy S,Griffin WS,Hampel H,Hull M,Landreth G, Lue L,Mrak R,Mackenzie IR,McGeer PL,O'Banion MK,Pachter J,Pasinetti G,Plata-Salaman C,Rogers J,Rydel R,Shen Y,Streit W,Strohmeyer R,Tooyoma I,Van Muiswinkel FL,Veerhuis R,Walker D,Webster S,Wegrzyniak B,Wenk G,Wyss-Coray T.Inflammation and Alzheimer's disease.Neurobiol Aging 2000;21 (3):383-421.
    [16]McGeer PL,McGeer EG.Polymorphisms in inflammatory genes and the risk of Alzheimer disease.Arch Neurol 2001;58 (11):1790-2.
    [17]in t' Veld BA,Ruitenberg A,Hofman A,Launer LJ,van Duijn CM,Stijnen T,Breteler MM,Strieker BH.Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease.N Engl J Med2001;345(21):1515-21.
    [18]Etminan M,Gill S,Samii A.Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease:systematic review and meta-analysis of observational studies.Bmj 2003;327(7407):128.
    [19]Szekely CA,Thorne JE,Zandi PP,Ek M,Messias E,Breitner JC,Goodman SN.Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease:a systematic review.Neuroepidemiology 2004;23 (4):159-69.
    [20]Delobette S,Privat A,Maurice T.In vitro aggregation facilities beta-amyloid peptide-(25-35)-induced amnesia in the rat.Eur J Pharmacol 1997;319(1):1-4.
    [21]Yamaguchi Y,Kawashima S.Effects of amyloid-beta-(25-35)on passive avoidance,radial-arm maze learning and choline acetyltransferase activity in the rat.Eur J Pharmacol 2001;412(3):265-72.
    [22]Yamada H,Aimi Y,Nagatsu I,Taki K,Kudo M,Arai R.Immunohistochemical detection of L-DOPA-derived dopamine within serotonergic fibers in the striatum and the substantia nigra pars reticulata in Parkinsonian model rats.Neurosci Res 2007;59 (1):l-7.
    [23]Maurice T,Lockhart BP,Su TP,Privat A.Reversion of beta 25-35-amyloid peptide-induced amnesia by NMDA receptor-associated glycine site agonists.Brain Res 1996;731 (1-2):249-53.
    [24]Hiramatsu M,Inoue K,Kameyama T.Dynorphin A-(1-13)and (2-13)improve beta-amyloid peptide-induced amnesia in mice.Neuroreport 2000;11 (3):431-5.
    [25]Abramov AY,Canevari L,Duchen MR.Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity.J Neurosci 2003;23 (12):5088-95.
    [26]Zhou J,Fonseca MI,Pisalyaput K,Tenner AJ.Complement C3 and C4 expression in Clq sufficient and deficient mouse models of Alzheimer's disease.J Neurochem 2008;106 (5):2080-92.
    [27]Cole GM,Morihara T,Lim GP,Yang F,Begum A,Frautschy SA.NSAID and antioxidant prevention of Alzheimer's disease:lessons from in vitro and animal models.Ann N Y Acad Sci 2004;1035:68-84.
    [28]Yang X,Yang Y,Li G,Wang J,Yang ES.Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with Alzheimer presenilin 1 mutation.J Mol Neurosci 2008;34 (2):165-71.
    [29]Hensley K,Hall N,Subramaniam R,Cole P,Harris M,Aksenov M,Aksenova M,Gabbita SP,Wu JF,Carney JM,et al.Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation.J Neurochem 1995;65 (5):2146-56.
    [30]Markesbery WR.Oxidative stress hypothesis in Alzheimer's disease.Free Radic Biol Med 1997;23(1):134-47.
    [31]Subbarao KV,Richardson JS,Ang LC.Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro.J Neurochem 1990;55 (1):342-5.
    [32]Butterfield DA,Drake J,Pocernich C,Castegna A.Evidence of oxidative damage in Alzheimer's disease brain:central role for amyloid beta-peptide.Trends Mol Med 2001;7 (12):548-54.
    [33]Rosales-Corral S,Tan DX,Reiter RJ,Valdivia-Velazquez M,Acosta-Martinez JP,Ortiz GG.Kinetics of the neuroinflammation-oxidative stress correlation in rat brain following the injection of fibrillar amyloid-beta onto the hippocampus in vivo.J Neuroimmunol 2004;150 (1-2):20-8.
    [34]Puig B,Gomez-Isla T,Ribe E,Cuadrado M,Torrejon-Escribano B,Dalfo E,Ferrer I.Expression of stress-activated kinases c-Jun N-terminal kinase (SAPK/JNK-P)and p38 kinase (p38-P),and tau hyperphosphorylation in neurites surrounding betaA plaques in APP Tg2576 mice.Neuropathol Appl Neurobiol 2004;30 (5):491-502.
    [35]Torreilles F,Salman-Tabcheh S,Guerin M,Torreilles J.Neurodegenerative disorders:the role of peroxynitrite.Brain Res Brain Res Rev 1999;30 (2):153-63.
    [36]Loddick SA,Liu C,Takao T,Hashimoto K,De Souza EB.Interleukin-1 receptors:cloning studies and role in central nervous system disorders.Brain Res Brain Res Rev 1998;26 (2-3):306-19.
    [37]Sims JE.IL-1 and IL-18 receptors,and their extended family.Curr Opin Immunol 2002;14(1):117-22.
    [38]Cao Z,Xiong J,Takeuchi M,Kurama T,Goeddel DV.TRAF6 is a signal transducer for interleukin-1.Nature 1996;383 (6599):443-6.
    [39]Song HY,Regnier CH,Kirschning CJ,Goeddel DV,Rothe M.Tumor necrosis factor (TNF)-mediated kinase cascades:bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK.)pathways at TNF receptor-associated factor 2.Proc Natl Acad Sci U S A 1997;94(18):9792-6.
    [40]Akama KT,Van Eldik LJ.Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1 beta-and tumor necrosis factor-alpha (TNFalpha)-dependent,and involves a TNFalpha receptor-associated factor-and NFkappaB-inducing kinase-dependent signaling mechanism.J Biol Chem 2000;275 (11):7918-24.
    [41]McCulloch CA,Downey GP,El-Gabalawy H.Signalling platforms that modulate the inflammatory response:new targets for drug development.Nat Rev Drug Discov 2006;5(10):864-76.
    [42]Craft JM,Watterson DM,Hirsch E,Van Eldik LJ.Interleukin 1 receptor antagonist knockout mice show enhanced microglial activation and neuronal damage induced by intracerebroventricular infusion of human beta-amyloid.J Neuroinflammation 2005;2:15.
    [43]Palin K,Verrier D,Tridon V,Hurst J,Perry VH,Dantzer R,Lestage J.Influence of the course of brain inflammation on the endogenous IL-lbeta/IL-IRa balance in the model of brain delayed-type hypersensitivity response to bacillus Calmette-Guerin in Lewis rats.J Neuroimmunol 2004;149 (l-2):22-30.
    [44]Li R,Yang L,Lindholm K,Konishi Y,Yue X,Hampel H,Zhang D,Shen Y.Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death.J Neurosci 2004;24 (7):1760-71.
    [45]Valerio A,Boroni F,Benarese M,Sarnico I,Ghisi V,Bresciani LG,Ferrario M,Borsani G,Spano P,Pizzi M.NF-kappaB pathway:a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production.Eur J Neurosci 2006;23 (7):1711-20.
    [46]Terai K,Matsuo A,McGeer EG,McGeer PL.Enhancement of immunoreactivity for NF-kappa B in human cerebral infarctions.Brain Res 1996;739 (l-2):343-9.
    [47]Meffert MK,Chang JM,Wiltgen BJ,Fanselow MS,Baltimore D.NF-kappa B functions in synaptic signaling and behavior.Nat Neurosci 2003;6 (10):1072-8.
    [48]Kaltschmidt B,Uherek M,Volk B,Baeuerle PA,Kaltschmidt C.Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease.Proc Natl Acad Sci U S A 1997;94 (6):2642-7.
    [49]Barger SW,Horster D,Furukawa K,Goodman Y,Krieglstein J,Mattson MP.Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity:evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation.Proc Natl Acad Sci U S A 1995;92 (20):9328-32.
    [50]Mattson MP,Goodman Y,Luo H,Fu W,Furukawa K.Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis:evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration.J Neurosci Res 1997;49 (6):681-97.
    [51]Ho GJ,Drego R,Hakimian E,Masliah E.Mechanisms of cell signaling and inflammation in Alzheimer's disease.Curr Drug Targets Inflamm Allergy 2005;4 (2):247-56.
    [52]Mattson MP,Meffert MK.Roles for NF-kappaB in nerve cell survival,plasticity,and disease.Cell Death Differ 2006;13 (5):852-60.
    [53]Lee SY,Lee J W,Lee H,Yoo HS,Yun YP,Oh KW,Ha TY,Hong JT.Inhibitory effect of green tea extract on beta-amyloid-induced PC 12 cell death by inhibition of the activation of NF-kappaB and ERK/p38 MAP kinase pathway through antioxidant mechanisms.Brain Res Mol Brain Res 2005;140(l-2):45-54.
    [54]Townsend KP,Pratico D.Novel therapeutic opportunities for Alzheimer's disease:focus on nonsteroidal anti-inflammatory drugs.Faseb J 2005;19 (12):1592-601.
    [55]Kuhad A,Bishnoi M,Tiwari V,Chopra K.Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits.Pharmacol Biochem Behav 2009;92 (2):251-9.
    [56]Geula C.Abnormalities of neural circuitry in Alzheimer's disease:hippocampus and cortical cholinergic innervation.Neurology 1998;51 (1 Suppl l):S18-29;discussion S65-7.
    [57]Blasko I,Stampfer-Kountchev M,Robatscher P,Veerhuis R,Eikelenboom P,Grubeck-Loebenstein B.How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age:the role of microglia and astrocytes.Aging Cell 2004;3 (4):169-76.
    [58]Davies HA,Kelly A,Dhanrajan TM,Lynch MA,Rodriguez JJ,Stewart MG.Synaptophysin immunogold labelling of synapses decreases in dentate gyrus of the hippocampus of aged rats.Brain Res 2003;986 (1-2):191-5.
    [59]Gemma C,Mesches MH,Sepesi B,Choo K,Holmes DB,Bickford PC.Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar beta-adrenergic function and increases in proinflammatory cytokines.J Neurosci 2002;22 (14):6114-20.
    [60]Beckman JS,Crow JP.Pathological implications of nitric oxide,superoxide and peroxynitrite formation.Biochem Soc Trans 1993;21 (2):330-4.
    [61]Benveniste EN,Nguyen VT,O'Keefe GM.Immunological aspects of microglia:relevance to Alzheimer's disease.Neurochem Int 2001;39 (5-6):381-91.
    [62]Coraci IS,Husemann J,Berman JW,Hulette C,Dufour JH,Campanella GK,Luster AD,Silverstein SC,El-Khoury JB.CD36,a class B scavenger receptor,is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils.Am J Pathol 2002;160 (1):101-12.
    [63]Wisniewski HM,Wegiel J,Wang KC,Kujawa M,Lach B.Ultrastructural studies of the cells forming amyloid fibers in classical plaques.Can J Neurol Sci 1989;16 (4 Suppl):535-42.
    [64]Klegeris A,McGeer PL.Rat brain microglia and peritoneal macrophages show similar responses to respiratory burst stimulants.J Neuroimmunol 1994;53 (1):83-90.
    [65]Giulian D,Haverkamp LJ,Li J,Karshin WL,Yu J,Tom D,Li X,Kirkpatrick JB.Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain.Neurochem Int 1995;27 (1):119-37.
    [66]Hopkins SJ,Rothwell NJ.Cytokines and the nervous system.I:Expression and recognition.Trends Neurosci 1995;18 (2):83-8.
    [67]Cotter RL,Burke WJ,Thomas VS,Potter JF,Zheng J,Gendelman HE.Insights into the neurodegenerative process of Alzheimer's disease:a role for mononuclear phagocyte-associated inflammation and neurotoxicity.J Leukoc Biol 1999;65 (4):416-27.
    [68]Gendelman HE,Folks DG Innate and acquired immunity in neurodegenerative disorders.J Leukoc Biol 1999;65 (4):407-8.
    [69]Blasko I,Veerhuis R,Stampfer-Kountchev M,Saurwein-Teissl M,Eikelenboom P,Grubeck-Loebenstein B.Costimulatory effects of interferon-gamma and interleukin-lbeta or tumor necrosis factor alpha on the synthesis of Abetal-40 and Abetal-42 by human astrocytes.Neurobiol Dis 2000;7 (6 Pt B):682-9.
    [70]Wyss-Coray T,Lin C,Yan F,Yu GQ,Rohde M,McConlogue L,Masliah E,Mucke L.TGF-betal promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice.Nat Med2001;7(5):612-8.
    [71]Gasparini L,Rusconi L,Xu H,del Soldato P,Ongini E.Modulation of beta-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures.J Neurochem 2004;88 (2):337-48.
    [72]Teismann P,Schulz JB.Cellular pathology of Parkinson's disease:astrocytes,microglia and inflammation.Cell Tissue Res 2004;318 (1):149-61.
    [73]Cotman CW.The role of neurotrophins in brain aging:a perspective in honor of Regino Perez-Polo.Neurochem Res 2005;30 (6-7):877-81.
    [74]Yuen EC,Mobley WC.Therapeutic potential of neurotrophic factors for neurological disorders.Ann Neurol 1996;40 (3):346-54.
    [75]Connor B,Dragunow M.The role of neuronal growth factors in neurodegenerative disorders of the human brain.Brain Res Brain Res Rev 1998;27 (1):1-39.
    [76]Huang EJ,Reichardt LF.Trk receptors:roles in neuronal signal transduction.Annu Rev Biochem 2003;72:609-42.
    [77]Peng S,Wuu J,Mufson EJ,Fahnestock M.Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease.J Neurochem 2005;93 (6):1412-21.
    [78]Capsoni S,Ugolini G,Comparini A,Ruberti F,Berardi N,Cattaneo A.Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice.Proc Natl Acad Sci U S A 2000;97(12):6826-31.
    [79]Copray S,Kust B,Emmer B,Lin MY,Liem R,Amor S,de Vries H,Floris S,Boddeke E.Deficient p75 low-affinity neurotrophin receptor expression exacerbates experimental allergic encephalomyelitis in C57/BL6 mice.J Neuroimmunol 2004;148 (l-2):41-53.
    [80]Gunasingh MJ,Philip JE,Ashok BS,Kirubagaran R,Jebaraj WC,Davis GD,Vignesh S,Dhandayuthapani S,Jayakumar R.Melatonin prevents amyloid protofibrillar induced oxidative imbalance and biogenic amine catabolism.Life Sci 2008;83 (3-4):96-102.
    [81]Koenigsknecht-Talboo J,Landreth GE.Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines.J Neurosci 2005;25 (36):8240-9.
    [82]Koenigsknecht J,Landreth G Microglial phagocytosis of fibrillar beta-amyloid through a betal integrin-dependent mechanism.J Neurosci 2004;24 (44):9838-46.
    [83]Wilkinson B,Koenigsknecht-Talboo J,Grommes C,Lee CY,Landreth G.Fibrillar beta-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia.J Biol Chem 2006;281 (30):20842-50.
    [84]Blesch A,Grill RJ,Tuszynski MH.Neurotrophin gene therapy in CNS models of trauma and degeneration.Prog Brain Res 1998;117:473-84.
    [85]Green KN,Billings LM,Roozendaal B,McGaugh JL,LaFerla FM.Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer's disease.J Neurosci 2006;26(35):9047-56.
    [86]Diamond MI,Robinson MR,Yamamoto KR.Regulation of expanded polyglutamine protein aggregation and nuclear localization by the glucocorticoid receptor.Proc Natl Acad Sci U S A2000;97(2):657-61.
    [87]Blank T,Nijholt I,Vollstaedt S,Spiess J.The corticotropin-releasing factor receptor 1 antagonist CP-154,526 reverses stress-induced learning deficits in mice.Behav Brain Res 2003;138(2):207-13.
    [88]Orozco-Cabal L,Pollandt S,Liu J,Shinnick-Gallagher P,Gallagher JP.Regulation of synaptic transmission by CRF receptors.Rev Neurosci 2006;17 (3):279-307.
    [89]Vyas A,Mitra R,Shankaranarayana Rao BS,Chattarji S.Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons.J Neurosci 2002;22 (15):6810-8.
    [90]Swaab DF,Bao AM,Lucassen PJ.The stress system in the human brain in depression and neurodegeneration.Ageing Res Rev 2005;4 (2):141-94.
    [91]Hardy J,Selkoe DJ.The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics.Science 2002;297 (5580):353-6.
    [92]Butterfield DA,Reed T,Newman SF,Sultana R.Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment.Free Radic Biol Med 2007;43 (5):658-77.
    [93]Demuro A,Mina E,Kayed R,Milton SC,Parker I,Glabe CG.Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers.J Biol Chem 2005;280 (17):17294-300.
    [94]Hynd MR,Scott HL,Dodd PR.Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease.Neurochem Int 2004;45 (5):583-95.
    [95]Copani A,Sortino MA,Caricasole A,Chiechio S,Chisari M,Battaglia G,Giuffrida-Stella AM,Vancheri C,Nicoletti F.Erratic expression of DNA polymerases by beta-amyloid causes neuronal death.Faseb J 2002;16 (14):2006-8.
    [96]Copani A,Hoozemans JJ,Caraci F,Calafiore M,Van Haastert ES,Veerhuis R,Rozemuller AJ,Aronica E,Sortino MA,Nicoletti F.DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid.J Neurosci 2006;26 (43):10949-57.
    [97]Herrup K,Neve R,Ackerman SL,Copani A.Divide and die:cell cycle events as triggers of nerve cell death.J Neurosci 2004;24 (42):9232-9.
    [98]Caraci F,Battaglia G,Busceti C,Biagioni F,Mastroiacovo F,Bosco P,Drago F,Nicoletti F, Sortino MA,Copani A.TGF-beta 1 protects against Abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway.Neurobiol Dis 2008;30 (2):234-42.
    [99]Hu W,Gray NW,Brimijoin S.Amyloid-beta increases acetylcholinesterase expression in neuroblastoma cells by reducing enzyme degradation.J Neurochem 2003;86 (2):470-8.
    [100]Movsesyan VA,Stoica BA,Faden AI.MGLuRi activation reduces beta-amyloid-induced cell death in primary neuronal cultures and attenuates translocation of cytochrome c and apoptosis-inducing factor.J Neurochem 2004;89 (6):1528-36.
    [101]Stepanichev MY,Moiseeva YV,Lazareva NA,Onufriev MV,Gulyaeva NV.Single intracerebroventricular administration of amyloid-beta (25-35)peptide induces impairment in short-term rather than long-term memory in rats.Brain Res Bull 2003;61 (2):197-205.
    [102]Pike CJ,Burdick D,Walencewicz AJ,Glabe CG,Cotman CW.Neurodegeneration induced by beta-amyloid peptides in vitro:the role of peptide assembly state.J Neurosci 1993;13 (4):1676-87.
    [103]Nakamura S,Murayama N,Noshita T,Annoura H,Ohno T.Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide.Brain Res 2001;912 (2):128-36.
    [104]Itoh A,Nitta A,Nadai M,Nishimura K,Hirose M,Hasegawa T,Nabeshima T.Dysfunction of cholinergic and dopaminergic neuronal systems in beta-amyloid protein-infused rats.J Neurochem 1996;66 (3):1113-7.
    [105]Begum AN,Yang F,Teng E,Hu S,Jones MR,Rosario ER,Beech W,Hudspeth B,Ubeda OJ,Cole GM,Frautschy SA.Use of copper and insulin-resistance to accelerate cognitive deficits and synaptic protein loss in a rat Abeta-infusion Alzheimer's disease model.J Alzheimers Dis 2008;15(4):625-40.
    [106]Tran MH,Yamada K,Nakajima A,Mizuno M,He J,Kamei H,Nabeshima T.Tyrosine nitration of a synaptic protein synaptophysin contributes to amyloid beta-peptide-induced cholinergic dysfunction.Mol Psychiatry 2003;8 (4):407-12.
    [107]Gray TS,Cassell MD,Nilaver G,Zimmerman EA,Williams TH.The distribution and ultrastructure of VIP-immunoreactivity in the central nucleus of the rat amygdala.Neuroscience 1984;11(2):399-408.
    [108]Hanisch UK.Microglia as a source and target of cytokines.Glia 2002;40 (2):140-55.
    [109]Hurley SD,Walter SA,Semple-Rowland SL,Streit WJ.Cytokine transcripts expressed by microglia in vitro are not expressed by ameboid microglia of the developing rat central nervous system.Glia 1999;25 (3):304-9.
    [110]Barger SW,Basile AS.Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function.J Neurochem 2001;76 (3):846-54.
    [111]Floden AM,Li S,Combs CK.Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors.J Neurosci 2005;25(10):2566-75.
    [112]Liao H,Bu WY,Wang TH,Ahmed S,Xiao ZC.Tenascin-R plays a role in neuroprotection via its distinct domains that coordinate to modulate the microglia function.J Biol Chem 2005;280 (9):8316-23.
    [113]Polazzi E,Gianni T,Contestabile A.Microglial cells protect cerebellar granule neurons from apoptosis:evidence for reciprocal signaling.Glia 2001;36 (3):271-80.
    [114]Monje ML,Toda H,Palmer TD.Inflammatory blockade restores adult hippocampal neurogenesis.Science 2003;302 (5651):1760-5.
    [115]von Bernhardi R.Glial cell dysregulation:a new perspective on Alzheimer disease.Neurotox Res 2007;12(4):215-32.
    [116]Shie FS,Woltjer RL.Manipulation of microglial activation as a therapeutic strategy in Alzheimer's disease.Curr Med Chem 2007;14 (27):2865-71.
    [117]Craft JM,Watterson DM,Frautschy SA,Van Eldik LJ.Aminopyridazines inhibit beta-amyloid-induced glial activation and neuronal damage in vivo.Neurobiol Aging 2004;25(10):1283-92.
    [118]Frautschy SA,Hu W,Kim P,Miller SA,Chu T,Harris-White ME,Cole GM.Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology.Neurobiol Aging 2001;22 (6):993-1005.
    [119]Hu S,Begum AN,Jones MR,Oh MS,Beech WK,Beech BH,Yang F,Chen P,Ubeda OJ,Kim PC,Davies P,Ma Q,Cole GM,Frautschy SA.GSK3 inhibitors show benefits in an Alzheimer's disease (AD)model of neurodegeneration but adverse effects in control animals.Neurobiol Dis 2009;33 (2):193-206.
    [120]Griffin WS,Sheng JG,Royston MC,Gentleman SM,McKenzie JE,Graham DI,Roberts GW,Mrak RE.Glial-neuronal interactions in Alzheimer's disease:the potential role of a‘cytokine cycle’in disease progression.Brain Pathol 1998;8 (1):65-72.
    [121]Mirzoeva S,Sawkar A,Zasadzki M,Guo L,Velentza AV,Dunlap V,Bourguignon JJ,Ramstrom H,Haiech J,Van Eldik LJ,Watterson DM.Discovery of a 3-amino-6-phenyl-pyridazine derivative as a new synthetic antineuroinflammatory compound.J Med Chem 2002;45 (3):563-6.
    [122]Craft JM,Van Eldik LJ,Zasadzki M,Hu W,Watterson DM.Aminopyridazines attenuate hippocampus-dependent behavioral deficits induced by human beta-amyloid in a murine model of neuroinflammation.J Mol Neurosci 2004;24 (1):115-22.
    [123]Butt AM,Hamilton N,Hubbard P,Pugh M,Ibrahim M.Synantocytes:the fifth element.J Anat 2005;207 (6):695-706.
    [124]Rogers J,Strohmeyer R,Kovelowski CJ,Li R.Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide.Glia 2002;40 (2):260-9.
    [125]Koistinaho M,Lin S,Wu X,Esterman M,Koger D,Hanson J,Higgs R,Liu F,Malkani S,Bales KR,Paul SM.Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides.Nat Med 2004;10 (7):719-26.
    [126]Huang EJ,Reichardt LF.Neurotrophins:roles in neuronal development and function.Annu Rev Neurosci 2001;24:677-736.
    [127]Tang Y,Yamada K,Kanou Y,Miyazaki T,Xiong X,Kambe F,Murata Y,Seo H,Nabeshima T.Spatiotemporal expression of BDNF in the hippocampus induced by the continuous intracerebroventricular infusion of beta-amyloid in rats.Brain Res Mol Brain Res 2000;80(2):188-97.
    [128]Crutcher KA,Scott SA,Liang S,Everson WV,Weingartner J.Detection of NGF-like activity in human brain tissue:increased levels in Alzheimer's disease.J Neurosci 1993;13 (6):2540-50.
    [129]Counts SE,Nadeem M,Wuu J,Ginsberg SD,Saragovi HU,Mufson EJ.Reduction of cortical TrkA but not p75(NTR)protein in early-stage Alzheimer's disease.Ann Neurol 2004;56(4):520-31.
    [130]Fahnestock M,Scott SA,Jette N,Weingartner JA,Crutcher KA.Nerve growth factor mRNA and protein levels measured in the same tissue from normal and Alzheimer's disease parietal cortex.Brain Res Mol Brain Res 1996;42 (1):175-8.
    [131]Ginsberg SD,Che S,Wuu J,Counts SE,Mufson EJ.Down regulation oftrk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease.J Neurochem 2006;97 (2):475-87.
    [132]Hock C,Heese K,Hulette C,Rosenberg C,Otten U.Region-specific neurotrophin imbalances in Alzheimer disease:decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas.Arch Neurol 2000;57 (6):846-51.
    [133]Hu XY,Zhang HY,Qin S,Xu H,Swaab DF,Zhou JN.Increased p75(NTR)expression in hippocampal neurons containing hyperphosphorylated tau in Alzheimer patients.Exp Neurol 2002;178(1):104-11.
    [134]Savaskan E,Muller-Spahn F,Olivieri G,Bruttel S,Otten U,Rosenberg C,Hulette C,Hock C.Alterations in trk A,trk B and trk C receptor immunoreactivities in parietal cortex and cerebellum in Alzheimer's disease.Eur Neurol 2000;44 (3):172-80.
    [135]Eikelenboom P,Veerhuis R,Scheper W,Rozemuller AJ,van Gool WA,Hoozemans JJ.The significance of neuroinflammation in understanding Alzheimer's disease.J Neural Transm 2006;113(11):1685-95.
    [136]Zhu X,Raina AK,Perry G,Smith MA.Alzheimer's disease:the two-hit hypothesis.Lancet Neurol 2004;3 (4):219-26.
    [137]Ge YW,Lahiri DK.Regulation of promoter activity of the APP gene by cytokines and growth factors:implications in Alzheimer's disease.Ann N Y Acad Sci 2002;973:463-7.
    [1]Weisman D,Hakimian E,Ho GJ.Interleukins,inflammation,and mechanisms of Alzheimer's disease.Vitam Horm 2006;74:505-30.
    [2]von Bernhardi R.Glial cell dysregulation:a new perspective on Alzheimer disease.Neurotox Res 2007;12(4):215-32.
    [3]Flugel A,Bradl M,Kreutzberg GW,Graeber MB.Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy.J Neurosci Res 2001;66(1):74-82.
    [4]McGeer EG,McGeer PL.Brain inflammation in Alzheimer disease and the therapeutic implications.Curr Pharm Des 1999;5(10):821-36.
    [5]Vilhardt F.Microglia:phagocyte and glia cell.Int J Biochem Cell Biol 2005;37(1):17-21.
    [6]Klegeris A,McGeer PL.Non-steroidal anti-inflammatory drugs(NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease.Curr Alzheimer Res 2005;2(3):355-65.
    [7]McGeer PL,McGeer EG.NSAIDs and Alzheimer disease:epidemiological,animal model and clinical studies.Neurobiol Aging 2007;28(5):639-47.
    [8]Balistreri CR,Caruso C,Grimaldi MP,Listi F,Vasto S,Orlando V,Campagna AM,Lio D,Candore G.CCR5 receptor:biologic and genetic implications in age-related diseases.Ann N Y Acad Sci 2007;1100:162-72.
    [9]Bossu P,Ciaramella A,Moro ML,Bellincampi L,Bernardini S,Federici G,Trequattrini A, Macciardi F,Spoletini I,Di lulio F,Caltagirone C,Spalletta G.Interleukin 18 gene polymorphisms predict risk and outcome of Alzheimer's disease.J Neurol Neurosurg Psychiatry 2007;78 (8):807-11.
    [10]Candore G Balistreri CR,Grimaldi MP,Listi F,Vasto S,Chiappelli M,Licastro F,Colonna-Romano G Lio D,Caruso C.Polymorphisms of pro-inflammatory genes and Alzheimer's disease risk:a pharmacogenomic approach.Mech Ageing Dev 2007;128(1):67-75.
    [11]Ramos EM,Lin MT,Larson EB,Maezawa I,Tseng LH,Edwards KL,Schellenberg GD,Hansen JA,Kukull WA,Jin LW.Tumor necrosis factor alpha and interleukin 10 promoter region polymorphisms and risk of late-onset Alzheimer disease.Arch Neurol 2006;63(8):1165-9.
    [12]Koenigsknecht-Talboo J,Landreth GE.Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines.J Neurosci 2005;25 (36):8240-9.
    [13]von Bernhardi R,Ramirez G Toro R,Eugenin J.Pro-inflammatory conditions promote neuronal damage mediated by Amyloid Precursor Protein and decrease its phagocytosis and degradation by microglial cells in culture.Neurobiol Dis 2007;26 (1):153-64.
    [14]Koenigsknecht J,Landreth G Microglial phagocytosis of fibrillar beta-amyloid through a betal integrin-dependent mechanism.J Neurosci 2004;24 (44):9838-46.
    [15]Wilkinson B,Koenigsknecht-Talboo J,Grommes C,Lee CY,Landreth G Fibrillar beta-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia.J Biol Chem 2006;281(30):20842-50.
    [16]Walker DG,Link J,Lue LF,Dalsing-Hernandez JE,Boyes BE.Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes.J Leukoc Biol 2006;79 (3):596-610.
    [17]Van Eldik LJ,Thompson WL,Ralay Ranaivo H,Behanna HA,Martin Watterson D.Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases:function-based and target-based discovery approaches.Int Rev Neurobiol 2007;82:277-96.
    [18]Dickson DW,Lee SC,Mattiace LA,Yen SH,Brosnan C.Microglia and cytokines in neurological disease,with special reference to AIDS and Alzheimer's disease.Glia 1993;7 (1):75-83.
    [19]Klegeris A,McGeer PL.beta-amyloid protein enhances macrophage production of oxygen free radicals and glutamate.J Neurosci Res 1997;49 (2):229-35.
    [20]Yates SL,Burgess LH,Kocsis-Angle J,Antal JM,Dority MD,Embury PB,Piotrkowski AM, Brunden KR.Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia.J Neurochem 2000;74 (3):1017-25.
    [21]Klegeris A,McGeer PL.Rat brain microglia and peritoneal macrophages show similar responses to respiratory burst stimulants.J Neuroimmunol 1994;53 (1):83-90.
    [22]Xiang Z,Haroutunian V,Ho L,Purohit D,Pasinetti GM.Microglia activation in the brain as inflammatory biomarker of Alzheimer's disease neuropathology and clinical dementia.Dis Markers 2006;22 (l-2):95-102.
    [23]Butovsky O,Talpalar AE,Ben-Yaakov K,Schwartz M.Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-Ⅱ expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective.Mol Cell Neurosci 2005;29(3):381-93.
    [24]Butovsky O,Koronyo-Hamaoui M,Kunis G,Ophir E,Landa G,Cohen H,Schwartz M.Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1.Proc Natl Acad Sci U S A 2006;103 (31):11784-9.
    [25]Bonifati DM,Kishore U.Role of complement in neurodegeneration and neuroinflammation.Mol Immunol 2007;44 (5):999-1010.
    [26]Eikelenboom P,Veerhuis R,Scheper W,Rozemuller AJ,van Gool WA,Hoozemans JJ.The significance of neuroinflammation in understanding Alzheimer's disease.J Neural Transm 2006;113 (11):1685-95.
    [27]Saha RN,Pahan K.Regulation of inducible nitric oxide synthase gene in glial cells.Antioxid Redox Signal 2006;8 (5-6):929-47.
    [28]Wilkinson BL,Landreth GE.The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease.J Neuroinflammation 2006;3:30.
    [29]Zhou J,Fonseca MI,Pisalyaput K,Tenner AJ.Complement C3 and C4 expression in Clq sufficient and deficient mouse models of Alzheimer's disease.J Neurochem 2008;106 (5):2080-92.
    [30]Wyss-Coray T,Lin C,Yan F,Yu GQ,Rohde M,McConlogue L,Masliah E,Mucke L.TGF-betal promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice.Nat Med 2001;7 (5):612-8.
    [31]Takano T,Han X,Deane R,Zlokovic B,Nedergaard M.Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease.Ann N Y Acad Sci 2007;1097:40-50.
    [32]Giaume C,Kirchhoff F,Matute C,Reichenbach A,Verkhratsky A.Glia:the fulcrum of brain diseases.Cell Death Differ 2007;14 (7):1324-35.
    [33]Hickman SE,Allison EK,El Khoury J.Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice.JNeurosci 2008;28 (33):8354-60.
    [34]Rodriguez JJ,Olabarria M,Chvatal A,Verkhratsky A.Astroglia in dementia and Alzheimer's disease.Cell Death Differ 2009;16 (3):378-85.
    [35]Nagele RG,Wegiel J,Venkataraman V,Imaki H,Wang KC,Wegiel J.Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease.Neurobiol Aging 2004;25 (5):663-74.
    [36]Nagele RG,D'Andrea MR,Lee H,Venkataraman V,Wang HY.Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains.Brain Res 2003;971 (2):197-209.
    [37]Kirischuk S,Kettenmann H,Verkhratsky A.Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells.Pflugers Arch 2007;454(2):245-52.
    [38]Dringen R.Metabolism and functions of glutathione in brain.Prog Neurobiol 2000;62(6):649-71.
    [39]Pekny M,Nilsson M.Astrocyte activation and reactive gliosis.Glia 2005;50 (4):427-34.
    [40]Butt AM,Hamilton N,Hubbard P,Pugh M,Ibrahim M.Synantocytes:the fifth element.J Anat 2005;207 (6):695-706.
    [41]Pekny M,Wilhelmsson U,Bogestal YR,Pekna M.The role of astrocytes and complement system in neural plasticity.Int Rev Neurobiol 2007;82:95-111.
    [1]Levi-Montalcini R,Hamburger V.Selective growth stimulating e□ects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo.J Exp Zool.1951;116:321-362.
    [2]Levi-Montalcini R.The nerve growth factor 35 years later.Science.1987;237:1154-1162.
    [3]Hefti F.Nerve growth factor(NGF) promotes survival of septal cholinergic neurons after fimbrial transection.J Neurosci.1986;6:2155-2162.
    [4]Kromer LF.Nerve growth factor treatment after brain injury prevents neuronal death.Science.1987;235:214-216.
    [5]Williams LR,Varon S,Peterson GM,et al.Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection.PNAS.1986;83:9231-9235.
    [6]Fischer W,Wictorin K,Bjorklund A,et al.Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor.Nature.1987;329:65-68.
    [7]Koliatsos VE,Nauta HJ,Clatterbuck RE,et al.Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey.J Neurosci,1990;10:3801-13.
    [8]Tuszynski MH,Sang H,Yoshuda K,Gage FH.Recombinant human nerve growth facior infusions prevent cholinergic neuronal degeneration in the adult primate brain.Ann Neurol,1991;30:625-36.
    [9]Tuszynski MH,U HS,Amaral DC,et al.Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration.J Neurosci,1990;10:3604-14.
    [10]Winkler J,Ramirez GA,Kuhn HG,et al.Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor.Ann Neurol,1997;11:82-93.
    [11]Rosenberg MB,Triedmann T,Robertson RC,et al.Grafting genetically modified cells to the damaged brain:restorative effects of NGF expression.Science,1988;242:1575-8.
    [12]Chen KS,Gage FH.Somatic gene transfer of NGF to the aged brain:behavioral and morphological amelioration.J Neurosci,1995;15:2819-25.
    [13]Martinez-Serrano A,Fischer W,Bjorklund A.Reversal of age-depent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain.Neuron,1995;473-84.
    [14]Kordower JH,Winn SR,Liu YT,et al.The aged monkey basal forbrain:rescue and sprouting of axotomized cells secreting human nerve growth factor.Proc Natl Acad Sci USA,1994;91:10898-902.
    [15]Tuszynski MH,Roberts J,Senut MC,et al.Gene therapy in the adult primate brain:intraparenchymal grafts of cells genetically motified to produce nerve growth factor prevent cholinergic neuronal degeneration.Gene Ther,1996a;3:305-14.
    [16]Smith DE,Roberts J,Gage FH,et al.Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy.Proc Natl Acad Sci USA,1999;96:10893-8.
    [17]Conner JM,Darracq MA,Roberts J,et al.Non-tropic actions of neurotrophins:subcortical NGF gene delivery reverses age-related degeneration of primate cortical cholinergic innervation.Proc Natl Acad Sci USA,2001;98:1941-6.
    [18]Mark H,Tuszynski.Nerve growth factor gene therapy in Alzheimer Disease.Nerve Growth Factor Gene Therapy,2007;21:179-89.
    [19]Mandel RJ,Gage FH,Clevenger DG,et al.Nerve growth factor expressed in medial septum following in vivo gene delivery using a recombinant adeno-associated viral vector protects cholinergic neurons from fimbria-fornix lesion-induced dgeneration.Exp Neurol 1999;155:59-64.
    [20]Blomer U,Kafri T,Randolph-Moore L,et al.Bcl-xL protects adult septal cholinergic neurons from axotomized cell death.Proc Natl Acad Sci USA,1998;95:2603-8.
    [21]Bankiewicz KS,Forsayeth J,Eberling JL,et al.Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC.Mol Ther.2006;14:564-570.
    [22]Mandel RJ,Burger C.Clinical trials in neurological disorders using AAV vectors:promises and challenges.Curr Opin Mol Ther.2004;6:482-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700